Projet de Physique P6-3
STPI/P6-3/2010 – 35

Le 14 juin 2010
Enseignant-responsable du projet :
D. Vuillamy

Etude de l’utilisation et de la mise en œuvre d’un Gazogène

Helene DEPARIS
Matthieu MARTINELLI

Katharina GOUZY HUGELMEIER
Denis ROUSSELLE

Rémi LEFEVRE
François TRAP
Date de remise du rapport : 17/06/2010

Référence du projet : STPI/P6-3/2010-35

Intitulé du projet : Étude de l'utilisation et de la mise en œuvre d'un gazogène

Type de projet : Recherche/Bibliographie

Objectifs du projet :

L'objectif premier de notre projet était de savoir si ce type de carburant pouvait être réutilisé à notre époque ; quels étaient les inconvénients et les possibilités de mise en œuvre. Pour cela, il nous a fallu connaître le fonctionnement du gazogène et donc étudier ce procédé depuis son invention. Nous nous sommes confrontés aux difficultés engendrées par une telle installation sur une automobile. De ce fait, notre objectif principal a été d'envisager des améliorations. Il était incontournable de s'assurer de la conformité du gazogène vis à vis de la législation.
Table des matières

<table>
<thead>
<tr>
<th>Acronymes</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>II. Méthodologie / Organisation du travail</td>
<td>3</td>
</tr>
<tr>
<td>III. Historique du gazogène</td>
<td>4</td>
</tr>
<tr>
<td>IV. Description et fonctionnement du gazogène Imbert</td>
<td>12</td>
</tr>
<tr>
<td>1 - Description du système :</td>
<td>12</td>
</tr>
<tr>
<td>1°/ Le Gazogène</td>
<td>12</td>
</tr>
<tr>
<td>2°/ Le système de réfrigération et du purification du gaz</td>
<td>14</td>
</tr>
<tr>
<td>2 - Fonctionnement, mise en service du gazogène</td>
<td>15</td>
</tr>
<tr>
<td>1°/ Remplissage du gazogène</td>
<td>15</td>
</tr>
<tr>
<td>2°/ Allumage</td>
<td>15</td>
</tr>
<tr>
<td>3°/ Arrêt de fonctionnement</td>
<td>15</td>
</tr>
<tr>
<td>3 - Les réactions chimique dans un gazogène à bois :</td>
<td>16</td>
</tr>
<tr>
<td>V. Type de bois utilisé pour le fonctionnement d'un gazogène</td>
<td>18</td>
</tr>
<tr>
<td>VI. Bloc moteur et combustion du gaz de gazogène</td>
<td>20</td>
</tr>
<tr>
<td>1 - Rappel : cycle Beau de Rochas – moteur à 4 temps à allumage commandé</td>
<td>20</td>
</tr>
<tr>
<td>2 - Rôle du turbocompresseur</td>
<td>21</td>
</tr>
<tr>
<td>3 - Calcul de la quantité d'air nécessaire à la bonne marche du gazogène</td>
<td>22</td>
</tr>
<tr>
<td>1°/ Calcul de la quantité de dioxygène nécessaire</td>
<td>22</td>
</tr>
<tr>
<td>2°/ Calcul de la quantité et de la masse d'air nécessaire</td>
<td>23</td>
</tr>
<tr>
<td>3°/ Calcul de la masse de gaz de gazogène et rapport de masse</td>
<td>23</td>
</tr>
<tr>
<td>4°/ Calcul de la quantité d'air nécessaire dans un moteur 4 temps fonctionnant à l'essence</td>
<td>23</td>
</tr>
<tr>
<td>4 - Calcul des quantités approximatives de matière rejetées dans l'atmosphère</td>
<td>24</td>
</tr>
<tr>
<td>1°/ Calcul pour le gazogène</td>
<td>24</td>
</tr>
<tr>
<td>2°/ Calcul pour l'essence</td>
<td>25</td>
</tr>
<tr>
<td>5 - Calcul des PCI de l'essence et du gaz de gazogène</td>
<td>25</td>
</tr>
<tr>
<td>1°/ PCI du gaz de gazogène</td>
<td>26</td>
</tr>
<tr>
<td>2°/ PCI de l'essence</td>
<td>26</td>
</tr>
<tr>
<td>6 - Calcul de la pression atteinte par le gaz de gazogène après compression</td>
<td>27</td>
</tr>
<tr>
<td>VII. Les différentes réglementations concernant le gazogène</td>
<td>28</td>
</tr>
<tr>
<td>1 - Pré requis</td>
<td>28</td>
</tr>
<tr>
<td>2 - Les démarches administratives</td>
<td>28</td>
</tr>
<tr>
<td>3 - La réglementation au niveau de la pollution</td>
<td>29</td>
</tr>
<tr>
<td>4 - La réglementation au niveau de la modification du poids</td>
<td>29</td>
</tr>
<tr>
<td>VIII. Les inconvénients dans l’histoire</td>
<td>31</td>
</tr>
<tr>
<td>IX. Les possibles amélioration du gazogène</td>
<td>33</td>
</tr>
<tr>
<td>1 - Échangeur de chaleur à courant croisé</td>
<td>33</td>
</tr>
<tr>
<td>2 - Filtre à air</td>
<td>34</td>
</tr>
<tr>
<td>3 - Vis sans fin</td>
<td>34</td>
</tr>
</tbody>
</table>
4 - Vanne de régulation.. 35
5 - Capteur de température... 35
6 - Système de régulation.. 35
7 - Possibilités amélioration du système au démarrage... 36
 1°/ Choix de la source de chaleur... 36
 2°/ Choix d'un combustible:.. 36
X. Conclusion et réponse au projet... 37
XI. Bibliographie.. 39
 Documents imprimés... 39
 Documents électroniques... 39
 Images et animations... 40
XII. Annexes... 41
Acronymes

DRIRE : Direction Régionale de l'Industrie, de la Recherche et de l'Environnement
DREAL : Direction Régionale de l'Environnement, de l'Aménagement et du Logement
PV : Poids à Vide
ATEX : Atmosphère Explosive
PCI : Pouvoir Calorifique Inférieur
CGGI : Compagnie Générale des Gazogènes
H% : Le taux d'humidité se calcule comme suit :

\[
\frac{\text{Masse humide} - \text{Masse anhydre}}{\text{Masse anhydre}} \times 100
\]
I. Introduction

Tous les six, nous nous intéressons beaucoup aux énergies renouvelables, nous sommes d’ailleurs cinq en thématique MRIE, et nous pensons indispensable de trouver de nouvelles solutions aux problèmes environnementaux actuels. C’est pourquoi nous avons choisi de travailler sur le projet suivant : le gazogène, pourrait-on faire revivre ce type de carburant ?

Ce système utilisant principalement le bois comme combustible est assez méconnu des générations d’aujourd’hui puisqu’il a surtout été utilisé pendant la deuxième guerre mondiale pour palier à la pénurie de carburants. Néanmoins, sans en connaitre le fonctionnement technique au début, nous pensions que l’idée d’utiliser ce type de combustible était intéressante à étudier dans le contexte actuel qui nous oblige à trouver des alternatives au plus vite en ce qui concerne le manque de pétrole et la pollution croissante sur notre planète.

Les recherches n’ont cependant pas été très aisées du fait du très faible nombre de sources sur internet ou à la bibliothèque et des non-réponses des concessionnaires contactés. Notre dossier se base donc essentiellement sur les propos de Monsieur Beaufils, qui a accepté de recevoir Monsieur Vuillamy pour lui montrer et lui parler de son gazogène ainsi que sur le livre Le gazogène à bois Imbert de Jacques Wolff.

Notre dossier s’attachera donc à étudier tout d’abord l’histoire du gazogène et son fonctionnement afin de comprendre pourquoi il n’est plus utilisé qu’en fonctionnement stationnaire aujourd’hui. Ensuite nous essaierons d’imaginer des améliorations possibles au niveau des matériaux et des performances du moteur afin de pouvoir réutiliser le moteur à gazogène sur certains véhicules actuels tout en restant dans le cadre de la législation et en gardant un intérêt environnemental.
II. Méthodologie / Organisation du travail

Au départ du projet, nous n'avions aucune notion concernant le principe de fonctionnement du gazogène. Nous nous sommes lancés dans des recherches individuelles en consultant internet et en demandant des informations auprès des organismes concernés (DRIRE, DREAL, SIA,ADEME) mais aussi les fabricants automobile à savoir PSA et Renault. Néanmoins les constructeurs nous ont orientés vers des services spécifiques de création de projet sans donner plus d'explications. Une de nos ruses a été de feindre la création d'une automobile alimentée par gazogène pour obtenir plus d'informations sur les normes à respecter, il nous a été proposé de venir directement avec notre véhicule et notre carte grise.

Après avoir récolté un maximum d'informations, nous avons établi un plan de travail pour la rédaction de notre rapport. Nous envisagions de faire des expériences, nous permettant de mesurer le PCI du bois mais aussi la composition des gaz à la sortie du moteur. Hélas cela n'a pas été faisable, par manque de disponibilité des responsables de laboratoire.

Monsieur Vuillamy a pris sur son temps pour rencontrer un propriétaire de gazogène, M. Beauflis. Grâce à cette rencontre, nous avons pu obtenir des vidéos et des photographies du gazogène ainsi qu'une interview qui nous ont permis de rendre plus concrète notre étude théorique.

Nous n'avons pas pu nous repartir individuellement les tâches car toutes les parties étaient liées. Nous avons donc tous travailler collectivement sur l'ensemble du rapport.
III. Historique du gazogène

Voici, à partir du livre « Le gazogène à bois Imbert » de Jacques Wolff, un historique décrivant les principales étapes de l’élaboration de ce système.

Première moitié du XIXᵉ siècle : les tout premiers gazogènes

1801 : le français LEBON dépose un brevet pour un moteur fondé sur l'expansion d'un mélange d'air et de gaz enflammé.

1810 : l'espagnol De RIVAZ dessine un véhicule avec moteur à gaz.

1839 : BISCHOF construit un générateur de gaz. Des applications industrielles sont réalisées en France et en Angleterre. Dans un premier four, le coke est brûlé incomplètement, dans un second, par réduction, on obtient du gaz combustible.

1856 : les frères SIEMENS inventent un gazéificateur. A Paris, des tramways sont actionnés au gaz d'éclairage. Ce gaz, aussi appelé gaz de ville, est le plus ancien combustible connu pour l'alimentation des moteurs à explosion.

Deuxième moitié du XIXᵉ siècle : le moteur à explosion

1860 : Lenoir présente le premier moteur à gaz.

1862 : Beau de Rochas invente le cycle à 4 temps.

1886 : Daimler et Benz fabriquent la première voiture à 4 roues, avec moteur à 4 temps.

1893 : Diesel réalise un moteur fonctionnant à l'huile lourde.

Début du XXᵉ siècle : des résultats concrets sur des véhicules à gaz

1900 : Riché parvient, par la gazéification de combustibles minéraux, à produire un gaz pauvre pouvant véritablement alimenter un moteur à explosion.

1901 : Benz construit la voiture "Idéal" avec un moteur à gaz.

1904 : Gaillot et Brunet expérimentent une péniche dont le moteur est alimenté par un gazogène et Cesbron en équipe une voiture "Alcyon".

1905 : John Smith parcourt les routes d'Écosse à bord d'un camion à gazogène.

1907 : Clérici dépose un projet de gazogène à deux générateurs se plaçant symétriquement de part et d'autre du véhicule.

1909 : Deutz réussit à construire un gazéificateur combiné à un moteur développant 500 CV.

1910 : Cazès parcourt 10 km dans Paris au volant de son omnibus fonctionnant avec un gazogène à charbon de bois.

Début du XXᵉ siècle : la recherche commence mais le gazogène a du mal a percer

A partir de 1900 : l’automobile se développe rapidement et on craint de manquer de pétrole. Des recherches sont alors entreprises pour créer des véhicules fonctionnant avec un carburant produit sur le sol national. On songe à utiliser l'alcool dont la production est excédentaire dans le Languedoc, l'alcool issu de la transformation du sucre, l'acétylène, la naphtaline, le méthane ou l'éthylène. Le problème clé dans le développement des gazogènes reste pour longtemps le stockage.
pour le transport des gaz.

1914-1918 : La guerre arrête les recherches.

1920 : Georges Imbert commence à élaborer le gazogène à bois, « l’œuvre de sa vie ».

1921 : 60 véhicules dotés d’un gazogène circulent en Angleterre, la France prend du retard dans la recherche expérimentale et son application.

1922 : En conséquence, la France organise le premier concours de gazogènes « transportables » ce qui lui permet de revenir à la pointe des techniques dans la construction des gazogènes, et cela grâce en grande partie à Georges Imbert.

1930 : Imbert crée la Compagnie Générale des Gazogènes (C.G.G.I) et les camions gazogène participant aux concours militaires (voir pages suivantes), mais le gazogène à bois a du mal à percer en France.
Illustration 2: Camions participant au concours militaire de 1930

Illustration 3: Concours militaire de 1931. Camion militaire Dewald équipé d’un gazogène à bois Imbert, transportant un Renault FT.17, d’un poids de 7 tonnes.
1934 : le succès du gazogène en Allemagne permet à Imbert de continuer à développer sa technique.

1939-1945 : l’apogée du gazogène avec la guerre et la pénurie de carburant

1935 : une grave récession frappe la France et le bois de chauffe ne trouve plus preneur. La France est couverte à plus de 30 % de forêts comme la plupart des autres pays européens.

Entre 1935 et 1939 : 11 millions de stères de bois de feu restent invendus chaque année. On aurait pu alimenter plus de 70 000 camions à gazogène avec ce surplus. Cela provoque le chômage de plus de 50 000 forestiers français et la situation économique devient exécrable. La recherche est stoppée sauf à la C.G.G.I.

1939 : la guerre commence mais on pense que les conflits seront de courte durée et que les carburants constitueront une avance de consommation de plusieurs mois. Les gazogènes ne sont préconisés qu’en cas de pénurie d’essence.

Illustration 4: Page de couverture de la revue mensuelle "Le poids lourd", août 1926.
1942 : en France, comme partout en Europe, le prix de l’essence augmente et tout le monde ne peut pas s’approvisionner puisque les carburants sont rationnés. Le bois est le seul carburant disponible pour tous sans ticket. Comme en peut le voir sur cette affiche publicitaire, le gazogène représente une économie non négligeable en cette période de récession.

Illustration 5: Affiche publicitaire de promotion des gazogène Imbert
1944 : reconnaissance par tous les constructeurs européens du travail de Georges Imbert, surnommé le « pape du gazogène ». L’Allemagne utilise le gazogène à bois dans toutes les opérations militaires de la fin du conflit, aussi bien sur des chars, des automitrailleuses que sur des camions de transport de munitions.

A la fin de 1944 en France, il ne reste plus que 100 000 véhicules dont près de 90 000 dotés de gazogènes.

Après la guerre : l’abandon du gazogène

1950 : Georges Imbert meurt désintéressé de tout. En effet, son fils est mort en 1944 sur le front russe et il s’est senti terriblement responsable de cette perte depuis puisqu’il a contribué au développement des machines de guerre.

Cette date marque le début du déclin de son invention car le pétrole redevient abondant. Certains utilisateurs possèdent des véhicules mixtes pouvant rouler à l’essence et au gazogène à bois. La fin de l’utilisation des tickets de rationnement et la découverte de vastes champs pétrolifères en Orient marque la fin des gazogènes en Europe. La plupart des véhicules sont débarrassés de la partie gazogène (surnommée « cuisine ambulante ») et un simple réglage permet de recommencer à fonctionner exclusivement à l’essence.
Même la crise de Suez de 1956 n’est qu’une « alerte sans prise de conscience véritable. C’est la période de l’embargo et du choc pétrolier des années 70 qui permettra à la question du rationnement et des énergies renouvelables de revenir au goût du jour.

On utilise maintenant principalement des gazogènes stationnaires, dénommés désormais "gazeïfieurs à bois". Au début, beaucoup utilisent alors des gaz provenant de la biomasse, c’est-à-dire de la décomposition d’excrément animaux ou végétaux. Mais de nos jours, on utilise indifféremment des déchets de bois (résidus de scieries et de menuiseries, chutes, sciures, écorces...), ou des produits végétaux (parc été de café, coques de coco, d’arachides...). En utilisant ceci, le rendement global présente alors un rendement intéressant en cogénération. En effet, l’épuisement des énergies fossiles et les problèmes environnementaux liés à leur combustion semblent promettre aux gazéifieurs à bel avenir à terme en cogénération chaleur et électricité.

Illustration 7: Installation d’une cogénération au bois : schéma de principe
IV. **Description et fonctionnement du gazogène Imbert**

1 - **Description du système**

Le principe de base du gazogène est de fournir un mélange de gaz combustibles capable de remplacer le mélange essence-air dans un moteur à essence classique. Le gazogène n'utilise que des matières premières dites « brutes », comme du charbon, du bois, de la houille... Le moteur du véhicule ne fonctionne plus avec de l'essence mais grâce à la combustion de ces matières premières.

Le gazogène ou « générateur Imbert à gaz de bois », se décompose en deux grands sous-ensembles: le gazogène à proprement parler, et le système de réfrigération et de purification du gaz.

1°/ **Le Gazogène**

Il est constitué généralement d'un grand cylindre vertical en tôle (le générateur) dans lequel la combustion et la création du mélange gazeux à lieu. On peut l'apparenter à un vase clos où s'opère la décomposition du bois en charbon de bois. Le bois est introduit dans le cylindre, il est retenu par un goulot d'étranglement où il se consume presque entièrement. La chaleur du foyer transforme progressivement le bois en charbon. De cette façon le générateur produit lui-même son charbon de bois à gazéifier en partant de l'élément bois. Les derniers morceaux de charbons sont retenus par une grille où ils terminent de se consumer tout en continuant de fournir des gaz combustibles.

Lorsque le charbon de bois est allumé, il se gazéifie. Il donne en se combinant avec l'air de l'oxyde de carbone CO (combustible) et du gaz carbonique CO₂ (non combustible), néanmoins le gaz carbonique est à nouveau réduit lors de son passage sur le charbon incandescent et se transforme en oxyde de carbone. Les autres produits comme les gaz de combustion, la vapeur d'eau, les goudrons et les acides pyrolygique sont décomposés dans la zone d'oxydation et se transforment eux aussi en gaz combustibles.

Pour gérer l'arrivée d'air dans le foyer le gazogène est équipé d'un clapet qui s'ouvira plus ou moins en fonction de la dépression créée par le moteur. En effet, la dépression créée à chaque cycle dans les cylindres provoque une aspiration de gaz (qui est indispensable à la gazéification) par l'orifice d'air et d'allumage. L'air se répartit dans le foyer par les buses. Comme celle que vous pouvez voir ci dessous, à gauche:

Le corps du générateur se décompose en cinq zones : la
zone de réduction (500°C) où les gaz sont récupérés (CH₄, CO, H₂), la zone d'oxydation (1400°C) où se fait le mélange des gaz produits par la combustion et l'arrivée d'air, la zone de carbonisation (700°C) le bois devient charbon, la zone de combustion imparfaite (500°C) on y trouve de l'acide acétique, de l'acide méthylique et des goudrons et la zone de séchage (170°C) où l'eau contenue dans le bois se transforme en vapeur.

Vous pouvez voir les 5 zones en question sur le schéma ci dessous.

Illustration 9: Les 5 zones du générateur de gazogène à bois Imbert.
A la sortie du générateur, le mélange gazeux est débarrassé de sa vapeur d'eau et d'une partie de ses poussières dans le système réfrigérant.

Les gaz circulent dans un échangeur à air relié à un bac de condensation qui récupère l'eau condensée dans le mélange. De plus, les poussières et les petites particules de bois se déposent dans l'eau. Le mélange de gaz passe ensuite à travers deux filtres en liège qui piégent les particules restantes.

Dans les anciens modèles de gazogène, le système de réfrigération du gaz était constitué comme un système réfrigérant de machine thermique avec de l'eau froide circulant autour des conduits pour récupérer la chaleur. Le système de purification était un bac de granules de liège à travers lesquelles le mélange de gaz était filtré. Ce système de purification utilisant des bacs remplis de granules de liège comme filtres est toujours utilisé. Le liège est utilisé ici pour sa forte résistance à la combustion et son imperméabilité.

A la fin du circuit et avant admission dans le système de carburation, la température des gaz est de 50°C. Le mélange gazeux passe ensuite dans les conduits menant au carburateur, avant d'y être « injecté », il subit une augmentation de pression dans le turbocompresseur. Le mélange gazogène-air passe dans le carburateur et suit le cycle du moteur thermique à quatre temps.

Illustration 10: Générateur Imbert à gaz de bois. Schéma de fonctionnement.
2 - Fonctionnement, mise en service du gazogène

1°/ Remplissage du gazogène :

Lorsque le gazogène est vide, il faut introduire du charbon sur une certaine épaisseur puis compléter avec le bois. Le bois doit répondre à certains critères : il doit être sec, les morceaux de bois doivent être de la dimension d'une boîte d'allumettes et sans impuretés pour empêcher toute obstruction du mécanisme.

2°/ Allumage :

Après avoir rempli le gazogène, on ferme l'enceinte hermétiquement avec le couvercle à rabattement, la pénétration de l'air risque de produire des explosions. Ensuite on maintient devant la bouche d'air et d'allumage une mèche enflammée dont la flamme est aspirée à travers le charbon placé devant les buses. De cette façon, on démarre la combustion. Après une durée variable de 3 à 5 min, le gaz sera apte à faire fonctionner le moteur. Il suffit alors de donner plein gaz et d'actionner le démarreur. Avant que le gaz ne soit assez riche pour faire tourner le moteur, il convient de créer une dépression dans la conduite d'acheminement des gaz à l'aide d'un ventilateur qui sera par la suite fermé à l'aide d'un papillon d'arrêt. Cette dépression va forcer l'entrée d'air dans l'enceinte de combustion via le clapet d'admission.

Pour tester la qualité du gaz on peut récupérer une petite quantité de gaz et l'allumer, la flamme doit être longue et d'une couleur bleu-rougeâtre.

Pour un usage quotidien, il suffit de vérifier le niveau des charbons et du bois. Avant l'allumage, il est nécessaire de remuer le charbon à la base du foyer. Il faut également procéder au «dégazage» : le dispositif à gaz peut contenir, depuis le dernier parcours des restes de gaz qui, à l'allumage peuvent causer des explosions. Ainsi avant chaque allumage, il est obligatoire de faire marcher le ventilateur pendant une demi-minute environ, pour aspirer ces restes de gaz.

Dans le cas d'un couplage avec un moteur à essence : On peut mettre le moteur en marche directement avec le carburant liquide (essence) et faire fonctionner le gazogène ensuite. On utilise alors l'aspiration du moteur en marche à la place du ventilateur pour allumer le charbon de bois, en ouvrant légèrement le papillon (ou vanne) à gaz de bois en même temps que le papillon d'échappement d'essence, après quelques minutes on passe en mode gazogène.

3°/ Arrêt de fonctionnement :

Le moteur est arrêté par l'interruption du contact d'allumage. Pour empêcher l'échappement du gaz qui est dans le dispositif et la pénétration de l'air, on ferme le papillon à air du mélangeur de gaz et d'air. L'ouverture momentanée du papillon d'arrêt permet d'évacuer le gaz sur pressé par le tuyau d'échappement du ventilateur.

La production de gaz cesse dès l'arrêt du moteur. Cependant, durant 20 à 30 min, la zone du foyer reste si chaude que la production de gaz reprend immédiatement sous l'influence d'une nouvelle arrivée d'air.

Pendant les arrêts de courte durée, on laisse le moteur tourner à vide, car la faible consommation de bois n'a pas d'incidence et les émanations sont sans odeur et sans fumée.

Pour les arrêts de longue durée, il suffit de ranimer le feu à l'aide du ventilateur.
3 - Les réactions chimique dans un gazogène à bois :

Le gazogène à bois utilise les gaz issus de la carbonisation du bois. Dans la partie spécifique à la création du mélange gazeux (chambre de combustion), les morceaux de bois vont être carbonisés et devenir du charbon.

Le processus de la carbonisation du bois :

La première étape de la carbonisation est le séchage du bois à 100 °C ou moins jusqu'à l'état anhydre. La température du bois sec est ensuite élevée jusqu'à environ 280 °C.

Lorsque le bois est sec et porté à 280°C environ, il commence à se décomposer spontanément pour donner du charbon de bois, de la vapeur d'eau, du méthanol (CH\(_3\)OH), de l'acide acétique (CH\(_3\)COOH) et d'autres composés chimiques, principalement sous forme de goudrons et de gaz dont le monoxyde de carbone (CO) et le dioxyde de carbone (CO\(_2\)). De l'air est admis dans la chambre de combustion pour permettre la combustion d'une partie du bois, et l'azote contenu dans cet air se retrouve également dans ces gaz, tandis que l'oxygène sert à la combustion. Le processus de décomposition se poursuit jusqu'à ce qu'il ne reste plus que le résidu carbonisé : le charbon de bois.

S'il n'y a pas de nouvel apport de chaleur extérieure le processus s'arrête et la température atteint un maximum d'environ 400°C. Le charbon de bois contiendra encore une certaine quantité de résidus goudronneux, ainsi que les cendres contenant le départ dans le bois. La teneur en cendres du charbon de bois est d'environ 3 à 5%; la proportion de résidus goudronneux peut être d'environ 30% en poids, le reste étant constitué de carbone pur, soit environ 65 à 70%.

Si l'on continue à chauffer, la teneur en carbone pur augmente du fait de l'élimination et de la décomposition d'une plus grande proportion de goudrons. Une température de 500°C donne une teneur normale en carbone pur d'environ 85%, et une teneur en éléments volatils de 10%. Le rendement en charbon de bois à cette température est d'environ 33% du poids du bois anhydre carbonisé, sans tenir compte du bois qui a été brûlé pour carboniser le reste. Le rendement théorique en charbon de bois varie par conséquent avec la température de carbonisation en raison de la modification de sa teneur en substances goudronneuses volatiles.

<table>
<thead>
<tr>
<th>Température de carbonisation en °C</th>
<th>Composition chimique du charbon de bois</th>
<th>Rendement en charbon de bois par rapport au poids de bois anhydre %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% de carbone pur</td>
<td>% de matières volatiles</td>
</tr>
<tr>
<td>300</td>
<td>68</td>
<td>31</td>
</tr>
<tr>
<td>500</td>
<td>86</td>
<td>13</td>
</tr>
<tr>
<td>700</td>
<td>92</td>
<td>7</td>
</tr>
</tbody>
</table>

Une température de carbonisation basse donne un rendement plus élevé en charbon de bois, mais celui-ci est de basse qualité, il est corrosif en raison des goudrons acides qu'il contient et il ne brûle pas avec une flamme claire sans fumée. Un bon charbon de bois commercial doit avoir une teneur en carbone pur d'environ 75%, ce qui demande une température finale de carbonisation de l'ordre de 500°C.

Le rendement en charbon de bois présente également une certaine variation selon la nature du bois. On constate que la teneur en ligne de bois a un effet positif sur le rendement en charbon. Un bois à teneur élevée en ligne donne un rendement plus élevé, c'est pourquoi on préfère pour la production de charbon de bois un bois mûr et sain. Un bois lourd, d'autre part, donnera généralement un charbon dense et dur, qualités recherchées. Cependant, les bois très denses
pro奭ent parfois un charbon friable, parce qu'ils tendent à se dissocier lors de la carbonisation. La friabilité du charbon augmente avec la température de carbonisation, tandis que la teneur en matière volatiles diminue. La température qui règne dans la chambre de combustion du gazogène (450° à 500°C) est le meilleur compromis entre la friabilité et l'acquisition d'une teneur élevée en carbone pur.

En règle générale les meilleurs résultats sont obtenus avec des bois sains de moyenne à forte densité. Le bois doit être aussi sec que possible (le gazogène ne fonctionne pas avec du bois vert) et la plupart du temps refendu pour éliminer les morceaux de plus de 10 cm d'épaisseur. Le bois qui est brûlé la chambre de combustion pour sécher le reste et démarrer la carbonisation peut être de qualité inférieure et de petite section ; sa seule fonction est de produire de la chaleur pour sècher le reste du bois et le porter à température de carbonisation.

On peut décomposer en trois groupes les réactions chimiques se déroulant dans le générateur à bois.

Les réactions d'oxydation :
Carbone + Oxygène => Dioxyde de carbone
C + O₂ => CO₂

Les réactions d'hydrogénation :
Carbone + Eau => Monoxyde de carbone + Hydrogène
C + H₂O => CO + H₂
Carbone + Eau => Dioxyde de carbone + Hydrogène
C + 2H₂O => CO₂ + 2H₂

Le Monoxyde de carbone et l'eau se transforment en Dioxyde de carbone et Hydrogène

Les réactions de réduction :
Dioxyde de carbone + Carbone => Monoxyde de carbone
CO₂ + C => 2CO

Dans le générateur, on obtient par oxydoréduction du bois des produits réactifs comme le monoxyde de carbone CO (23%), l'hydrogène H₂ (18%), le méthane CH₄ (2%) et des produits inertes à savoir 10% de dioxyde de carbone CO₂ et de l'azote N₂ 47%.

La combustion du bois dans le gazogène produit des déchets à savoir de l'azote et du dioxyde de carbone tout deux inertes. On peut aussi récupérer quelques cendres et du charbon de bois si la combustion est incomplète.

Les ordres d'équivalence : 2 à 2,5 kg de bois sont équivalents à 1 litre d'essence, 3 à 3,5kg de bois sont équivalents à 1 litre de gazole, 1 kg de bois donne environ 1 m3 de gaz soit environ 1,25 CV/h pour 1 Kwh.
V. **Type de bois utilisé pour le fonctionnement d'un gazogène**

Une charge de bois dur et lourd brûle naturellement plus longtemps que le bois tendre qui est plus léger ; le bois sec brûle plus vite que le bois humide. Toutefois le bois dur et le bois tendre également séchés, du même poids, donnent pratiquement d’aussi bon gaz de bois, de sorte que, dans un gazogène, on peut employer toutes catégories de bois avec le même succès.

Cependant il est à noter que certains bois, trop tendres, sont déconseillés, comme le peuplier. Les bois tendres (bouleau) ont un pouvoir calorifique moindre dû à leur densité faible.

La densité du bois est généralement inférieure à 1 (le bois flotte) en raison des vides dans sa structure. Cette densité varie fortement en fonction de son degré d'humidité. C'est le paramètre le plus important pour caractériser un bois. On l'exprime normalement pour un taux d'humidité égal à 15% (la moyenne est entre l'état anhydre et l'état de saturation). La densité à 15 % se situe généralement entre 0,5 et 0,7, mais peut varier considérablement, de 0,1 pour le balsa, 0,4 pour les bois légers (peuplier), 0,8 à 1 pour les bois durs (chêne, olivier).

Qualification en fonction de la densité (à.15 % d'humidité):

- trés légers De 0.40 à 0.50
 - Peuplier
 - Tremble
 - Okoumé (Gabon)
 - Tilleul
- légers 0.60 à 0.65
 - Bouleau
 - Orme
 - Frêne
 - Bossé (Côte d'Ivoire)
 - Platane
 - Hêtre tendre
 - Noyer
 - Châtaignier
- mi-lourds 0.65 à 0.70
 - Acajous d'Afrique et du Mexique
 - Teck du Siam
 - Mûrier
 - Aubépine
- mi-lourds 0.70 à 0.80
 - Chêne
 - Hêtre dur
 - Frêne dur
 - Bois fruitiers
 - Hirokory (Amérique du Nord)
Les gazogènes à bois cru utilisent des tronçons de 5 cm de long environ. Ces petits rondins sont séchés s'il y a lieu puis emmagasinés en sac. Leur emploi est donc intéressant régionalement du point de vue économique, pour des questions évidentes de transport. En effet le transport peut quasi doubler le prix d'achat du bois.

Le prix d’un stère de tous les bois utilisé pour la combustion, (environ 1m3) oscille aux alentours de 40 € à 60 €, soit 0,03 à 0,04 €/kWh environ (données approximatives).

Le tarif varie en fonction :

- Du type de bois : par exemple, le chêne est un bois plus dense et donc plus énergétique mais il met plus de temps à pousser que d'autres essences comme le sapin ou du bouleau. Il coûtera donc plus cher.
- De la longueur des bûches: des bûches de 1 mètre représentent moins de travail (manuel, découpe, transport) que des bûchettes de 33cm.
- De la région: selon les régions, les quantités de bois sur le marché peuvent varier. Dans certaines régions, il y a moins de forets et donc moins de bois sur le marché.Rejet de CO2

Illustration 11: fossile et prix des énergies de différentes sources d'énergie.
Il semble ainsi évident que le bois présente certains avantages non négligeables à l'heure actuelle, tant d'un point de vue économique que d'un point de vue écologique.
VI. Bloc moteur et combustion du gaz de gazogène.

Une fois le gaz de gazogène refroidi dans les tuyaux qui l'acheminent de la cuve au bloc moteur, le gaz est mélangé avec de l'air en proportion stœchiométrique afin que la combustion soit complète et donc optimisée. Le gaz de gazogène peut fonctionner sur un moteur à essence, la seule différence est que nous utiliserons un turbocompresseur dans le but de comprimer le mélange air-gaz de gazogène pour en injecter une plus grande quantité dans les pistons.

1 - Rappel : cycle Beau de Rochas – moteur à 4 temps à allumage commandé

Le cycle Beau de Rochas est un cycle thermodynamique. C'est le cycle théorique utilisé pour modéliser de manière approchée le cycle thermodynamique des moteurs à combustion interne à allumage commandé. Nous pouvons le représenter dans le repère de Clapeyron de la manière suivante :

Les 4 temps du cycle sont les suivants :

1. L'admission est modélisée par une isobare de 0-1
2. La compression 1-2 est supposée adiabatique
3. La combustion est isochore sur 2-3, et la détente (3-4) est adiabatique
4. L'ouverture de la soupape est modélisée par l'isochore 4-5, et l'échappement par l'isobare 5-0

Page suivante vous pouvez voir une représentation des 4 temps du cycle. Sur les 4 temps un seul est moteur, c'est le 3ᵉ, lors de la combustion.

Nous allons maintenant voir l'intérêt et le rôle du turbocompresseur qui permet d'améliorer la puissance du moteur.

2 - Rôle du turbocompresseur

Le gaz de gazogène ayant un pouvoir calorifique bien moins important que l'essence, il est nécessaire d'introduire une plus grande quantité de mélange gaz de gazogène et air que de mélange air-essence. Le turbocompresseur est destiné à augmenter la pression de gaz admis, permettant ainsi un meilleur remplissage.

Le système est simple, le flux des gaz d'échappement sortant du moteur entraîne une turbine à grande vitesse. Cette turbine est reliée à un arbre qui entraîne le turbocompresseur, ce dernier aspire et comprime l'air avant de l'admettre dans le cylindre.

Il peut être nécessaire de refroidir le gaz ainsi compressé afin d'éviter les phénomènes de cliquetis (auto-allumage). En effet, lors de la compression la pression et la température du gaz vont augmentées, si elles dépassent un seuil, alors il peut y avoir une combustion à contre temps d'une partie du gaz indépendamment de l'étincelle de la bougie d'allumage. Une deuxième raison de refroidir les gaz après le turbocompresseur est que plus un gaz est chaud et plus son volume molaire est important, et donc la quantité de gaz de gazogène admise moins importante.

Vous pouvez voir page suivante un schéma de turbocompresseur :
3 - **Calcul de la quantité d'air nécessaire à la bonne marche du gazogène**

(remarque : pour les comparaisons avec l'essence, nous considérons l'essence comme un liquide homogène ne contenant que de l'octane : C₈H₁₈)

1°/ **Calcul de la quantité de dioxygène nécessaire**

Nous allons maintenant calculer la quantité d'air nécessaire au bon fonctionnement du gazogène. La composition du gaz de gazogène est approximativement la suivante (fraction molaire) : 20% de CO, 30% de H₂, 10% de CO₂, 40% de N₂. Et les réactions de combustion sont les suivantes :

(1) : CO + ½ O₂ → CO₂
(2) : H₂ + ½ O₂ → H₂O

Considérons (1) et (2) totales.

Nous avons donc, pour une mole de gaz de gazogène :

n(CO) = 0,2
n(H₂) = 0,3
n(CO₂) = 0,1
n(N₂) = 0,4
Calculons \(n(O_2) \), pour que les réactions soient en proportions stœchiométriques:

\[
\begin{align*}
n(O_2) & = n_{11}(O_2) + n_{12}(O_2) \\
& = \frac{1}{2} n(CO) + \frac{1}{2} n(H_2) \\
& = 0,1 + 0,15 \\
& = 0,25 \text{ mol}
\end{align*}
\]

Pour une mole de gaz de gazogène il faut donc 0,25 mol de dioxygène.

2°/ **Calcul de la quantité et de la masse d'air nécessaire**

Sachant que la teneur en \(O_2 \) dans l'air est approximativement de 20% (fraction molaire), nous voulons :

\[
0,2 \times n(\text{air}) = n(O_2) = 0,25 \text{ mol}
\]

\[
\leftrightarrow n(\text{air}) = 0,25/0,20 = 1,25 \text{ mol}
\]

Il faut donc 1,25 mol d'air pour 1 mol de gaz de gazogène.

Sachant que \(M(\text{air}) = 29 \text{ g.mol}^{-1} \)

Nous avons donc :

\[
m(\text{air}) = M(\text{air}) \times n(\text{air})
\]

\[
= 36,25 \text{ g}
\]

3°/ **Calcul de la masse de gaz de gazogène et rapport de masse**

\[
m(\text{gaz}) = n(CO) \times M(CO) + n(H_2) \times M(H_2) + n(CO_2) \times M(CO_2) + n(N_2) \times M(N_2)
\]

\[
= 0,2 \times 28 + 0,3 \times 2 + 0,1 \times 44 + 0,4 \times 28
\]

\[
= 21,8 \text{ g}
\]

Rapport de masse : 36,25/21,8 = 1,66

4°/ **Calcul de la quantité d'air nécessaire dans un moteur 4 temps fonctionnant à l'essence**

L'équation de la combustion de l'essence est la suivante:

\[
C_8H_{18} + 25/2 \text{ O}_2 \rightarrow 8 \text{ CO}_2 + 9 \text{ H}_2\text{O}
\]

Nous ferons les calculs pour une mole d'essence. Nous avons donc :

\[
m(C_8H_{18}) = M(C_8H_{18}) \times n(C_8H_{18})
\]

\[
= 114 \times 1
\]

\[
= 114 \text{ g}
\]

Calculons maintenant la masse d'air nécessaire et le rapport de masse.

\(n(O_2) = 25/2 \text{ mol} \) (cf équation de réaction, les composants sont en proportions stœchiométriques)

\[
0,2 \times n(\text{air}) = n(O_2) = 25/2 \text{ mol}
\]
n(air) = 62,5 mol

\[
m(\text{air}) = n(\text{air}) \times M(\text{air})
\]

= 1812,5 g

\[
m(\text{air})/m(\text{essence}) = 1812,5 / 114 = 15,9
\]

Nous retiendrons que pour une masse d'essence il faut 16 masses d'air. Tandis que pour une masse de gaz de gazogène il faut 1,66 masses d'air.

4 - **Calcul des quantités approximatives de matière rejetées dans l'atmosphère**

1°/ **Calcul pour le gazogène**

En considérant le gaz du gazogène comme étant un gaz parfait, nous pouvons utiliser l'équation des gaz parfaits : \(PV = nRT \), afin de calculer la quantité de CO2 rejeté dans l'atmosphère (les autres gaz rejetés étant de l'azote abondamment présent dans l'atmosphère et de l'eau, et ces gaz ne représentant pas un danger important pour l'environnement nous ne calculerons pas les quantités rejetées).

Tout d'abord, nous avons estimé la température d'admission à environ 50°C (323K), et la pression d'admission à 0,9 bar sans le turbocompresseur et 1,5 bar avec. Nous ferons les calculs pour un moteur de cylindré 1,4L. Pour un piston nous aurons donc 1,4/4 = 0,35L

Ainsi :

\[
T_{\text{admission}} = 323 \text{ K}
\]

\[
P_{\text{admission}} = 1,5 \text{ bar}
\]

\[
V_{\text{piston}} = 3,5 \times 10^{-4} \text{ m}^3
\]

\[
R = 8,413 \text{ J.mol}^{-1}\text{.K}^{-1}
\]

la constante des gaz parfait.

L'équation des gaz parfait nous donne :

\[
n(\text{gaz+air}) = \frac{P_{\text{admission}} \times V_{\text{piston}}}{(R \times T_{\text{admission}})}
\]

\[
= 1,95 \times 10^{-2} \text{ mol}
\]

Or, nous savons que pour une mole de gazogène nous avons \(n(\text{air}) = 1,25 \) mol. Nous pouvons en déduire les relations suivantes :

\[
n(\text{gaz}) = n(\text{air+gaz}) / 2,25
\]

\[
n(\text{air}) = 1,25 \times n(\text{gaz})
\]

Ainsi :

\[
n(\text{gaz}) \approx 0, 87 \times 10^{-2} \text{ mol}
\]

\[
n(\text{air}) \approx 1,08 \times 10^{-2} \text{ mol}
\]

Les réactions de combustion étant considérées comme totale, nous avons:

\[
n(\text{CO}_2)_{\text{rejeté}} = n(\text{CO}_2)_{i} + n(\text{CO}_2)_{\text{combustion}}
\]

Avec :
Étude de l'utilisation et de la mise en œuvre d'un gazogène

\[n(\text{CO}_2) = 0,1 \times n(\text{gaz}) \] (car 10% de la composition molaire du gaz de gazogène est du CO₂)

\[n(\text{CO}_2)_{\text{combustion}} = n(\text{CO}) \] (car la relation (1) définie précédemment est totale)

\[= 0,2 \times n(\text{gaz}) \] (car 20% de la composition molaire du gaz de gazogène est du CO)

Nous avons donc :

\[n(\text{CO}_2)_{\text{rejeté}} = 0,3 \times n(\text{gaz}) \]

\[= 2,61.10^{-2} \text{ mol} \]

Il y a donc 2,61.10^{-2} mol de dioxyde de carbone rejetée dans l'atmosphère à chaque cycle d'un piston.

2°/ Calcul pour l'essence

Nous avons calculé précédemment que pour 1 mole d'essence, il fallait 62,5 moles d'air. Nous considérons toujours le même volume de cylindrée, avec la même température d'admission mais une pression différente, car nous calculons ici sans turbocompresseur.

\[T_{\text{admission}} = 323 \text{ K} \]
\[P_{\text{admission}} = 0,9 \text{ bar} \]
\[V_{\text{piston}} = 3,5.10^{-4} \text{ m}^3 \]

L'équation des gaz parfaits nous donne :

\[n(\text{essence}+\text{air}) = 1,17.10^{-2} \text{ mol} \]

Nous connaissons les proportions d'air et d'essence. Ainsi nous en déduisons :

\[n(\text{essence}) = 1,84.10^{-4} \text{ mol} \]
\[n(\text{air}) = 1,15.10^{-2} \text{ mol} \]

Étant donné que nous considérons la réaction de combustion de l'essence comme totale, nous avons :

\[n(\text{CO}_2)_{\text{rejeté}} = 8 \times n(\text{essence}) \]

\[= 1,47.10^{-3} \text{ mol} \]

Nous pouvons remarquer qu'à régime égal (nombre de tour moteur égaux) le moteur de type gazogène rejette plus dioxyde de carbone que le moteur à essence. Cependant ce résultat est à nuancer car en réalité la combustion de l'essence rejette du monoxyde de soufre et d'azote; ainsi que des particules fines. De plus, le pétrole contrairement au bois est une énergie fossile, et donc non-renouvelable (vitesse de régénération extrêmement lente à l'échelle humaine).

5 - Calcul des PCI de l'essence et du gaz de gazogène

Nous avons les informations suivantes:

PCI essence : 43,8.10⁶ J.kg⁻¹
PCI gazogène : 1400 kcal.m³
Étude de l'utilisation et de la mise en œuvre d'un gazogène

1°/ **PCI du gaz de gazogène**

Dans les conditions ambiantes de température et de pression (CATP), c'est à dire $T = 298K$, et $P = 1$ bar. Calculons le poids d'un mètre cube de gaz de gazogène, afin de pouvoir exprimer son pouvoir calorifique en kilocalories par kilogramme.

$$m(\text{gaz}) = M(\text{gaz}) \times n(\text{gaz}) = M(\text{gaz}) \times \frac{V(\text{gaz})}{V_m} \quad \text{(avec } V_m \text{ le volume molaire)}$$

$$= 908 \text{ g}$$

Nous avons donc un PCI de : 1400 Kcal pour 908g. Un simple produit en croix nous donne le résultat cherché. Ainsi le PCI du gaz de gazogène est de : $1541 \text{ Kcal.kg}^{-1}$

Nous avons vu que pour un cycle nous consommions $0,87 \times 10^{-2}$ mol de gaz de gazogène. D'où :

$$m(\text{gaz}) = M(\text{gaz}) \times n(\text{gaz}) = 1,9 \times 10^{-1} \text{ g}$$

Soit un PCI par cycle par piston de :

1kg \rightarrow 1541 Kcal
1,9 $\times 10^{-1}$ g \rightarrow 0,29 Kcal

2°/ **PCI de l'essence**

PCI de $43,8 \times 10^{6}$ J.kg$^{-1}$, sachant qu'une calorie est égale à 4,18 joules, nous avons donc un PCI de : $10478 \text{ kcal.kg}^{-1}$

Pour un cycle de moteur à essence, dans un piston, il y a $1,84 \times 10^{-4}$ mole d'essence de consommée.

Soit $2,1 \times 10^{-2}$ g d'essence.

Soit un PCI par cycle et par piston de :

1kg \rightarrow 10478 Kcal
$2,1 \times 10^{-2}$ g \rightarrow 0,22 Kcal

Ainsi un cycle de piston de moteur à gazogène délèvre une énergie sous forme de chaleur de l'ordre de 0,29Kcal contre 0,22Kcal pour un moteur à essence dans le cadre de l'étude.

Nous pouvons donc remarquer qu'au final, avec le turbocompresseur, l'énergie dégagée sous forme de chaleur par le mélange air et gaz de gazogène est supérieure à celle dégagée par le mélange air essence à moins haute pression dans un volume égal. Il serait donc possible de comprimer un peu moins le mélange air-gaz de gazogène afin d'avoir un PCI identique à celui de l'essence, en effet en avoir un supérieur n'est pas forcément utile. De plus, diminuer la compression du turbocompresseur diminuerait directement les quantités de matière introduites dans les pistons et donc la quantité de CO$\text{}_2$ rejetée. De cette manière, nous pouvons remarquer que le moteur du gazogène peut tout à fait approcher le moteur à essence. Ainsi, du point de vue de la motorisation, la conception d'un gazogène semble tout à fait possible et au contraire de ce que nous pourrions croire, le gazogène pourrait rouler à des vitesses identiques à celle d'une voiture commune.
6 - **Calcul de la pression atteinte par le gaz de gazogène après compression**

Le rendement d'un moteur à explosion (décrit un cycle thermodynamique proche de celui de Beau de Rochas) dépend principalement du taux de compression (rapport du volume avant et après compression). Ce taux de compression (que nous noterons α) est de l'ordre de 10.

Ainsi : $\alpha = \frac{V_i}{V} = 10$.

La relation de Laplace (dans le cas d'une relation isentropique pour un gaz parfait) nous donne :

$\frac{PV^\gamma}{Cste.}$ Nous prendrons $\gamma = 1,35$ (légèrement inférieur à 1,40 car les gaz échangent de la chaleur avec les parois des cylindres), et $P_i = 1,5$ bar après compression dans le turbocompresseur.

Nous avons donc :

$P_i V_i^\gamma = P V^\gamma$

$\leftrightarrow P = P_i \times (\frac{V_i}{V})^\gamma$

$= 10^\gamma P_i$

$= 33,6$ bar

Nous pouvons remarquer que la pression n'est pas trop élevée, le risque d'auto-allumage est donc relativement faible. De plus, afin d'éviter tout risque en cas d'auto-allumage, il peut être utile d'installer un clapet de surpression, afin de pouvoir évacuer une partie des gaz en cas d'auto-allumage.

En résumé de cette partie nous pouvons dire que le moteur d'un gazogène semble pouvoir être efficace et n'est pas un frein à la conception de celui-ci. En effet, sur des routes où une vitesse minimale est à respecter, un véhicule trop lent pourrait ne pas être autorisé à rouler. Le gazogène s'il développe une puissance comparable à celle d'une voiture ne sera pas handicapé par sa vitesse.

Illustration 15: Vue latérale d'une peugeot 403 à gazogène à bois (fabrication maison) qui roule régulièrement.
VII. Les différentes réglementations concernant le gazogène.

Dans cette partie, nous verrons si un véhicule muni d'un gazogène pourrait, et sous quelles conditions, rouler en France. Pour cela, nous prendrons comme données celles du modèle calculé et qui ne reflètent donc pas la réalité. Nous avions envisagé toutefois de faire un prélèvement des gaz d'échappement sur un gazogène pour avoir des données réelles dans la partie sur la pollution, mais nous n'avons pas pu le faire faute de moyen.

1 - Pré requis

Dans cette partie nous supposerons que le gazogène sera installé sur une voiture particulière. C'est-à-dire un « véhicule de catégorie M1 ne répondant pas à la définition du véhicule de la catégorie L6e ou L7e et ayant un poids total autorisé en charge inférieur ou égal à 3,5 tonnes ».

Précisons qu'un véhicule de catégorie M1 est un véhicule à moteur (au sens de l'article L110-1 du code de la route) conçu et construit pour le transport de personnes, comportant, outre le siège du conducteur, huit places assises au maximum et ayant au moins quatre roues.

De plus les catégories L6e et L7e ne sont que les noms internationaux des catégories françaises CYCL et CL. D'après l'article R311-1 du Code de la Route, elles sont définies comme suit:

Un véhicule de catégorie L6e est un « véhicule à moteur à quatre roues dont le poids à vide n'excède pas 350 kilogrammes, la vitesse maximale par construction est égale ou supérieure à 6 km/h et ne dépasse pas 45 km/h et la cylindrée n'excède pas 50 cm³ pour les moteurs à allumage commandé ou dont la puissance maximale nette n'excède pas 4 kilowatts pour les autres types de moteur »

Un véhicule de catégorie L7e est un « véhicule à moteur à quatre roues dont la puissance maximale nette du moteur est inférieure ou égale à 15 kilowatts, le poids à vide n'excède pas 550 kilogrammes pour les quadricycles affectés au transport de marchandises et 400 kilogrammes pour les quadricycles destinés au transport de personnes, et qui n'est pas de catégorie L6e »

2 - Les démarches administratives.

La modification d'une voiture pour quelle fonctionne grâce à un gazogène, impose un contrôle de cette voiture pour s'assurer qu'elle respecte encore les normes en France. Cette action, appelée réception est obligatoire pour obtenir un certificat d'immatriculation. Elle devra donc passer un contrôle par la DRIRE (Direction Régionale de l'Industrie, de la Recherche et de l'Environnement) ou la DREAL (Direction Régionale de l'Environnement, de l'Aménagement et du Logement). Ses deux services administratifs sont désignés par la sous-direction de la sécurité et des émissions des véhicules, qui elle-même exerce par délégation du ministre la fonction d'autorité compétente en matière de réception.

Nous avons demandé, en tant qu'élèves, qu'elles étaient les normes à respecter à ces deux organismes, qui ne nous ont toujours pas répondu à l'heure actuelle. Nous avons demandé également à deux constructeurs automobiles français (Renault et Peugeot) : ils nous on fait parvenir une réponse négative à notre requête.
Cependant, nous pouvons déduire que les points suivants seront contrôlés :

- La carrosserie qui sera modifiée un tant soit peu pour pouvoir accueillir le gazogène.
- Le moteur lui aussi modifié (au niveau de l'admission).
- Le niveau de gaz rejetés (le modèle montre que seront rejetés du CO$_2$ et du N$_2$).

En effet pour passer la réception il faudra constituer des dossiers pour les transformations suivantes:

- RTI 03.4 : Modification ou remplacement de moteur et/ou de la transmission non conformément à un agrément de prototype
- RTI 03.10 : Modification et/ou pose d'une carrosserie

De plus il faudra un procès verbal d'essais simplifiés réalisés par un laboratoire reconnu concernant la pollution.

3 - La réglementation au niveau de la pollution.

On trouve, en effet à l'échappement du CO$_2$ et du N$_2$. En ce moment (avant septembre 2014 pour la réception et septembre 2015 pour l'immatriculation), pour être conforme à la norme d'émission EURO 5, la voiture particulière ne devra pas rejeter une quantité supérieure à 1000 mg/km de CO, ce qui n'est pas un problème dans la mesure où dans le cas du gazogène, tout le CO est consommé. Cependant, le CO est un gaz très toxique : à partir de 0,01% du volume, il provoque des maux de têtes, et est mortel à partir de 0,1%. C'est pourquoi il convient d'ajouter une sonde pour avertir les usagers si le taux volumique de CO atteint 0,01%.

De même si le taux d'émission de N$_2$ n'est pas soumis à la loi, ce gaz peut s'oxyder dans le pot d'échappement. Dans ce cas, toujours selon la norme d'émission EURO 5, il ne faudra pas rejeter au total plus de 60mg d'oxydes d'azote par kilomètre.

Il n'existe pas encore de limite théorique d'émission de CO$_2$, à l'heure actuelle, il y a juste une taxe si l'émission dépasse 160 g/km et surtaxe si l'émission dépasse 250g/km. Toutefois la Codécision européenne (COD/2007/0297) prévoit qu'en 2013, le seuil à ne pas dépasser soit 130 g/km.

Le gazogène produit également de l'H$_2$, ce gaz est extrêmement dangereux, de part sa nature inflammable à seulement 4% de volume et explosive à 7% (on parle d'atmosphère ATEX). C'est pourquoi il est nécessaire de s'assurer grâce à une sonde que le taux volumique de H$_2$ ne dépasse pas 0,01% en cas de fuite (qui est la norme en vigueur en France).

4 - La réglementation au niveau de la modification du poids.

La transformation nécessaire pour installer un gazogène va forcément engendrer une masse supplémentaire pour le véhicule. D'après le modèle, cette masse supplémentaire serait d'environ 100 Kg.

Cependant il ne faut pas que le P V (poids à vide n'excède 3,5 tonnes), sinon le véhicule ne peut plus être considéré comme voiture particulière. Si on prend l'exemple d'une clio 3, ne pesant que 1 135 kg, on s'aperçoit que l'on peut la transformer.
De plus vu les articles R. 312-2 et R. 312-6 du code de la Route, on ne peut pas charger un essieu de plus de 7,35 T s'il n'est pas tracteur et 13,15 T si il est tracteur. Vu le paragraphe ci-dessus, le problème ne se pose évidemment pas.

Mais d'après ce même article, il faut également que le poids à supporter par un pneu soit inférieur à celui qu'il peut supporter. Voici le tableau montrant la charge par pneu selon l’indice de charge :

<table>
<thead>
<tr>
<th>Indice de charge</th>
<th>Charge en kg/pneu</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>250</td>
<td>70</td>
<td>335</td>
<td>80</td>
<td>450</td>
<td>90</td>
<td>600</td>
<td>100</td>
<td>800</td>
<td>110</td>
<td>1060</td>
</tr>
<tr>
<td>61</td>
<td>257</td>
<td>71</td>
<td>345</td>
<td>81</td>
<td>462</td>
<td>91</td>
<td>615</td>
<td>101</td>
<td>825</td>
<td>111</td>
<td>1090</td>
</tr>
<tr>
<td>62</td>
<td>265</td>
<td>72</td>
<td>355</td>
<td>82</td>
<td>475</td>
<td>92</td>
<td>630</td>
<td>102</td>
<td>850</td>
<td>112</td>
<td>1120</td>
</tr>
<tr>
<td>63</td>
<td>272</td>
<td>73</td>
<td>365</td>
<td>83</td>
<td>487</td>
<td>93</td>
<td>650</td>
<td>103</td>
<td>875</td>
<td>113</td>
<td>1150</td>
</tr>
<tr>
<td>64</td>
<td>280</td>
<td>74</td>
<td>375</td>
<td>84</td>
<td>500</td>
<td>94</td>
<td>670</td>
<td>104</td>
<td>900</td>
<td>114</td>
<td>1180</td>
</tr>
<tr>
<td>65</td>
<td>290</td>
<td>75</td>
<td>387</td>
<td>85</td>
<td>515</td>
<td>95</td>
<td>690</td>
<td>105</td>
<td>925</td>
<td>115</td>
<td>1215</td>
</tr>
<tr>
<td>66</td>
<td>300</td>
<td>76</td>
<td>400</td>
<td>86</td>
<td>530</td>
<td>96</td>
<td>710</td>
<td>106</td>
<td>950</td>
<td>116</td>
<td>1250</td>
</tr>
<tr>
<td>67</td>
<td>307</td>
<td>77</td>
<td>412</td>
<td>87</td>
<td>545</td>
<td>97</td>
<td>730</td>
<td>107</td>
<td>975</td>
<td>117</td>
<td>1285</td>
</tr>
<tr>
<td>68</td>
<td>315</td>
<td>78</td>
<td>425</td>
<td>88</td>
<td>560</td>
<td>98</td>
<td>750</td>
<td>108</td>
<td>1000</td>
<td>118</td>
<td>1320</td>
</tr>
<tr>
<td>69</td>
<td>325</td>
<td>79</td>
<td>437</td>
<td>89</td>
<td>580</td>
<td>99</td>
<td>775</td>
<td>109</td>
<td>1030</td>
<td>119</td>
<td>1360</td>
</tr>
</tbody>
</table>

Ici on considère que les pneus ont un indice de charge de 85 ce qui fait une charge maximale par pneu de 515 kg, soit un poids total à ne pas dépasser de 2060 kg. Si on poursuit l'exemple de la Clio 3, le gazogène pourra être installé. Cependant, cela n'est pas forcément toujours le cas : on a vu ici que la limite de poids la plus basse vient des pneus. Si le poids ajouté fait dépasser la charge par pneu au dessus de la limite maximale, il faudra donc changer les pneus pour d'autres avec un indice de charge supérieur pour qu'un véhicule puisse bénéficier d'un gazogène.
Les inconvénients dans l’histoire :

Les inconvénients de ce type de moteurs étaient déjà assez nombreux par rapport aux performances des autres types de véhicules.

Le principal inconvénient provient de son rendement machine assez faible et inférieur à 15% (un moteur diesel a un rendement pouvant dépasser les 40% aujourd’hui).

Le contrôle du processus de gazéification est également assez complexe et nécessite des investissements assez lourds.

Les autres principaux inconvénients sont répertoriés dans le livre du gazogène Imbert :

- temps de démarrage long : selon les progrès de l’époque, de 15 à 2 minutes.
- tous les 80 à 150 km, il faut charger le générateur dans les dégagements de fumée provoqués par l’ouverture du couvercle
- des retours de flamme ont brûlé plus d’un sourcil et d’une moustache
- il faut vidanger l’eau dans le condensateur tous les 500 km
- une révision complète est nécessaire tous les 1000 à 2000 km
- en hiver par basse température, l’eau gèle dans le radiateur à gaz
- tous les 40000 km il faut changer le foyer, la cheminée, le couvercle du générateur
- tous les 70000km il faut changer le générateur complet

Des progrès sont cependant faits à la fin de la seconde guerre mondiale: on isole le condensateur et le radiateur avec par exemple une corde et on protège le foyer du générateur.

Nous pouvons de plus trouver tous les conseils d’entretien de l’installation et nous constatons que la liste est plutôt longue et donc par conséquent, avoir un gazogène n’était pas de tout repos tous les jours !

- Nettoyage quotidien : Bien rincer le soir le réfrigérant de gaz, évacuer l’eau et les boues du pré-épurateur et du filtre.
- Hebdomadaire : Vider le générateur, tamiser le charbon de bois ou le renouveler (charbon de bois de cornue), desserrer le liège du filtre.
- Mensuel : Vérifier et nettoyer entièrement tout le dispositif. Laver le liège du filtre ou le renouveler. Revoir la peinture.

Enfin, nous pouvons trouver à la fin du livre une sorte de manuel décrivant les défauts constatés ainsi que les causes et remèdes associés (cf Annexes).

Les autres inconvénients décrits par M. Beauflis et les améliorations possibles :

En profitant de l’expérience de Monsieur Beauflis, nous avons pu prendre connaissance des autres défauts observés sur ce type de système ainsi que de ses idées en termes d’amélioration.

Par exemple, il nous a confié que selon lui, « c’est le réglage du débit d’air pour le foyer qui semble le plus problématique ».

Il pense que cet aspect pourrait être aujourd’hui résolu par une chaine de mesures et une vanne
d’admission d’air. Il est probable que dans une usine qui utilise le gazogène, comme cela semble être le cas dans le Sud Ouest, cela soit déjà le cas.

Il nous confirme ensuite le problème du rendement. Le gazogène a été monté sur des véhicules qui n’avaient pas des taux de compression très forts ; de ce fait le rendement de ces moteurs est nettement moins bon que ceux d’aujourd’hui.

Toutefois, il pense qu’il faudrait monter un gazogène sur un véhicule d’aujourd’hui pour savoir ce qu’il en est. « Ce qui est sûr est que la composition des gaz du gazogène permettrait de faire monter les taux de compression à des valeurs nettement plus fortes que celles admises aujourd’hui ce qui compenserait la perte de rendement actuel. »

Ensuite, il y a le problème de la formation des goudrons.

Là encore il pense qu’il s’agit certainement d’une question de contrôle de la température du foyer. Les goudrons peuvent être décomposés par la chaleur.

Il est important de noter que différentes améliorations sont possibles, principalement en ce qui concerne l’allumage. En effet, M. Beaufils allume son gazogène en enserrant dans la cuve un morceau de tissu imbibé d'alcool en feu. Il a toutefois émis l'idée d'allumer le gazogène avec un décapeur thermique, cette possible amélioration sera développée dans la prochaine partie. Nous avons déjà parlé de l'utilisation d'un turbocompresseur afin d'améliorer les possibilités énergétique du moteur. Nous allons maintenant voir un éventail d'améliorations envisageables.
IX. Les possibles amélioration du gazogène

Comme il a été mentionné dans la première partie, le gazogène d'époque présentait de nombreux problèmes. Aujourd'hui, avec les moyens actuels, nous pouvons envisager d'améliorer considérablement le gazogène.

Avant toute chose, nous pensons qu'il serait préférable de coupler le gazogène avec un moteur essence comme c'est le cas pour le GPL. C'est pourquoi, il faut tout d'abord installer une pipe d'admission double avec deux volets permettant de commuter sur un circuit d'essence ou sur un circuit gazeux.

Voici une liste d'améliorations possibles pour le gazogène: échangeur de chaleur à courant croisé, filtre à air, vis sans fin, capteur de température, vanne de régulation

1 - Échangeur de chaleur à courant croisé

L'échangeur de chaleur à courant croisé remplacera l'ancien échangeur à air du gazogène.

Le principe général d'un échangeur consiste à faire circuler deux fluides à travers des conduits qui les mettent en contact thermique. La paroi est le plus souvent métallique, ce qui favorise les échanges de chaleur.

La principale difficulté consiste à définir une surface d'échange suffisante entre les deux fluides pour transférer la quantité de chaleur nécessaire dans une configuration donnée.

On distingue plusieurs types d'échangeur, entre autre l'échangeur à courant croisé.

Illustration 16: Echangeur à courants croisés : schéma de principe

Dans ce type d'échangeurs, l'un des fluides circule dans une série de tubes tandis que l'autre fluide circule perpendiculairement autour des tubes. Les tubes sont presque toujours munis d'ailettes qui permettent d'augmenter le flux de chaleur échangé par augmentation de la surface d'échange. Dans notre cas, on utilisera l'air extérieur pour refroidir le gaz du gazogène.
2 - Filtre à air

Ce filtre à air permettra de remplacer le filtre à lièges du gazogène ainsi que l'épurateur humide.

Illustration 17: Représentation des différents constituants d'un filtre à air.

- **Filtre à air**: appareil servant à débarrasser un gaz de ses particules en suspension et ses impuretés.
- **Écrou**: pièce de métal servant à fermer le couvercle du filtre à air.
- **Couvercle**: pièce de métal protégeant le filtre à air.
- **Filtre PCV**: filtre en polychlorure de vinyle.
- **Tuyaux de dépression**: conduits servant à éliminer l'air.
- **Commande de dépression**: appareil qui sert à régler la pression.
- **Volet**: panneau articulé qui règle l'arrivée de l'air.
- **Prise d'air**: endroit où arrive l'air.
- **Tuyau de réchauffage**: tuyau permettant à la chaleur du moteur de réchauffler l'air qui entre dans le filtre.
- **Collier**: cercle métallique ajustable fait pour serrer et tenir le tuyau de réchauffage.
- **Clapet thermostatique**: valve permettant de maintenir une chaleur constante.
- **Bride**: collier qui sert à maintenir en place le couvercle.

3 - Vis sans fin

Une vis sans fin permettra l'acheminement du bois dans l'enceinte.

Illustration 18: Vis sans fin
4 - Vanne de régulation

Cette vanne remplacera le clapet d'admission du gazogène. Les vannes de régulation ont pour fonction de réguler une pression, un débit ou une température. Elles sont utilisées dans une boucle de régulation qui prévoit en général un capteur, un régulateur et une vanne de régulation. Une vanne de régulation est capable d'adapter en permanence son ouverture à la variation du signal du capteur. Elle permettra donc de réguler le débit d'air entrant dans le foyer en fonction de besoin moteur.

5 - Capteur de température

Illustration 19: Vanne de régulation.

Comme évoqué dans la deuxième partie, il est nécessaire de connaître la bonne température dans le foyer pour éviter ou du moins limiter la formation de goudron. Pour ce faire, l'installation d'un capteur de température, résistant à des températures élevées, est conseillé.

Le DXT est un capteur de température numérique modbus (RS485) robuste et précis permettant de réaliser des mesures entre -200°C et +600°C.

6 - Système de régulation

Illustration 19: Schéma de principe d'un système de régulation.

La régulation du débit d'air dans le foyer était problématique à l'époque. Un système de régulation permettra de corriger ce problème.

La demande de puissance du moteur va être satisfaite en agissant à la fois sur la vanne de régulation et la vis sans fin, tout en maintenant la bonne température du foyer constante pour éviter la formation de goudrons.
7 - Possibilités amélioration du système au démarrage

Une des premières questions à été celle de l'allumage. C'est à dire, déterminer, à la fois la source de chaleur nécessaire à la combustion et le combustible.

1°/ Choix de la source de chaleur:

Dans la cadre d'une voiture moderne, l'allumage se doit d'être automatisé, c'est pourquoi nous avions pensé à l'utilisation d'une résistance électrique pour commencer la combustion. L'énergie aurait été fournie soit par une batterie, soit par des panneaux solaires. Cependant, cette idée a du être rejetée du fait de sa lenteur, de la puissance électrique à fournir (surtout si on considère que la mise en place de panneaux solaires aurait été compliquée et certainement trop peu efficace) et de la résistance du composant électrique à la température de combustion partielle (environ 500°C).

Une autre possibilité envisagée a été une réaction chimique (exothermique) d'un alcalin ou d'un alcalino-terreux avec l'eau de l’air ambiant. Cet aspect a été abandonné du fait de la dangerosité de la réaction, de la pollution engendrée et du problème de stockage de l'élément chimique.

Une autre solution aurait été un allumage par flamme alimenté par une bouteille de gaz : en utilisant ce système de chauffage, nous pensions accélérer le démarrage mais la solution a été jugée trop dangereuse.

Nous avons donc pensé à une solution moins dangereuse : utiliser un dispositif semblable à un décapeur thermique. Le décapeur thermique est un appareil qui peut en effet souffler un flux d'air suffisamment chaud (jusqu'à 600°C). Cependant l'installation d'un tel dispositif nous a paru trop difficile à mettre en place.

De fait, nous nous sommes décidés pour un allumage par un combustible (huile ou essence) envoyé dans la chambre de combustion par un gicleur.

2°/ Choix d'un combustible:

Ici aussi, nous avons exploré plusieurs pistes, et très vite nous avons abandonné l'idée d'utiliser des produits chimiques. Il restait cependant de nombreuses possibilités dans les dérivés du bois et du charbon. A la vue de la difficulté de se procurer du charbon ou de la houille à notre époque et du mauvais bilan carbone de ces produits, nous avons décidé de les rejeter. Nous avions également envisagé la possibilité d'utiliser des granulés de bois, cependant cette idée à été rejetée car les granulés tomberaient à travers la grille présente dans le générateur. Ainsi, le bois semble le plus approprié comme nous avons pu le voir dans la partie traitant de cette ressource précédemment. Il est peu cher, et écologique tant que son utilisation reste raisonnable.
X. Conclusion et réponse au projet:

Au début de ce projet le mot « gazogène » était pratiquement inconnu pour la plupart des personnes de notre groupe ; nous avions une vaste idée d'un engin datant de la seconde guerre mondiale fonctionnant au bois... Au cours des séances nous avons appris le fonctionnement de ce système connu uniquement des aficionados.

Nos recherches et l'enseignement de M. Vuillamy, nous ont permis d'apporter quelques réponses aux interrogations de départ mais aussi de soulever d'autres points problématiques dans la conception et la mise en œuvre du gazogène.

Le principe d'une motorisation de type gazogène est plutôt aisé à comprendre mais sa mise en place sur les véhicules actuels reste difficile.

Il y a de nombreux avantages à utiliser le modèle gazogène. Nous avons vu que le bilan carbone est légèrement plus élevé par rapport aux motorisations essence, cependant l'avantage incontestable du bois est que c'est une énergie dite renouvelable, de plus l'installation de pots catalytiques est tout à fait envisageable ce qui réduit les déchets produits. L'aspect environnemental du gazogène reste très séduisant car au contraire du pétrole il ne rejette aucune particule fine ou monoxyde de soufre ou d'azote ; l'utilisation du bois présente de plus un certain intérêt économique. Toutefois ce combustible a aussi quelques inconvénients car le bois nécessaire au fonctionnement doit être stocké et son volume est non négligeable comme nous avons pu le constater dans le dossier, ce qui limite la distance que peut parcourir le véhicule. Le volume d'autres pièce pose lui aussi un certain désagrément à savoir le volume de la chambre de combustion et des réservoirs de lièges. Néanmoins les performances de ce type de motorisation ne souffrent pas de la comparaison avec les motorisations essence, de plus nous avons envisagé au cours du dossier de coupler les deux systèmes. On réduirait, entre autre, le temps d'allumage de manière considérable puisqu'il serait possible de démarrer avec le moteur à essence le temps que le gazogène soit efficient.

Toutefois, ce dossier reste une étude théorique, et si on envisage la concrétisation du système, il faudra prendre en compte les nombreux tests et dimensionnements à effectuer. La possibilité que le gazogène ne fonctionne pas à la première utilisation n'est pas à exclure. Certaines pièces restent problématiques, nous pouvons citer par exemple le clapet d'admission d'air (au niveau de l'enceinte de combustion du bois) de M. Beaufils, qu'il a changé à maintes occasions jusqu'à avoir un système assez léger et amovible permettant une bonne gestion de l'air entrant.

Malgré une réelle motivation des constructeurs automobiles et des autorités pour développer des systèmes plus écologiques, la législation et les homologations de véhicules peuvent ralentir la mise en œuvre d'un tel système sur nos automobiles. Nous avons vu que la modification de tout véhicule est extrêmement réglementée. Ces réglementations constituent des freins à la mise en circulation de véhicules comme le gazogène.

Des alternatives existent, le système du gazogène Imbert perdure, il est utilisé dans certaines usines. Le procédé est fixe et fournit de l'énergie à partir de morceaux de bois récupérés. Le système rencontre aussi un succès relatif dans le monde agricole où il peut aisément être installé sur des tracteurs. Ces derniers ne parcourant pas d'importantes distances l'inconvénient de la recharge en bois n'est plus pris en compte.

A la fin de cette étude, le système gazogène reste pour nous un procédé relativement paradoxal dans le sens où il est ancré dans le passé par son histoire et sa conception désuète mais il est peut
être tourné vers l'avenir par son aspect écologique et économique. Il est cependant important de noter que tout le monde ne pourrait pas rouler au gazogène sans quoi le bois viendrait inévitablement à manquer.

Grâce au projet gazogène nous avons pu découvrir une ancienne technique toujours aussi efficace, elle nous a familiarisé avec le monde de la mécanique et de la technique. Cette UV nous a permis de nous construire une nouvelle culture dans le domaine de la motorisation. L'étude d'une mise en œuvre concrète a été l'occasion pour nous de confronter nos idées sur les fonctionnements motorisés et la réalité. Nous avons avancé ensemble pour trouver les solutions les plus adaptées à sa réalisation tout en découvrant les contraintes liées à la motorisation et au déplacement. Grâce aux enseignements dispensés pendant les heures de P6-3, nous avons découvert des principes de motorisation et des organismes nationaux et régionaux pouvant nous aider dans nos recherches. Il a été très constructif de travailler en groupe restreint sur des sujets différents afin de profiter des explications données aux deux groupes, mais aussi cela a permis d'impliquer chacun des élèves dans le projet et de distribuer le travail de manière équitable et intéressante pour chacun.

Pour voir un peu plus loin au-delà du cadre de notre projet, on pourrait imaginer la création d'une installation fixe. Celle-ci transformerait le bois ou autre combustible en travail mécanique. Nous avons imaginé dans la continuité de notre étude, l'installation d'un gazogène fixe dans l'INSA. Les inconvénients liés au déplacement de l'installation seraient ainsi supprimés. Ce gazogène pourrait être utilisé en couplage avec un groupe électrogène. L'installation au bois fournirait le travail nécessaire à la production d'électricité. Ce montage permettrait à l'INSA de produire sa propre électricité (dans une certaine mesure). Il ne serait pas in-envisageable d'en installer plusieurs. Ceci peut-être une solution de dépannage ou une alternative économique et écologique. Pourquoi ne pas investir pour un projet de principe, certes ancien, mais qui propose des alternatives d'avenir ?
XI. Bibliographie

Documents imprimés

Ouvrages

Articles de périodiques
- Sud-Ouest
- Paris Normandie

Documents électroniques

Sites institutionnels
- Ecole Nationale des mines de Saint-Etienne. La centrifugation. [http://www.emse.fr/~brodhag/TRAITEME/fich4_5.htm]
- Observatoire de la Forêt Méditerranéenne. La chaudière automatique et la chaufferie [http://www.ofme.org/bois-energie/chaudieres.php]
- Agence de l'Environnement et de la Maîtrise de l'Energie [http://www2.ademe.fr/servlet/getDoc?id=11433&m=3&cid=96]
- Europa, le site officiel de l'Union Européenne. [http://europa.eu/]
- Directions Régionales de l'Industrie, de la Recherche et de l'Environnement. [http://www.drire.gouv.fr/]

Encyclopédie en ligne
Résultats et discussion

Les expériences réalisées ont permis d'obtenir les résultats suivants:

- Production d'énergie renouvelable.
- Amélioration de l'efficacité énergétique.
- Réduction des émissions polluantes.

Conclusion

La mise en œuvre d'un gazogène permet d'atteindre les objectifs établis. Les solutions développées montrent une grande potentialité pour l'avenir.

Liens utiles

- **Wikipédia, l'encyclopédie libre.** Fondation Wikimedia. Moteur à allumage commandé. http://fr.wikipedia.org/wiki/Moteur_%C3%A0_allumage_command%C3%A9

Sites personnels

- Eric Cabrol. Les émissions polluantes. http://eric.cabrol.free.fr/Moteur/pollution.html

Autres sites internet

Images et animations

XII. Annexes

Page 283 à 290.

<table>
<thead>
<tr>
<th>Défaut constaté</th>
<th>Cause</th>
<th>Remède</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Le ventilateur ne débite pas ou peu seulement</td>
<td>a) Papillon d’arrêt du ventilateur non ouvert</td>
<td>Ouvrir le papillon d’arrêt</td>
</tr>
<tr>
<td></td>
<td>b) Clapet de retenue du générateur reste collé</td>
<td>Dégager et nettoyer le clapet (Le collage se produit facilement avec un obturateur non étanche) (voir § 16a)</td>
</tr>
<tr>
<td></td>
<td>c) Installation obstruée</td>
<td>Chercher la cause de l’obstruction et y remédier. Il faut alors vider complètement le générateur et le remplir de nouveau. (voir § 12c).</td>
</tr>
<tr>
<td></td>
<td>d) Le moteur du ventilateur n’a pas de courant</td>
<td>Contrôler les connexions Examinier les interruptions Recharger la batterie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2. Le ventilateur débite, mais le clapet de retenue du générateur ne fonctionne pas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Le couvercle de rabattement du générateur n’est pas fermé ou n’est pas étanche</td>
<td>Bien fermer le couvercle de rabattement. Graisser la garniture du couvercle avec un mélange d’huile et de graphite, changer la garniture du couvercle endommagée ou trop dure. Réparer ou changer le couvercle de rabattement ou la bague du capuchon.</td>
<td></td>
</tr>
<tr>
<td>3. Le gaz sortant du ventilateur est de mauvaise qualité (se reconnaît à la couleur et à l’allure de la flamme)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) De l’air se mélange au gaz</td>
<td>Fermer le papillon d’admission d’air. Remédier aux causes de non-étanchéité.</td>
<td></td>
</tr>
<tr>
<td>b) Il s’est produit une voûte dans le générateur au cours de la combustion</td>
<td>Ouvrir le couvercle à rabattement et transpercer la charge de bois (faire attention à ne pas endommager l’intérieur du générateur).</td>
<td></td>
</tr>
<tr>
<td>c) Installation obstruée</td>
<td>Secouer la grille du crible. Desserrer le charbon de bois. Nettoyer l’installation. (voir § 1c)</td>
<td></td>
</tr>
<tr>
<td>d) Bois très humide ou non convenable</td>
<td>Ouvrir le couvercle de rabattement pendant quelques minutes et soulever l’obturateur de retour afin que le bois puisse brûler par le haut et sècher. Employer du bois séché à l’air ou des morceaux de dimensions appropriées, pas trop de sciure, d’impuretés ou de bois trop long.</td>
<td></td>
</tr>
<tr>
<td>e) Le bois n’a pas été chargé comme prescrit</td>
<td>Observer les instructions données dans le texte. Peu avant l’arrêt de l’installation, le soir, ou après l’arrêt, ne plus remettre de bois. Avant la mise en service, le matin, ne remettre du bois qu’après avoir transpercé ce qui reste de la charge.</td>
<td></td>
</tr>
<tr>
<td>f) Pas assez de charbon de bois</td>
<td>Remplir de charbon de bois jusqu’au milieu du regard supérieur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g) Charbon de bois humide</td>
<td>Faire marcher plus longtemps le ventilateur. En même temps combler les creux formés lors de la combustion. (Le charbon de bois devient humide en le disposant mal ou en ne l’abritant pas).</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>h) Pièce de foyer défectueuse</td>
<td>Réparer ou changer immédiatement la pièce du foyer. (voir § 12c)</td>
</tr>
</tbody>
</table>

4. Le gaz a bien brûlé lors de l’essai de combustion avec une bonne flamme mais le moteur ne part pas

<table>
<thead>
<tr>
<th></th>
<th>a) Papillon d’arrêt non fermé</th>
<th>Fermer le papillon d’arrêt.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b) Le démarreur ne tourne pas suffisamment vite</td>
<td>Contrôler le démarreur, les connexions et les câbles. Recharger la batterie. Employer pour le moteur une huile plus fluide, surtout en hiver. Aider le démarreur en tournant rapidement la manivelle de mise en marche.</td>
</tr>
<tr>
<td></td>
<td>c) Aucun allumage ou mauvais réglage d’allumage</td>
<td>Vérifier le dispositif d’allumage. Régler l’avance à l’allumage du moteur.</td>
</tr>
<tr>
<td></td>
<td>d) Bougies humides. Trop grand écartement des électrodes</td>
<td>Essuyer les bougies humides, le cas échéant les réchauffer. Régler l’écartement à 0,3-0,4 mm.</td>
</tr>
<tr>
<td></td>
<td>e) Bougies défectueuses ou impropre</td>
<td>Mettre de nouvelles bougies appropriées à la construction du moteur. Pour les moteurs Diesel, utiliser des bougies à grande capacité calorifique (bougies chaudes). Pour moteurs tendant à l’enrasissement des bougies, utiliser des bougies à faible capacité calorifique (bougies froides).</td>
</tr>
<tr>
<td></td>
<td>f) Le réglage de gaz ou d’air ne fonctionne pas bien</td>
<td>Faire fonctionner les leviers et les tractions Bowden. Graisser les lames des papillons d’admission.</td>
</tr>
<tr>
<td></td>
<td>g) Tuyau d’aspiration non étanche</td>
<td>Remédier à la non-étanchéité</td>
</tr>
<tr>
<td></td>
<td>h) Tuyau d’aspiration encrassé</td>
<td>Nettoyer le tuyau d’aspiration, le mélangeur d’air et de gaz, les papillons d’admission et le filtre à air. En cas d’enrassement par le goudron. (voir § 12a-d)</td>
</tr>
<tr>
<td>5. Le moteur part bien, mais il ne continue pas sa marche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>i) Le moteur aspire de l'air par le carburateur à essence</td>
<td>Fermmer le papillon d’admission d’essence. Contrôler le carburateur. Le cas échéant, la condenser jusqu’à réparation.</td>
<td></td>
</tr>
<tr>
<td>a) Le "point faible" est mal surmonté</td>
<td>Reprendre la marche au ventilateur et remettre le moteur en route. Réduire un peu l’air après le départ et augmenter lentement la vitesse de rotation.</td>
<td></td>
</tr>
<tr>
<td>b) Le charbon de bois est trop tassé</td>
<td>Détasser le charbon de bois, secouer la grille.</td>
<td></td>
</tr>
<tr>
<td>c) Corps étrangers dans le foyer</td>
<td>Vider le générateur et le remplir à nouveau. (voir § 12 c)</td>
<td></td>
</tr>
<tr>
<td>d) Tubulures ou dispositif de nettoyage bouchés</td>
<td>Nettoyer le dispositif. (voir § 1)</td>
<td></td>
</tr>
<tr>
<td>e) Dispositif d’allumage défectueux</td>
<td>Remettre en état le dispositif d’allumage</td>
<td></td>
</tr>
<tr>
<td>f) Bougies humides ou défectueuses</td>
<td>Essuyer les bougies ou les changer. Le moteur peut aspirer de l’eau, si il y a trop d’eau dans le filtre ou dans les tuyaux : vidanger l’excédent. (voir § 4 d –c)</td>
<td></td>
</tr>
<tr>
<td>g) Tuyau d’aspiration non étanche, papillon d’admission de l’essence non étanche</td>
<td>Remédier aux causes de non-étanchéité.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Marche irrégulière du moteur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Dispositif d’allumage défectueux</td>
<td>Contrôler l’allumage.</td>
</tr>
<tr>
<td>b) Les papillons fonctionnent mal</td>
<td>Faire fonctionner les papillons. (Pour encrassement par le goudron).(voir § 12a-d)</td>
</tr>
<tr>
<td>c) Air dans l’installation ou causé par le carburateur à essence</td>
<td>Remédier aux causes de non-étanchéité.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Le moteur ne tire pas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Mauvais réglage de l’air</td>
<td>Régler l’admission d’air.</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>b) Allumage défectueux ou mal réglé</td>
<td>Remettre en état d'allumage. Régl er l'avance à l'allumage.</td>
</tr>
<tr>
<td>c) Charbon de bois trop tassé, en trop petits morceaux ou trop de poussière</td>
<td>Secouer le charbon de bois, manœuvrer la grille. En cas de besoin, remplacer le charbon de bois. (voir § 12c)</td>
</tr>
<tr>
<td>d) Bois trop humide ou non convénable</td>
<td>Mettre du meilleur bois dans le générateur. (voir § 3)</td>
</tr>
<tr>
<td>e) Installation bouchée</td>
<td>Nettoyer l'installation. (voir § 1)</td>
</tr>
<tr>
<td>f) Liège trop tassé dans le filtre</td>
<td>Desserrer le liège, en cas de besoin le laver ou le changer (ne remplir de liège que les deux tiers du filtre).</td>
</tr>
<tr>
<td>g) Non étanchéité du couvercle</td>
<td>Bien fermer le couvercle à rabattement. Graisser la garniture du couvercle avec un mélangeur d'huile et de graphite. Changer les garnitures du couvercle devenues trop dures ou défectueuses. Changer ou réparer le couvercle à rabattement ou la bague du capuchon d'étanchéité défectueuse.</td>
</tr>
<tr>
<td>h) Tuyau ou dispositif de nettoyage non étanche</td>
<td>Remédier à la non-étanchéité.</td>
</tr>
<tr>
<td>i) Le moteur aspire de l'air par le carburateur d'essence ou par le tube d'aspiration</td>
<td>Fermer le papillon d'admission d'essence. Remédier à la non-étanchéité.</td>
</tr>
<tr>
<td>k) Le moteur a une mauvaise compression</td>
<td>Contrôler soupapes et pistons. Le cas échéant, vérifier l'étanchéité du moteur suivant instructions spéciales.</td>
</tr>
<tr>
<td>l) Défectuosité de l'intérieur du foyer ou de la chemise du générateur</td>
<td>Remettre en état ou changer l'intérieur du foyer ou la chemise du générateur. (voir § 125d et 14e)</td>
</tr>
<tr>
<td>8. Le moteur cogne (Ratés d'allumage)</td>
<td>a) Ratés d'allumage par suite d'emploi de bougies d'un mauvais modèle</td>
</tr>
<tr>
<td>a) Distance trop grande des électrodes des bougies</td>
<td>Régler l'écartement des électrodes à 0,3-0,4 mm.</td>
</tr>
<tr>
<td>b) Mauvais réglage de l'allumage</td>
<td>Régler l'avance à l'allumage. Bien connecter le fil d'allumage.</td>
</tr>
<tr>
<td>c) Dispositif d'allumage défectueux</td>
<td>Réparer ou changer les pièces défectueuses.</td>
</tr>
<tr>
<td>d) Soupapes restent accrochées, sont non-étanches ou brûlées</td>
<td>Faire marcher les soupapes. (voir § 12a-d) Roder les soupapes et régler. Changer les soupapes.</td>
</tr>
<tr>
<td>e) Bois non convenable</td>
<td>Mettre du meilleur bois. (voir § 3)</td>
</tr>
<tr>
<td>f) Mélange défectueux de gaz et d'air</td>
<td>Régler l'arrivée de l'air. Nettoyer le mélangeur de gaz et d'air ou le filtre d'air.</td>
</tr>
</tbody>
</table>

9. Détonations dans le générateur

a) Le gazogène n'a pas été mis en service suivant instructions	Avant d'allumer le charbon de bois, évacuer les restes de gaz.
b) Couvercle à rabattement non fermé, capuchon non-étanche	Fermer soigneusement le couvercle à rabattement. Graisser la garniture du couvercle avec mélange d'huile et de graphite. Changer les garnitures de couvercle devenues trop dures ou défectueuses. Réparer ou changer le couvercle ou le capuchon.
c) On a employé de l'essence pour humecter la mèche d'allumage	Comme mèche, employer de préférence des copeaux. Toute autre mèche doit être imprégnée de pétrole ou d'huile.
d) Accumulation de gaz dans le générateur avant continuation de la marche	Après arrêts prolongés, mais sans extinction du charbon de bois, remplir entièrement le générateur de bois avant mise en route du ventilateur. Auparavant, enlever les restes de bois.

10. Détonations dans l'installation

<p>| a) Entrée d'air | Remédier aux causes de non-étanchéité. (Tous les couvercles, robinets et autres fermetures, raccords de tuyaux doivent être bien serrés. Graisser les pas de vis avec un mélange d'huile et de graphite). |</p>
<table>
<thead>
<tr>
<th>11. Pénurie de gaz après une descente prolongée</th>
<th>a) Le générateur est devenu trop froid ou trop chaud à la suite d'une mauvaise position du papillon d'admission du mélange d'air et de gaz.</th>
<th>Lors de la descente, ouvrir légèrement la soupape d'admission du mélange d'air et de gaz. Fermer entièrement le papillon d'admission d'air secondaire.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Les papillons fonctionnent mal. Il y a du goudron dans le tuyau d'aspiration</td>
<td>a) Marche à vide prolongée</td>
<td>Lors d'un arrêt prolongé du véhicule - pendant plus d'un quart d'heure - arrêter le moteur.</td>
</tr>
<tr>
<td></td>
<td>b) Bois trop humide</td>
<td>Employer du bois plus sec (20-25 % d'humidité au maximum).</td>
</tr>
<tr>
<td></td>
<td>c) Charbon mal débarrassé de gaz ; bois parmi les charbons</td>
<td>Débarrasser complètement le générateur. Y mettre du charbon de bois approprié (charbon de cornue de hêtre, de la grosseur d'une noix). Après remplissage de nouveau charbon de bois, ne pas laisser le moteur marcher longtemps à vide. Si l'on remet du charbon de bois déjà usagé, en retirer tous les morceaux de bois.</td>
</tr>
<tr>
<td></td>
<td>d) Pièce de foyer défectueuse</td>
<td>Réparer ou changer immédiatement la pièce de foyer sous peine de détériorer le moteur. Nettoyer à fond le tuyau d'aspiration et les canaux d'aspiration du moteur, embarrassés de goudron. (Il est préférable de faire réparer la pièce du foyer par le constructeur, c'est indispensable s'il s'agit des buses.)</td>
</tr>
<tr>
<td>13. Trop forte consommation de bois</td>
<td>a) Bois trop humide ou impropre</td>
<td>Employer du bois séché à l'air en morceaux, ayant les dimensions indiquées précédemment ; pas trop de sciures de bois moisi ou autres mélanges.</td>
</tr>
<tr>
<td></td>
<td>b) Couvercle à rabattement non fermé ; capuchon non-étanche</td>
<td>Fermer soigneusement le couvercle à rabattement. Graisser la garniture du couvercle avec un mélange de graphite et d'huile ; le cas échéant, le remplacer. Réparer ou remplacer les pièces non étanches.</td>
</tr>
<tr>
<td></td>
<td>c) Le moteur reçoit trop peu d'air du mélangeur d'air et de gaz</td>
<td>Régl er l'admission d'air secondaire. Nettoyer le mélangeur d'air et de gaz, le papillon d'admission et le filtre à air.</td>
</tr>
<tr>
<td></td>
<td>d) Pièce du foyer défectueuse</td>
<td>Réparer la pièce du foyer ou la remplacer. (voir § 12d)</td>
</tr>
<tr>
<td>14. Trop forte consommation de charbon de bois</td>
<td>a) Bois trop humide ou impropre</td>
<td>Employer du bois sec, convenable. (voir § 13a)</td>
</tr>
<tr>
<td></td>
<td>b) Tampons de regards non-étanches</td>
<td>Bloquer les tampons après graissage avec un mélange d’huile et de graphite. Le cas échéant, disposer une plaque d’amiante ou changer la garniture des filetages.</td>
</tr>
<tr>
<td></td>
<td>c) Chemise du générateur ou pièce du foyer défectueuse</td>
<td>Remédier aux causes de non-étanchéité. Le cas échéant, remplacer les pièces défectueuses (voir § 12d). La non-étanchéité du générateur se manifeste par des zones surchauffées ou par des distorsions. Le charbon de bois accueille un revêtement blanchâtre de cendres.</td>
</tr>
<tr>
<td>15. La chemise du générateur parvient à incandescence</td>
<td>a) Le charbon de bois est en partie aggloméré ; crible.</td>
<td>Détasser le charbon de bois, secouer la grille du passage unilatéral du gaz. En cas de formation de scories ou de corps étrangers, renouveler le charbon de bois.</td>
</tr>
<tr>
<td></td>
<td>b) Trop peu de charbon de bois</td>
<td>Remplir de charbon de bois jusqu’au milieu du regard supérieur.</td>
</tr>
<tr>
<td></td>
<td>c) Chemise du générateur ou pièce du foyer défectueuse</td>
<td>Remédier aux défauts. (voir § 12d et 14c)</td>
</tr>
<tr>
<td></td>
<td>d) Garniture intérieure de la bride du clapet de retenue défectueuse</td>
<td>Renouveler la garniture.</td>
</tr>
<tr>
<td>17. Le moteur ne marche pas avec le carburant liquide</td>
<td>a) Perturbation dans l’arrivée du carburant ou dans le carburateur</td>
<td>Même remède que pour les véhicules à essence.</td>
</tr>
</tbody>
</table>
| | b) Le papillon d’admission du mélange gazeux n’est pas étanche, ou il est encrassé | Bien fermer le papillon d’admission du mélange gazeux. Remédier à la non-étanchéité. Nettoyer.