Logistic regression for classification problems

Gilles Gasso

INSA Rouen - ITI Department Laboratory LITIS

October 13, 2024

Outline

- Introduction
- 2 Logistic regression model
- Parameters Estimation
 - Criterion
 - Estimation
 - Algorithm: a sketch
 - Prediction with the model
- Extension to multi-class logistic regression
- Conclusion

Classification problems

Applications

- Protein classification, Medical imaging
- Intrusion detection, fraud detection
- Object detection
- . . .

Classification: taxonomy and formulation

- Data: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- x: sample belonging to the space \mathcal{X} ($\mathcal{X} = \mathbb{R}^d$)
- $y \in \mathcal{Y}$: associated label with \mathcal{Y} : discrete finite set

Taxonomy

- Binary : $\mathcal{Y} = \{-1, 1\}$ ou $\mathcal{Y} = \{0, 1\}$ Anomaly detection, Fraud detection ...
- Multi-class: $\mathcal{Y} = \{1, 2, \cdots, K\}$ Objects or speakers recognition ...
- Multi-label: $\mathcal{Y} = 2^{\{1,2,\cdots,K\}}$ Recognition of the topic of documents ...

Classification: taxonomy and formulation

- Data: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$
- \mathbf{x} : sample belonging to the space \mathcal{X} ($\mathcal{X} = \mathbb{R}^d$)
- $y \in \mathcal{Y}$: associated label with \mathcal{Y} : discrete finite set

Principle

- Learn a mathematical function $f: \mathcal{X} \to \mathcal{Y}$ able to predict the label of x
- Example: $\mathcal{Y} = \{-1, 1\}$ and the prediction function is $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

Different approaches and algorithms

• Logistic regression, k-nearest neighbors, SVM, random forest, XGBoost, Deep Networks, . . .

This lecture

Logistic regression

Pre-requisites

Basics of probability and optimization

Discrimination and prior probability

Classify athletes using their biological measures: $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \{0, 1\}\}_{i=1}^N$ Labels: let y = 0 for male and y = 1 for female athletes

rcc	wcc	hc	hg	ferr	bmi	ssf	pcBfat	lbm	ht	wt	sex
4.82	7.6	43.2	14.4	58	22.37	50	11.64	53.11	163.9	60.1	f
4.32	6.8	40.6	13.7	46	17.54	54.6	12.16	46.12	173	52.5	f
5.16	7.2	44.3	14.5	88	18.29	61.9	12.92	48.76	175	56	f
4.53	5	40.7	14	41	17.79	56.8	12.55	38.3	156.9	43.8	f
4.42	6.4	42.8	14.5	63	20.31	58.9	13.46	39.03	149	45.1	f
4.93	7.3	46.2	15.1	41	21.12	34	6.59	67	184.4	71.8	m
5.21	7.5	47.5	16.5	20	21.89	46.7	9.5	70	187.3	76.8	m
5.09	8.9	46.3	15.4	44	29.97	71.1	13.97	88	185.1	102.7	m
4.94	6.3	45.7	15.5	50	23.11	34.3	6.43	74	184.9	79	m
4.86	3.9	44.9	15.4	73	22.83	34.5	6.56	70	181	74.8	m
4.51	4.4	41.6	12.7	44	19.44	65.1	15.07	53.42	179.9	62.9	f
4.62	7.3	43.8	14.7	26	21.2	76.8	18.08	61.85	188.7	75.5	f

Inputs X

Labels **y**

What is the prior probability $\mathbb{P}(y=1)$ that an athlete is a female?

Posterior probability and decision

What is the probability that an athlete with known input x is y = 1?

Statistical modeling of the data

- Conditional distributions: p(x/y = 0) and p(x/y = 1)
- Marginal : $p_X(x) = p(x/y = 0)\mathbb{P}(y = 0) + p(x/y = 1)\mathbb{P}(y = 1)$

Decision

Posterior probabilities

$$\mathbb{P}(y = 1/x) = \frac{p(x/y=1)\mathbb{P}(y=1)}{p_X(x)}, \quad \mathbb{P}(y = 0/x) = \frac{p(x/y=0)\mathbb{P}(y=0)}{p_X(x)}$$

$$\bullet \ \, \mathsf{Decision} : \, D(\textbf{\textit{x}}) = \left\{ \begin{array}{ll} 1 & \mathsf{if} & \frac{\mathbf{P}(y=1/\textbf{\textit{x}})}{\mathbf{P}(y=0/\textbf{\textit{x}})} > 1 \\ 0 & \mathsf{otherwise} \end{array} \right.$$

Issue

Finding the conditional distributions p(x/y = 1) and p(x/y = 0) is hard

Posterior probability, odds and score

- What is the probability that an athlete with known input x is y = 1?
- Recall that the Decision is: $D(x) = \begin{cases} 1 & \text{if} \\ 0 & \text{otherwise} \end{cases} \frac{P(y=1/x)}{P(y=0/x)} > 1$

Requires the conditional distributions p(x/y = 1) and p(x/y = 0) (generally unknown)

- Odds: $\frac{\mathbb{P}(y=1/x)}{1-\mathbb{P}(y=1/x)}$
- Score:

$$score(\mathbf{x}) = \log\left(\frac{\mathbb{P}(y=1/\mathbf{x})}{1 - \mathbb{P}(y=1/\mathbf{x})}\right)$$

Logistic regression: motivation

The decision rule only requires knowledge of the score

$$score(\mathbf{x}) = \log\left(\frac{\mathbb{P}(y=1/\mathbf{x})}{1 - \mathbb{P}(y=1/\mathbf{x})}\right)$$

• The decision function is D(x) = sign(score(x))

Goal of logistic regression

• Learn directly a scoring function f(x)

$$score(\mathbf{x}) = \log\left(\frac{\mathbb{P}(y = 1/\mathbf{x})}{1 - \mathbb{P}(y = 1/\mathbf{x})}\right) = f(\mathbf{x})$$

Avoid to learn the conditional distributions p(x/y) and the prior $\mathbb{P}(y)$ to get the posterior probabilities $\mathbb{P}(y/x)$

Scoring function

- Model: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$
- Decision rule: assign \mathbf{x} to $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) \geq 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$

Athletes' classification problem using two variables (ferr, lbm)

Confidence in the decision making

Sort the score

- Confident : $f(\mathbf{x}) \to \infty$ and y = 1 or $f(\mathbf{x}) \to -\infty$ and y = 0
- Uncertain : $f(x) \rightarrow 0$

Quantify the confidence: from the score to posterior probability

ullet Use an increasing monotone function ${\rm I\!R}
ightarrow [0,1]$: sigmoid

$$\mathbb{P}(y=1|\mathbf{x}) = \frac{\exp^{f(\mathbf{x})}}{1+\exp^{f(\mathbf{x})}} \to \mathbb{P}(y=0|\mathbf{x}) = 1 - \mathbb{P}(y=1|\mathbf{x}) = \frac{1}{1+\exp^{f(\mathbf{x})}}$$

• the decision function reads $\hat{y} = \begin{cases} 1 & \text{if} \quad \mathbb{P}(y = 1/x) > 0.5 \\ 0 & \text{if} \quad \mathbb{P}(y = 1/x) < 0.5 \end{cases}$

Estimate the scoring function f

• We seek f such that for any given training sample $\mathbf{x}_i \in \mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ $\mathbb{P}(y_i = 1 | \mathbf{x}_i) = \frac{\exp^{f(\mathbf{x}_i)}}{1 + \exp^{f(\mathbf{x}_i)}} \to \begin{cases} 1 & \text{if} \quad y_i = 1\\ 0 & \text{if} \quad y_i = 0 \end{cases}$

Maximize the conditional log-likelihood

$$\begin{split} \mathcal{L}(\{y_i\}_{i=1}^N/\{\bm{x}_i\}_{i=1}^N;f) &= \log \prod_{i=1}^N \left[\mathbb{P}(y_i = 1|\bm{x}_i)^{y_i} (1 - \mathbb{P}(y_i = 1|\bm{x}_i))^{1-y_i} \right] \\ &= \sum_{i=1}^N y_i \log(\mathbb{P}(y_i = 1|\bm{x}_i)) + (1 - y_i) \log(1 - \mathbb{P}(y_i = 1|\bm{x}_i)) \end{split}$$

Relevant optimization problem

$$\max_{f} \mathcal{L}(\{y_i\}_{i=1}^N/\{\boldsymbol{x}_i\}_{i=1}^N; f) \Leftrightarrow \min_{f} J(f)$$
 with $J(f) = -\sum_{i=1}^N [y_i \log(\mathbb{P}(y_i = 1|\boldsymbol{x}_i)) + (1 - y_i) \log(1 - \mathbb{P}(y_i = 1|\boldsymbol{x}_i))]$

Fitting objective function

• Re-writing the criterion J(f)

$$J(f) = \sum_{i=1}^{N} \ell(y_i, p_i)$$

with
$$\ell(y_i, p_i) = -y_i \log p_i - (1 - y_i) \log(1 - p_i)$$
 and $p_i = \mathbb{P}(y_i = 1 | \boldsymbol{x}_i)$

• $\ell(y, p)$: loss function known as **binary cross entropy**

A brief summary

- Scoring function: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b = \varphi^{\top} \theta$ with $\varphi = \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} \in \mathbb{R}^{d+1}$ and $\theta = \begin{pmatrix} \mathbf{w} \\ b \end{pmatrix} \in \mathbb{R}^{d+1}$ for $\mathbf{x} \in \mathbb{R}^{d+1}$
- Posterior probability: $\mathbb{P}(y=1|\mathbf{x}) = p = \frac{\exp^{f(\mathbf{x})}}{1 + \exp^{f(\mathbf{x})}} = \frac{\exp^{\varphi^{-1}\theta}}{1 + \exp^{\varphi^{-1}\theta}}$
- We deduce the optimization problem

$$egin{aligned} \min_{f} J(f) &=& \sum_{i=1}^{N} -y_{i} \log p_{i} - (1-y_{i}) \log (1-p_{i}) \ &\Leftrightarrow \min_{oldsymbol{ heta}} J(oldsymbol{ heta}) &=& \sum_{i=1}^{N} \left[-y_{i} oldsymbol{arphi}_{i}^{ op} oldsymbol{ heta} + \log (1+\exp^{oldsymbol{arphi}_{i}^{ op}})
ight] \end{aligned}$$

Compute the solution ...

... using a descent algorithm

Reminder: descent methods

Principle for solving $\min_{\theta} J(\theta)$

- Start from θ_0
- Build the sequence $\{\boldsymbol{\theta}_k\}$ with $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \boldsymbol{h}_k$
- ullet dots converging toward a stationary point $\hat{oldsymbol{ heta}}$

• h_k : descent direction such that $J(\theta_k) < J(\theta_{k+1})$, α_k : step size

Examples

- Gradient descent method: $\mathbf{h} = -\nabla J(\boldsymbol{\theta})$
- Newton method: $\mathbf{h} = -\mathbf{H}^{-1} \nabla J(\theta)$ with \mathbf{H} the hessian matrix

Logistic regression: estimation of the parameters $oldsymbol{ heta}$

Newton Algorithm applied to logistic regression

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left[-y_i \boldsymbol{\varphi}_i^{\top} \boldsymbol{\theta} + \log(1 + \exp^{\boldsymbol{\varphi}_i^{\top} \boldsymbol{\theta}}) \right]$$

• Gradient $g = \nabla_{\theta} J(\theta)$

$$\nabla J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} y_{i} \varphi_{i} + \sum_{i=1}^{N} \varphi_{i} \frac{\exp^{\varphi_{i}^{\top} \boldsymbol{\theta}}}{1 + \exp^{\varphi_{i}^{\top} \boldsymbol{\theta}}}$$

$$= -\sum_{i=1}^{N} (y_{i} - p_{i}) \varphi_{i} \quad \text{with} \quad p_{i} = \frac{\exp^{\varphi_{i}^{\top} \boldsymbol{\theta}}}{1 + \exp^{\varphi_{i}^{\top} \boldsymbol{\theta}}}$$

• Hessian matrix $\boldsymbol{H} = \frac{\partial^2 J(\theta)}{\partial \theta} \frac{\partial^2 J(\theta)}{\partial \theta}$

$$H = \sum_{i=1}^{N} p_i (1-p_i) \varphi_i \varphi_i^{\top}$$

Gradient and Hessian: matrix form

Let

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix} \in \mathbb{R}^N, \quad \mathbf{\Phi} = \begin{bmatrix} 1 & \mathbf{x}_1^\top \\ \vdots \\ 1 & \mathbf{x}_N^\top \end{bmatrix} \in \mathbb{R}^{N \times (d+1)}$$

• Let $W \in \mathbb{R}^{N \times N}$ be the diagonal matrix so that

$$W_{ii} = p_i(1-p_i)$$

• We can easily establish that

gradient
$$g = -\mathbf{\Phi}^{\top}(y - p)$$

Hessian $\mathbf{H} = \mathbf{\Phi}^{\top}W\mathbf{\Phi}$

Logistic regression: the iterates

ullet Newton's method compute the following iterates starting from $oldsymbol{ heta}_0$

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - oldsymbol{H}_k^{-1} \mathtt{g}_k$$

• The gradient and hessian at θ_k are given by

$$\mathbf{g}_{k} = -\mathbf{\Phi}^{\top} (\mathbf{y} - \mathbf{p}_{k})$$
$$\mathbf{H}_{k} = \mathbf{\Phi}^{\top} \mathbf{W}_{k} \mathbf{\Phi}$$

where p_k and W_k are computed based on $p_k = \frac{\exp^{\varphi^\top \theta_t}}{1 + \exp^{\varphi^\top \theta_k}}$

The Newton iterations

$$\longrightarrow \quad \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \left(\mathbf{\Phi}^{\top} \mathbf{W}_k \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\top} \left(\mathbf{y} - \mathbf{p}_k\right)$$

Algorithm

Input: data-set matrix $\mathbf{X} \in \mathbb{R}^{N \times d}$ and labels' vector $\mathbf{y} \in \mathbb{R}^{N}$

 ${f Output}$: parameters estimation vector ${m heta}$

- **1** Form the matrix $\mathbf{\Phi} = [1 \ \mathbf{X}]$
- 2 Initialization: set k=0 and $\theta_k=0$.
- Repeat

Form the vector
$$p_k$$
 st $p_k(i) = \frac{\exp^{\varphi_i^\top \theta_k}}{1 + \exp^{\varphi_i^\top \theta_k}}$, $i = 1, \dots, N$

Form the matrix $W_k = diag(\tilde{p}_k)$ where $\tilde{p}_k(i) = p_k(i)(1 - p_k(i))$

Calculate the new estimate

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \left(\mathbf{\Phi}^{\top} \mathbf{W}_k \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\top} \left(\mathbf{y} - \mathbf{p}_k\right)$$

$$k = k + 1$$

Until convergence

Illustration

Remark

• In practice we solve the regularized optimisation problem

$$\min_{\boldsymbol{\theta}} C J(\boldsymbol{\theta}) + \Omega(\boldsymbol{\theta})$$

- C > 0: regularization parameter to be set by the user!
- Common regularieation : $\Omega(\theta) = \|\theta\|_2^2 = \sum_{i=1}^{d+1} \theta_i^2$
- To perform variable selection, choose: $\Omega(m{ heta}) = \|m{ heta}\|_1 = \sum_{j=1}^{d+1} | heta_j|$

Predicting using the model

Classifying a new sample x_i

- ullet Given the parameters estimation $\hat{oldsymbol{ heta}}$
- Compute the posterior probabilities

$$\mathbb{P}(y=1|\boldsymbol{x}_j) = \frac{\exp^{\varphi_j^\top \hat{\boldsymbol{\theta}}}}{1+\exp^{\varphi_j^\top \hat{\boldsymbol{\theta}}}} \quad \text{and} \quad \mathbb{P}(y=0|\boldsymbol{x}_j) = \frac{1}{1+\exp^{\varphi_j^\top \hat{\boldsymbol{\theta}}}}$$

with
$$arphi_j = egin{pmatrix} oldsymbol{x}_j \ 1 \end{pmatrix}$$

• Predict label $\hat{y}_j = 1$ if $\mathbb{P}(y = 1 | \mathbf{x}_j) \ge 1/2$ or $\hat{y}_j = 0$ otherwise

Extension to multi-class classification

We have K classes i.e. $y \in \{0, \dots, K-1\}, K > 2$

- We should determine K-1 scoring functions f_k
- The posterior probabilities are defined as

$$\mathbb{P}(y = k | \mathbf{x}) = \frac{\exp^{\varphi^{\top} \theta_k}}{1 + \sum_{k=1}^{K-1} \exp^{\varphi^{\top} \theta_k}} \quad \forall k = 1, \dots, K-1$$

$$\mathbb{P}(y = 0 | \mathbf{x}) = \frac{1}{1 + \sum_{k=1}^{K-1} \exp^{\varphi^{\top} \theta_k}}$$

Decision rule:

predict the label with the maximum posterior probability i.e.

$$\hat{y} = \operatorname{argmax}_{k \in \{0, \dots, K-1\}} \mathbb{P}(y = k | \mathbf{x})$$

Multi-class logistic regression: estimation of the parameters

- Data $\{(x_i, y_i)\}_{i=1}^N$ with $y_i \in \{0, \dots, K-1\}$
- Let define the one-hot encoding vector $\mathbf{z}^{(i)} \in \mathbb{R}^K$ with $\mathbf{z}_k^{(i)} = 1$ if $\mathbf{y}_i = k$ and $\mathbf{z}_k^{(i)} = 0$ otherwise
- Example: for K = 3 and $y_i = 1$, we get $z^{(i)} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^{\top}$
- Conditional log-likelihood (multinomial distribution)

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{k=1}^{K} z_k^{(i)} \log \mathbb{P}(y = k | \mathbf{x}_i) \quad \text{with} \quad \mathbb{P}(y = k | \mathbf{x}) = \frac{\exp^{\varphi^\top \theta_k}}{1 + \sum_{k=1}^{K-1} \exp^{\varphi^\top \theta_k}}$$

Estimation of the parameters

Maximize the log-likelihood w.r.t. K-1 parameter vectors $\theta_1, \cdots, \theta_{K-1}$

Illustration

Summary

- Logistic regression
 - directly models the posterior probability ratio by a scoring function
 - The posterior probabilities can be retrieved from the scoring function
- Model Parameters Estimation
 - Maximisation of the log-Likelihood ...
 - ... by Newton's method
 - In practice a regularization scheme (often ℓ_1 or ℓ_2 norm of the parameters) is applied ...
 - ... and dedicated solving algorithms exist

Conclusion

- simple (linear) model that yields to good prediction
- widely used model in several application (fraud detection, scoring)
- decision probabilities can be retrieved
- non-linear versions can be easily implemented

To find out more:

```
http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf
http://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-modlin-reglog.pdf
https://stat.duke.edu/courses/Spring13/sta102.001/Lec/Lec20.pdf
http://www.cs.berkeley.edu/~russel1/classes/cs194/f11/lectures/CS194%20Fal1%202011%20Lecture%2006.pdf
Python: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html R: https://cran.r-project.org/web/packages/HSAUR/
```

