
Distributed Programming (aka InfoRep)
Chapter 3 - RMI

Cecilia ZANNI-MERK
INSA Rouen Normandie

Agenda

● A (very brief) introduction to networks

● Client-Server architectures

● Sockets

● Remote Method Invocation

2

Network Programming in Java

Two approaches
○ Data stream communication (java.net, java.io packages)
○ Remote method call (java.rmi package)

java.net

○ classes for raw byte transmission
○ operation with sockets communicating via network ports

java.rmi

○ higher level of abstraction for remote method calling
○ the virtual machine translates the calls into a communication with

sockets (hidden for the programmer)
○ the virtual machine provides an object location service

3

Computer networks in one slide

4

Remote Method Invocation

5

RMI (Remote Method Invocation)

6

A simple way to develop client-server programs, based on the

RPC (Remote Procedure Call) protocol

The goal is to allow client applications (running locally) to

invoke methods on remote objects, i.e. located in another

application (in another JVM of the same physical machine or

on another machine accessible via the Internet) commonly

called server.

Servers and clients are objects

RMI (Remote Method Invocation)

7

Main concepts

An application running on an M1 machine can create an object

and make it accessible to other applications: this

application (and the M1 machine) thus plays the role of

server. Other applications handling such an object are

clients.

To manipulate a remote object, a client retrieves on its

machine a representation of the object called proxy or stub.

8

Main concepts

The proxy is an object that will make the link between a

local interface and the remote object: it is via this stub

that the client will be able to invoke methods on the remote

object. Such an invocation will be transmitted to the server

(the TCP protocol is used) in order to execute it.

On the server side, a skeleton is in charge of receiving

remote invocations, their realization and of sending the

results to the client

9

Implementation
1. First, the server on the M2

machine will declare the service

it is ready to provide

Name server: rmiregistry

2. The client on the M1 machine will

ask the name server to resolve the

name of the M2 machine

3. Creation of an interface connected

to the remote object (proxy)

4. The client on the M1 machine calls

a method on this interface

10

Implementation
5. The stub on the M1 machine

a. packages the method identifier and

its arguments (serialization) ;

b. the request is transmitted over the

network;

6. The skeleton on the M2 machine
a. receives and unpacks the message

(deserialization);

b. calls the requested method;

c. receives the result of the method;

7. The skeleton
a. packs this result;

b. transmits the result to the proxy

on the M1 machine;

8. The proxy on the M1 machine
a. receives and unpacks the message;

b. returns the result as an ordinary

method.

11

JAVA RMI

Protocol and tool for remote method invocation in Java

A set of classes in packages:

java.rmi

java.rmi.server

java.rmi.registry

java.rmi.dgc

java.rmi.activation

A "server": rmiregistry

Transport protocol used: JRMP (Java Remote Method Protocol)
12

JAVA RMI

Object-oriented

Invocation of synchronous methods

Passing parameters of remote invocations
Single type: passage by value

Instance of a class that implements Serializable: passage by value

Instance of a class that implements Remote and referenced as a distributed

object: it is a stub that is sent

Otherwise an error is generated

Directory service (rmiregistry); Default port: 1099

13

Development cycle

Server-side development consists of:
Definition of an interface that contains the methods that can be called

remotely

Writing a class that implements this interface

Writing a class that will instantiate the object and save it by assigning

it a name in the RMI name register (rmiregistry)

Client-side development consists of:
Obtaining a reference on the remote object from its name

Calling the method from this reference

The stub and the skeleton are generated automatically

14

Server example

Definition of the access interface to the remote addressable

object

15

Server example

Definition of the class implementing the code that will

actually perform the operations defined in the interface

16

Server example

17

Naming service

On the server, the RMI name registry must run before it can

register an object or obtain a reference.

This registry can be launched as an application provided in

the JDK (rmiregistry on the command line) or be launched

dynamically in the class that registers the object.

The naming service is an RMI object; rmiregistry is a server

This launch must only take place once.

18

Naming service

The code to execute the registry is the createRegistry()

method of the java.rmi.registry.LocateRegistry class.

This method expects a port number as a parameter.

The naming service offers several services: bind(), rebind(),

unbind(), list(), lookup()

It can be retrieved by calling the static method : Registry

LocateRegistry.getRegistry([machine],[port]);

19

Naming service

For security reasons, the bind(), rebind() and unbind()

methods are only accessible from the same machine

The bind() and rebind() commands allow the object to be saved

in the directory

rebind() overwrites the name of an existing reference

20

Launching the naming service

The rmiregistry command is supplied with the JDK. It must be

run as a background task

Under Unix : rmiregistry&

Under Windows: start rmiregistry

The directory must have the stub code in its classpath, so it

is usually launched at the root of the server code

21

Client example

22

Execution of the whole code

Launch the naming service

The interface must be accessible to the name server via

the classpath or codebase

Launch the server

The interface and implementation must be accessible via

the classpath or codebase

Launch the client

Access to the interface via classpath or codebase

23

Execution of the whole code

24

Exceptions

Exception management is transparent

Existing exceptions are launched and transmitted identically

to local processing

The creation of "specific" exceptions is identical to a local

creation

Any exception created must be accessible to the server,

client and rmiregistry (via classpath or codebase).

25

26

27

28

29

30

31

32

Parameter passing

In RMI, it is possible to pass arguments in the two classical

ways (by value or by reference)

All remote function arguments must be

either distant objects,

or serialized

33

Parameter passing

The purpose of serialization is to transfer an object to a

binary support.

For primitive types, this is done in a canonical way

(integers, strings...)

For structured types, Java defines a mechanism called

serialization to link and write an object to and from a

recursive binary representation.

34

Passing a Serializable object

The passing of a Serializable object is done in a transparent

way

Identical to a basic type passage

It is a passing by value for an object

Any object not Serializable will not be able to be passed as

a method parameter in RMI

At runtime, the rmiregistry (and obviously the server and the

client) must have access to the class to serialize via the

classpath or the codebase
35

36

37

38

39

40

41

Multi-threaded RMI

RMI server objects can reply to multiple clients

simultaneously

Because of their implementation, RMI methods exposed as

Remote will be in multithreaded mode

To manage simultaneous accesses, we must beware of concurrent

accesses to the attributes

To manage multiple threads the server can

Coordinate them

Give them priorities
42

Multi-threaded RMI

The server needs to lock concurrent access to attributes from

remote methods

The client can synchronize the call to the remote object on

its side, using synchronized methods

This synchronization will be local to its context, and not

shared by other clients

The lock will be placed on the stub and not on the remote

object itself

43

Callbacks

In the client-server model, the server is passive: the

communication is initiated by the client; the server waits

for the requests to arrive and provides the answers.

Some applications require the server to initiate

communication during certain events, such as :

monitoring, games, auctions, elections / votes, chat, ….

44

Polling vs Callback

In the absence of callbacks, a client will have to query a

passive server several times if it needs to be notified that

an event has occurred on the server side.

45

Definition

In distributed object-oriented systems, a Callback is a

method called by the server (resp. the client) on an object

transmitted as a parameter by the client (resp. the server)

and requiring to be executed by the client (resp. the

server).

The client, during its remote method call, passes as a

parameter a reference on the object (a stub) that it proposes

to the server. The latter can then invoke a method on this

object to notify the client.

46

Setting up

Clients will register with a server.

The server will only call them back when certain events

occur.

47

Setting up

How can we notify a (remote) object of the occurrence of an

event?

In fact, it is enough to pass the reference of the object to

be called back to the server in charge of following the

events. When the event occurs, the server will invoke the

client notification method

48

Setting up

Thus, for each type of event, a specific interface is created

(for the client who wants to be notified), and the potential

clients to be notified must register with an implementation

of this interface.

This implies that clients and servers are all in turn servers

and clients.

49

Setting up

50

An example

● The idea is to allow the server to call a client that has

contacted it before:

○ Increase asynchronies: publish/subscribe schema:

■ customer calls the server with immediate return (subscribe)

■ server calls the client back when the service is executed (publish)

○ Increase interactions: the server can ask the client for additional data

○ Event programming

51

52

53

54

55

56

Summary on Callbacks

● for an object passed as a parameter

57

References on Callbacks

● https://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm

● http://darwinsys.com/java/rmi/

58

https://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm
http://darwinsys.com/java/rmi/

Stub downloading

● RMI is designed to allow the dynamic provision of stubs to the

client. This allows the modification of methods remotely

without affecting the client program itself.

● The stub can be hosted on a web server and downloaded via HTTP

or can also be dynamically loaded from a location defined as a

parameter for the execution of the client
○ -Djava.rmi.server.codebase=<chemin d’accès>

● Security measures are required to protect the client and

server. A java security policy file must be defined on the

server host and also on the client host.
○ -Djava.security.policy=<fichier policy>

● A Java security manager must be instantiated in both client and

server programs (see Eclipse tutorial)

59

Final Remarks

● RMI is a powerful object distribution mechanism

● Some points that have not been seen in this course:

○ Interoperability: RMI on IIOP (Internet Inter-Orb Protocol)

○ "Customization" of sockets (for example to encrypt/compress

communication)

○ HTTP tunneling to make invocations of rmi methods through a firewall

60

TO DO before February 01, 2021

Do no forget to test your program with the server and the

client on different machines!

1. Download and test all the source code presented in this

chapter

2. If needed, follow the tutorial “Step by Step RMI with

Eclipse

Please, remark the different syntax to declare remote objects in

the classical examples and in the Eclipse examples. Both forms are

acceptable

61

Several different forms to do things

62
The interface always has the same aspect

In the following:

To the left, the version we discussed in the chapter

To the right, the version proposed in the Eclipse tutorial

Several different forms to do things

63

The first version of the implementation is simple (but it will make the server source code more complex)

The second version of the implementation is more complex (but it will make the server source code more simple)

Several different forms to do things

64

Supervised exercises (aka TDs) to be done on Feb 01st, 2021

RMI Encryption Service. The purpose of this exercise is to

implement a distributed encryption service with RMI; it will

propose the following 3 methods :
a. encrypt(int):int which, as encryption, will increment by 1 the

integer transmitted as parameter ;

b. encryptDocument(Document):Document that will encrypt a text document

passed by value by simply adding a string of characters; the business

logic of a Document object is provided in the file Annexes.tar.gz

c. EncryptFile(File):void which will encrypt a file passed by reference,

again by adding a string ; the business logic of a File type object

is also provided in the file Annexes.tar.gz

65

