Graphe -Modélisation informatique

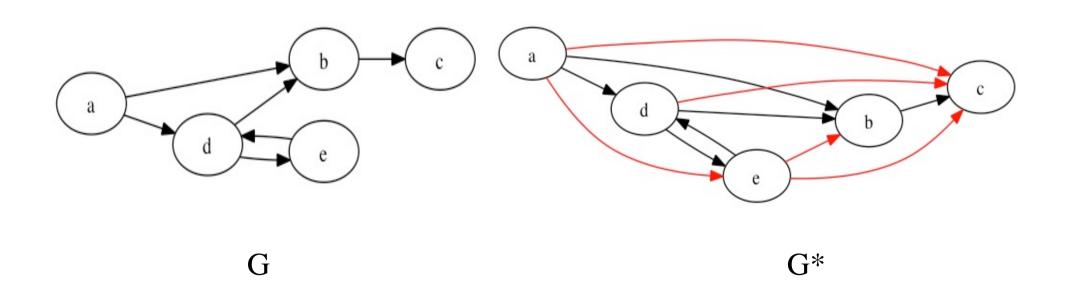
Institut National des Sciences Appliquées – Rouen Département Architecture des Systèmes d'Information michel.mainguenaud@insa-rouen.fr

Propriétés

- Multiplicité d'une paire x,y :
 - m⁺ (x, y) : Nombre d'arcs de G ayant x comme extrémité initiale et y comme extrémité terminale.
 - $-m^{-}(x, y) = m^{+}(y, x)$
 - $m(x, y) = m^{+}(x, y) + m^{-}(x, y)$
 - Si x = y alors m (x, y) est égal à 2 fois le nombre de boucles attachées au noeud x

Fermeture Transitive

- Construire un nouveau graphe G* à partir de G
- Arc $(i, j) \Leftrightarrow Il$ existe un chemin de i à j dans G



Représentations informatique

- Matrices
 - Matrice adjacence : 1-graphe (booléenne ou valuée) vs. p-graphe
 - Carrée : ligne : noeud, colonne : noeud
 - $A_{ij} = m^+(x_i, x_j)$ ou Vrai ou valuation
 - Matrice d'incidence :
 - noeuds-arcs (-1 -extrémité-, 0, 1 -origine-)
 - ligne : noeud, colonne : arc
- Listes : (matrices creuses)
 - Listes des noeuds successeurs / prédécesseurs
 - Listes des arcs (cocycles)

Représentations informatique (2)

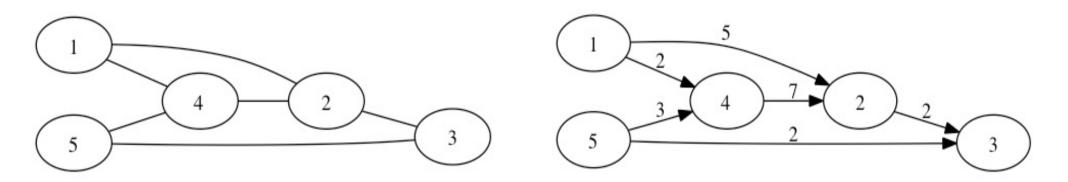
- Matrice : Que des problèmes
 - Espace mémoire important
 - Temps passé à faire des tests (complexité des algorithmes)
 - Pas de flexibilité
 - Pas de multi-graphe ou augmentation de la dimension
- Listes
 - Type abstrait avec primitives de manipulations
 - Flexibilité (insertion / suppression)
 - Emplacement mémoire raisonnable

Représentations informatique (3)

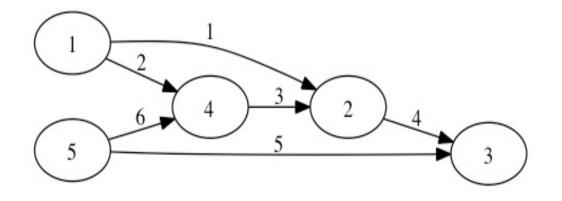
- Matrice d'adjacence (non) valuée / (non) orientée
- Matrice d'incidence noeuds / arcs
- Liste des successeurs / prédécesseurs / voisins / noeuds / arcs / arêtes
- Liste des cocycles orientés / non orientés

=> Problème passage d'une représentation à une autre

Exemple: Graphes



Fonction de coût



Numérotation des arcs

Booléenne

• 1-graphe, Non orienté ⇔2 arcs ⇒ Matrice symétrique

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	0
3	0	1	0	0	1
4	1	1	0	0	1
5	0	0	1	1	0

Valuation ⇒ Fonction de coût

• Arc inexistant : 0 ou infini => problème de représentation

	1	2	3	4	5
1	0	5	0	2	0
2	0	0	2	0	0
3	0	0	0	0	0
4	0	7	0	0	0
5	0	О	2	3	0

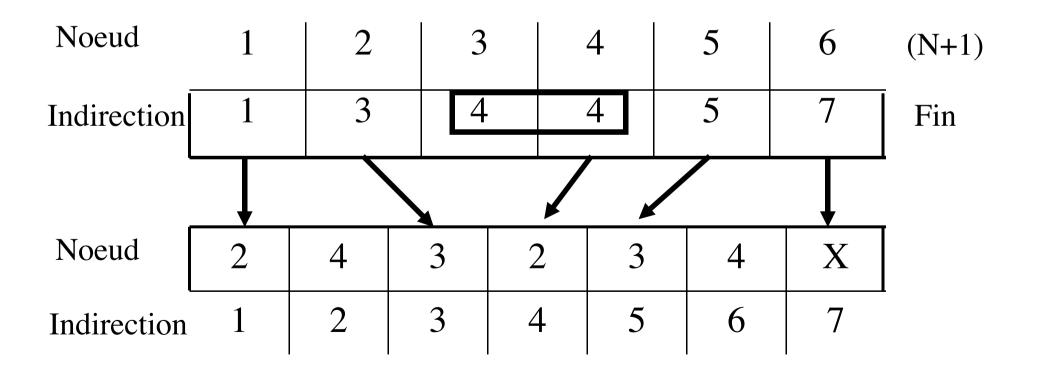
Noeuds-arcs

- p-graphe, pas de boucle
- Colonne: arc, ligne: noeud, origine: + destination: -

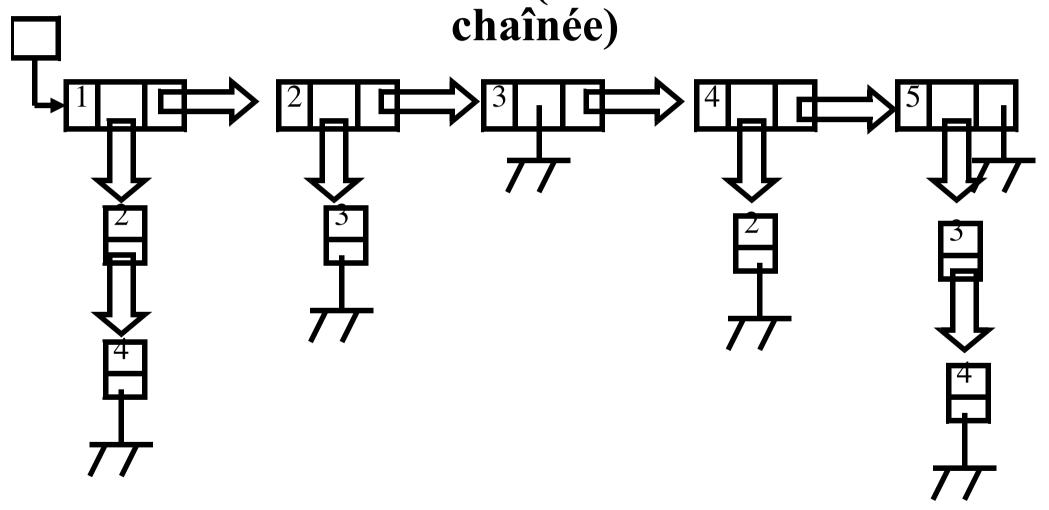
	1	2	3	4	5	6
1	+1	+1	0	0	0	0
2	-1	0	-1	+1	0	0
3	0	0	0	-1	-1	0
4	0	-1	+1	0	0	-1
5	0	0	0	0	+1	+1

Successeurs

- Tableau : Nœud : tableau [1.. N+1] d'indirections sur les successeurs ([1.. M+1])
- Principe : idem pour les voisins (non orienté) mais symétrique => 2M + 1 ou pour les prédécesseurs



Successeurs (version liste



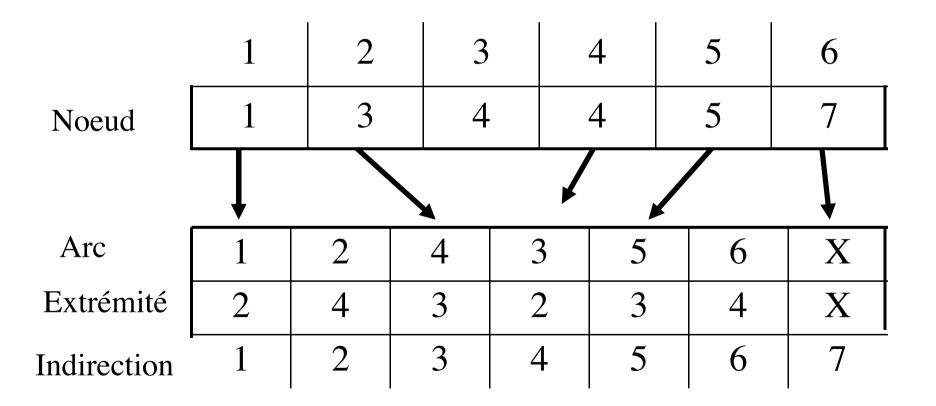
Orienté Valué

• Idem successeurs + valuation (liste chaînée : multi-graphe)

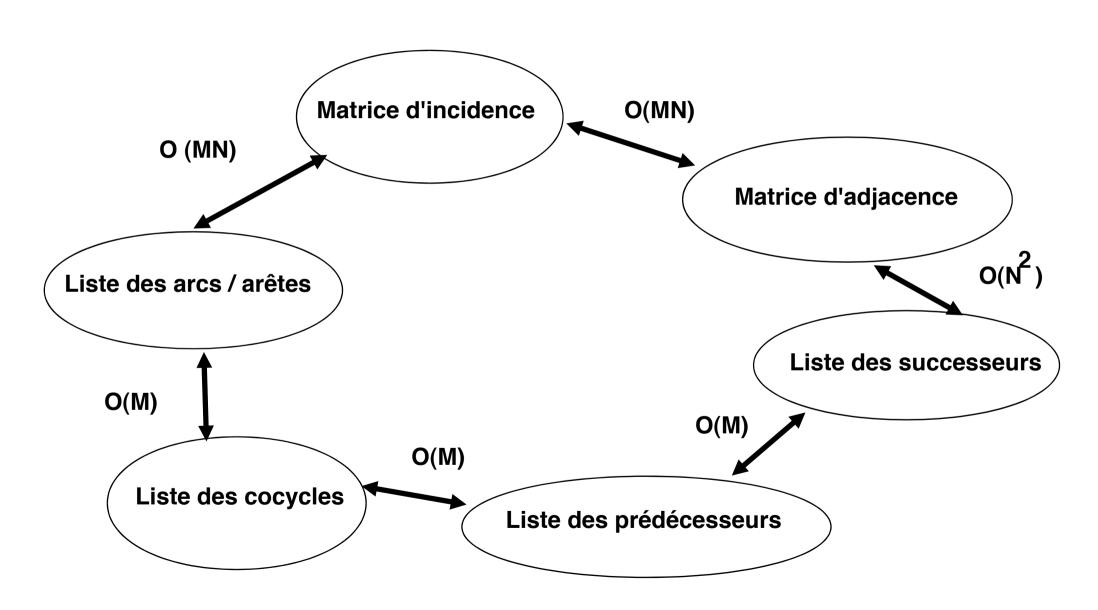
Noeud	1	2	3		4		5	6	
Indirection	1	3	3 4		4		5	7	
•								1	
Noeud	2	4	3	2		3	4	X	
Coût	5	2	2	7		2	3		
Indirection	1	2	3	4		5	6	7	

Cocycle

• Idem liste des successeurs mais avec les arcs => p-graphes avec boucles



Passages



Problématique Base de données

- Fonction d'étiquettage (noeud, arc)
 - Le graphe ne tient pas en MC
 - Opérateurs de manipulation chemin -
- Modélisation du graphe (1 ou plusieurs niveaux d'abstraction)
 - Passage des informations aux différents niveaux
 - Gestion des informations alphanumériques

Problèmes conventionnels

- Chemin eulérien : chemin qui emprunte une fois et une seule chaque arc
- Chemin hamiltonien : chemin qui emprunte une fois et une seule chaque noeud
- Stable: Sous-ensemble, S, de noeuds d'un graphe / deux noeuds de S ne sont pas adjacents (Γ)
- Clique : Sous graphe complet
- Iso/(homéo)morphisme de sous-graphes

•

Problèmes conventionnels (2)

- Domaine de la recherche opérationnelle (parcours / contraintes)
- Opérateurs de manipulation : Attention / pb NP-Complet
- Bases de données déductives / documentaires
- Bases de données spatiales (transports)

Calculs

- Pour étudier la complexité d'un problème d'optimisation -> Définir le modèle de résolution
 - Machine de Turing
 - Random Access Memory
 - Lambda-calcul
- Exemple : Voyageur de commerce
 - Soit y un entier, existe-t-il un circuit hamiltonien dont la longueur est inférieure ou égale à y?

Problème de décision

- Divisé en deux classes :
 - Problèmes indécidables
 - Impossible d'écrire un algorithme pour le résoudre (il n'y a pas assez d'hypothèses)
 - Exemple : age du capitaine connaissant la longueur du bateau
 - Problèmes décidables
 - Hypothèses, Données, Question
 - Réponse : oui / non (il existe un algorithme)
 - Amélioration :
 - Problèmes calculables : donne une solution
 - Hiérarchie dans la difficulté à donner une solution

Problème indécidable

• Arrêt d'un programme

Supposons que arret (P) existe et renvoie Vrai si P s'arrête et Faux si P ne s'arrête pas

```
Procedure marrant (P)
  tant que arret (P)
  ftq
fproc
Si P se termine, marrant boucle
Si P ne se termine pas marrant se termine
Appel: marrant (marrant)
             si marrant se termine c'est que marrant ne se termine pas
             si marrant ne se termine pas c'est que marrant se termine
```

$P/NP_{(1)}$

- Classe P (Problèmes « faciles »):
 - Il existe un algorithme polynomial qui permet de trouver la réponse à toute instance du problème
 - Différence entre la théorie et la pratique : une complexité >
 n³ se révèle peu réaliste si n est grand
 - Les constantes ne comptent pas 3n ⇔ n

P/NP (2)

- Classe Non-Déterministes Polynomiaux (« difficile »)
 - Il existe un algorithme polynomial qui permet de reconnaître une instance positive
 - Il est peu probable qu'un algorithme polynomial puisse être construit pour donner une solution
 - On dispose d'un algorithme polynomial non déterministe (dans un automate, à partir d'un état et d'une lettre, deux états différents sont accessibles)
 - Exemple : voyageur de commerce : on donne une séquence d'arcs, il répond oui/non à la propriété « circuit hamiltonien de longueur inférieure ou égale à y donné »

Réduction

- Un problème P1 est réductible à un problème P2
 - Il existe une fonction polynomiale qui transforme chaque énoncé de P1 en un autre énoncé P2
 - La réponse pour P1 est oui si et seulement si la réponse pour P2 est oui
 - Nécessite de montrer que P1 est NP et qu'il existe P2 connu être NP-complet et P1 est réductible à P2
 - Un problème est NP-difficile si le problème de décision correspondant est NP-complet
 - Exemple : voyageur de commerce

NP-complet

- Problème NP-complet au sens faible
 - Il est NP-complet
 - Il existe un algorithme pseudo-polynomial (peut s'exprimer comme un polynôme des paramètres du problème) pour le résoudre
- Problème NP-complet au sens fort
 - Il appartient à la classe NP
 - Il reste NP-complet même si on limite la taille des paramètres du problème

Heuristique

- Trouver une solution approchée du problèmes sans savoir s'il s'agit de la meilleure solution
- Permet de rendre « raisonnable » la résolution d'un problème
- La solution peut être utilisée comme initialisation d'une méthode exacte (plus couteuse)
- Spécifique à un problème
 - Méta-heuristique pour des méthodes plus générales (recuit-simulé, algorithmes génétiques, ...)

Quelques problèmes NP-Complets

- Voyageur de commerce (circuit hamiltonien)
- Clique maximum (sous-graphe complet)
- Isomorphisme de sous-graphes
- Stable maximal
- Support de taille < K
- Sac à dos
- •

Complexité

- Fermeture transitive
 - Simple : Dijkstra : O(V^2)
 - Méthode matricielle
 - Base : $N^3 \log_2 N$
 - Floyd-Warshall : N³
 - Méthode de séquence
 - Ford: $2 N^3$
 - Yen: $N^3 / 6$
 - En gros du N³

Complexité (2)

- Gestion des flux
 - Ford-Fulkerson : N^4 (Log $N + \frac{1}{2}$ Log C)
 - C : capacité moyenne des arcs du graphe
 - Edmonds-Karp: N⁴
 - Dinic-Kazanov : N² (principe différent de la chaîne améliorante)