Chemins

Modélisation Algorithme de Dijkstra Requêtes

Institut National des Sciences Appliquées – Rouen Département Architecture des Systèmes d'Information michel.mainguenaud@insa-rouen.fr

Approches

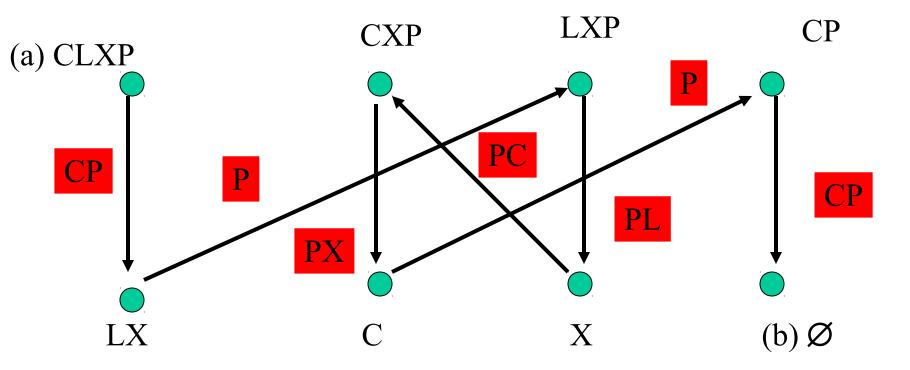
- Le chemin sert à modéliser la solution à apporter au problème. Il apporte alors la solution du problème.
- Le problème est l'évaluation du chemin (réseau de transport). La modélisation du graphe est une donnée.

Modélisation

- Exemple : le loup (L), la chèvre (C), le chou (X) et le passeur (P)
 - Passage d'une rive à l'autre d'une rivière sous contraintes
 - La chèvre mange le chou
 - Le loup mange la chèvre
 - Que deux dans la barque

Solution

• Passage d'un état (a) : tout le monde se trouve sur la rive droite à un état (b) : plus rien n'est sur la rive droite sous la forme suivante :



Problème évaluation

- Etant donné un graphe G, associons à chaque arc u un nombre l(u) ≥ 0 que nous appelons la « longueur » de l'arc u.
- Problème: Trouver le coût d'un chemin élémentaire, c, allant d'un noeud « a » à un noeud « b » et tel que la longueur totale

 $l_c = \sum l(u)$ pour u appartenant à c soit aussi petite que possible

Objectifs

- Les noeuds sont numérotés 1, 2, ... n
- Les arcs sont valués (problème base de données)
- Trouver un chemin critique lors de planification ou Trouver un chemin entre les noeuds n°1 et n°k de coût minimum (→ (1, k, Min(f))) : abus de langage : « plus court chemin »
- Hypothèses : pas de circuit dans les chemins solution (élémentaires)

Ordonnancement

- L'ordonnancement est l'élaboration d'un plan d'action permettant de déterminer le séquencement ou le parallélisme possible entre l'exécution de tâches définies (WBS).
- Estimer la durée des tâches
- Dates au plus tôt, dates au plus tard,
- A surveiller comme le lait sur le feu.

Chemin critique (www.qualite.qc.ca)

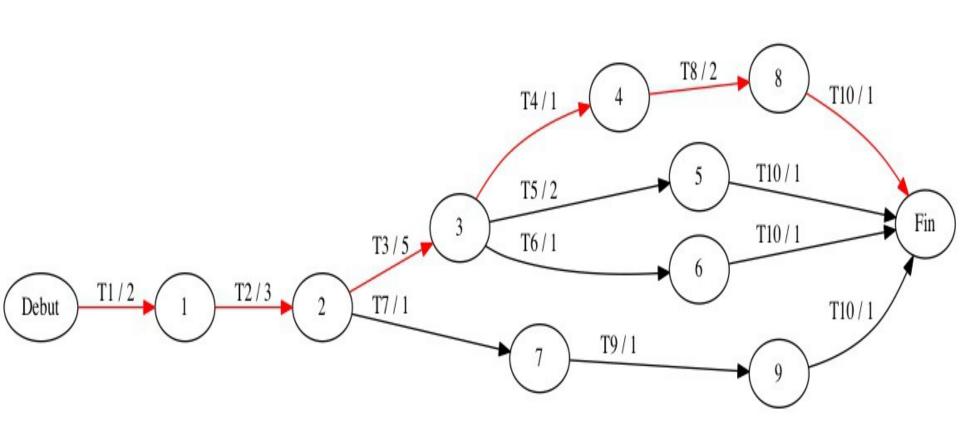
• Planification: construire une maison

- T1 : Analyse des besoins (2 semaines)
- T2 : Concevoir les plans (3 semaines)
- T3 : Gros oeuvre (5 semaines)
- T4 : Electricité (2 semaines)
- T5 : Huisserie (1 semaine)
- T6 : Carrelage (1 semaine)
- T7 : Commander les meubles (2 semaines)
- T8 : Peinture (2 semaines)
- T9: Livraison des meubles (1 semaine)
- T10: Finitions (1 semaine)

• Modélisation:

- Noeuds : début tâche (début/tâches/fin)
- Arc : tâches / durée

Chemin critique



Analyse

- Chemin critique : Séquence de tâches. Détermine la durée totale
 - continu du début à la fin du projet : Tout retard affectant une tâche du chemin critique (tâche critique) est intégralement répercuté sur la durée du projet et change sa date de fin.
- Marge : possibilité qu'à une tâche d'être retardée ou de prendre du retard sans son exécution sans impacter le projet.
 - Les tâches critiques ont une marge nulle.
- Marge totale : égale à la différence entre le début au plus tard de la tâche suivante la plus contraignante et la fin au plus tôt de la tâche elle-même.
 C'est aussi la différence entre les dates au plus tard et les dates au plus tôt de la tâche elle même.
- Marge libre : égale à la différence entre la date de début au plus tôt du successeur le plus précoce et la date de fin au plus tôt de la tâche ellemême.

Calcul de chemins

Un exemple : Algorithme de Dijkstra

Démarche

- Système de potentiels (μ).
- Séquence de noeuds visités, S
- Le potentiel d'un noeud, μ(i), dans S est égal au coût minimal d'un chemin de 1 à i.
- Le potentiel d'un noeud hors S est
 - soit indéterminé (valeur infinie)
 - soit de potentiel déterminé, mais susceptible d'être amélioré.

Pré-conditions

- Les coûts des arcs doivent être positifs ou nuls.
- Cet algorithme ne s'applique pas pour la recherche du chemin maximal
- Le fonctionnement de l'algorithme est indépendant de la numérotation des noeuds.
- On suppose ici qu'il existe un chemin de 1 à k
- Cet algorithme donne le <u>coût minimal</u> d'un chemin de 1 à k.

Algorithme (Principe)

- $\mu(1) = 0$
- \forall i $\in \Gamma$ +(1), μ (i) est le coût de l'arc (1,i)
- $\forall j \notin \Gamma + (1), \mu(j) = \infty$
- S = <1>.
- A chaque étape, détermination
 - Du(es) noeud j qui doit entrer dans S;
 - Mise à jour des potentiels de ses successeurs.
- Itération du processus jusqu'à ce que le noeud k appartienne à S.

Mise à jour de μ(j)

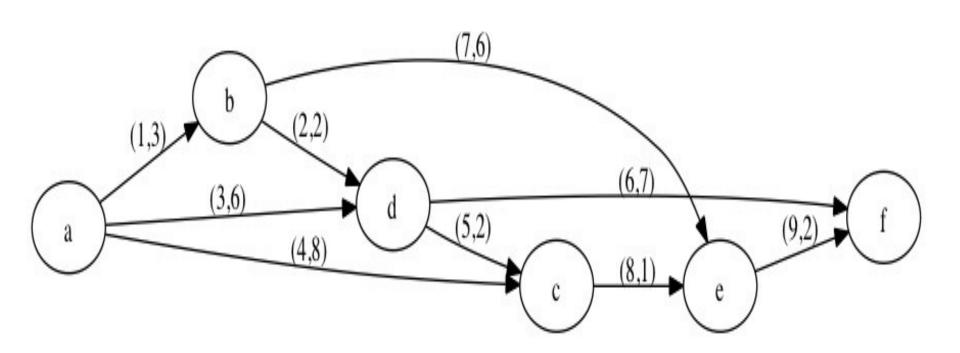
Si i est sélectionné pour entrer dans S Alors pour chacun de ses successeurs j si le fait d'aller de 1 à j en passant par i diminue le coût du chemin $(\mu(i) + \text{Coût}(i,j) < \mu(j))$ Alors $\mu(j) = \mu(i) + \text{Coût } (i,j)$ finsi

fpour finsi

Algorithme

```
\mu(1) = 0; S = <1>
Pour tout noeud i \in \Gamma+(1), \mu(i) = \text{coût } (1,i)
Pour tout noeud i \not\in \Gamma+(1), \mu(i) = \infty
Tant que k \notin S, faire
     Pour tout noeud i \notin S / \mu(i) = Min(\mu(i), j \notin S)
          S = S \cup \langle i \rangle
          Pour tout j \in \Gamma + (i),
                    \mu(i) = Min(\mu(i) + Coût(i,i), \mu(i))
          Fpour
   Fpour
Ftq
```

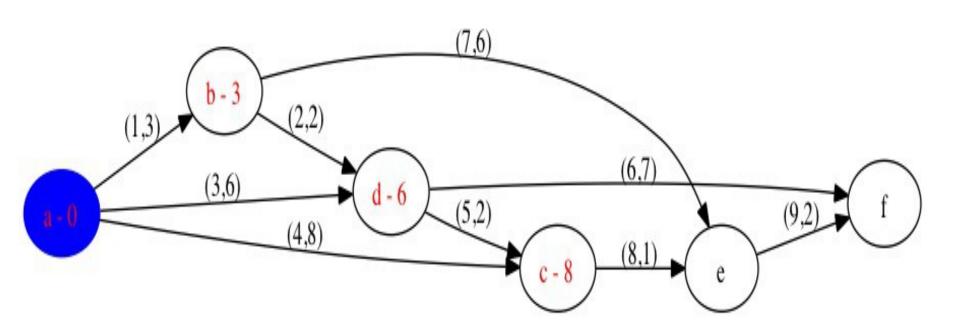
Exemple



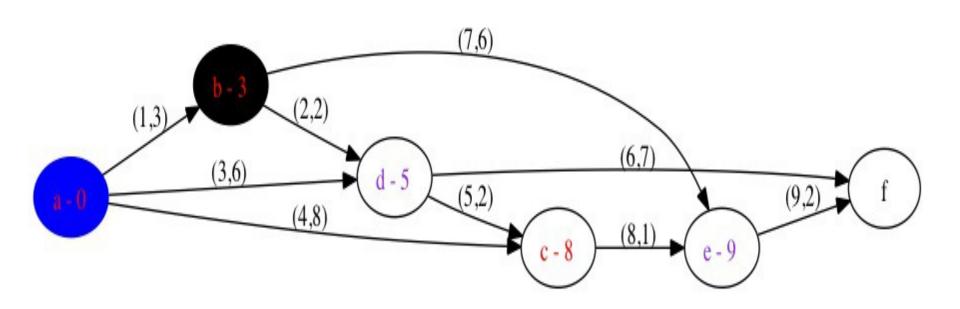
Evolution

- Potentiel en rouge
- En bleu les noeuds appartenant à S
- En noir les noeuds qui vont entrer dans S, (ils vont donc éventuellement modifier le potentiel de leurs successeurs)
- Les mises à jour de potentiels sont signalées en violet

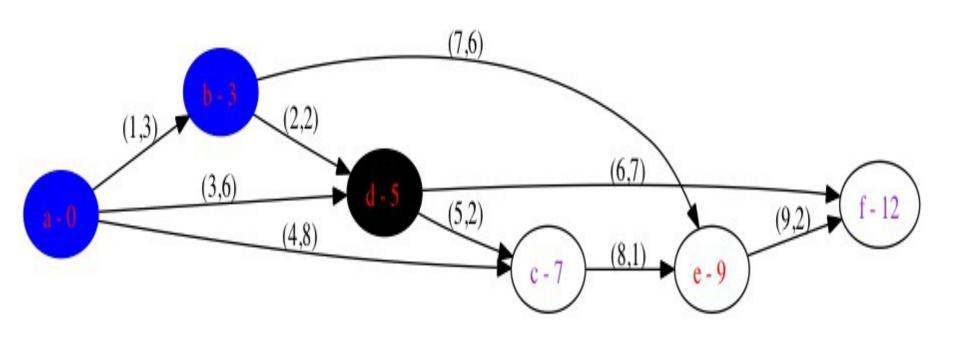
Initialisation



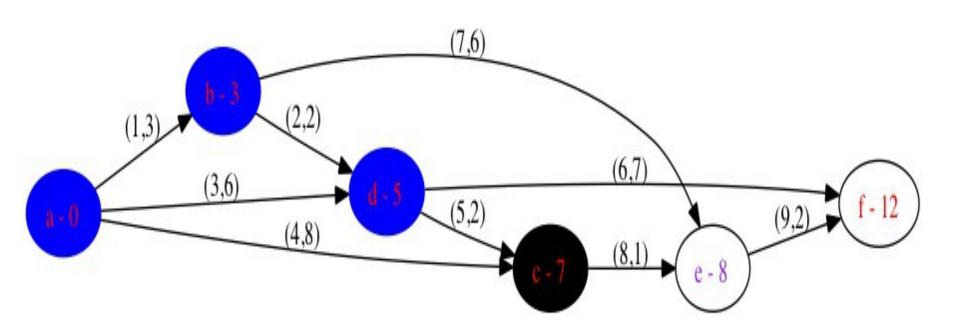
Première étape



Deuxième étape



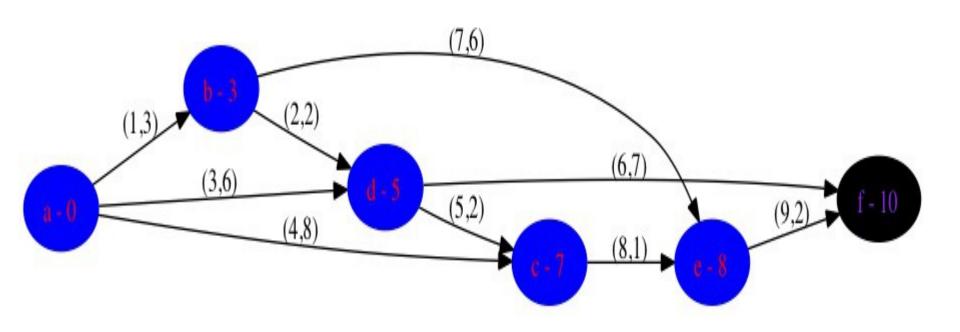
Troisième étape



Quatrième étape



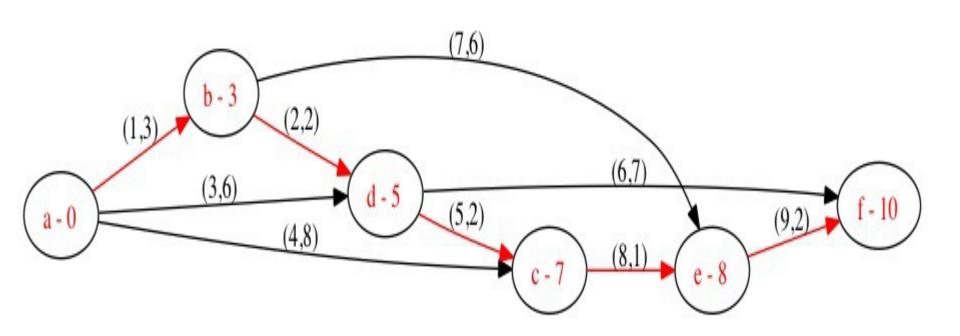
Cinquième et dernière étape



Retrouver le chemin

- Pour retrouver le chemin minimal, il faut que chaque noeud « se souvienne » du prédécesseur qui lui a donné son potentiel optimal.
- Utilisation de la récursion dans le sens opposé des arcs.
- Sur notre exemple, le chemin minimum est (a-b-d-c-e-f). Pour le trouver, on « remonte » la liste des prédécesseurs « privilégiés ».

Exemple



Autres algorithmes

- Dantzig
- Ford
- Algorithme naïf et semi-naïf
- Bellman (pas de circuit)
- Bellman-Kalaba
- Méthodes matricielles (Warshall, ...)
- •

Rôle de la fonction d'étiquetage

- Apporter une sémantique plus importante
 - Sur les nœuds
 - Sur les arcs
 - Sur les graphes
- Restreindre les procédures de recherche
- ... augmenter la complexité des algorithmes de recherche
 - Lien entre graphes et automates (expressions régulières)
 - Noeuds transparents (fonction agrégats)
 - Introduction de l'ordre

Requête mettant en jeu des opérateurs de graphes

- Requête élémentaire
 - Donner le graphe du métro
 - Quels sont les arcs du graphe vérifiant une propriété donnée (e.g., compagnie Air France)
 - Quels sont les nœuds du graphe vérifiant une propriété donnée (e.g., ville de plus de 100000 habitants)
 - Equivalent à une sélection/projection relationnelle

Requête mettant en jeu des opérateurs de graphes (2)

- Requête complexe
 - Evaluation d'un chemin de A à B:
 - Sous contraintes agrégatives
 - Sous expression régulière
 - Composition d'opérateurs :
 - Autres chemins
 - Intersection
 - Inclusion
- Equivalent à un calcul de fermeture transitive

Exemple (1) – Expression régulière

- Question : Evaluer un chemin entre deux villes A et B en prenant d'abord une nationale puis l'autoroute puis de nouveau une nationale :
- Modélisation :
 - \rightarrow (A, B, (nationale)+ (Autoroute)+ (Nationale)+)

Exemple (2) – Noeuds transparents

- Question : Evaluer un chemin entre deux villes A et B en minimisant le coût d'hôtel et d'autoroute :
- Modélisation :

Attention la sommation n'est pas effectuée pour tous les nœuds mais seulement une partie en fonction de l'heure d'arrivée et de départ (i.e., des arcs incidents).

Exemple (3) - Ordre

- Question: Evaluer un chemin entre Paris et Nice en passant d'abord par Grenoble puis par Lyon
- Modélisation :

Attention ce n'est pas la simple juxtaposition des chemins Paris-Grenoble, Grenoble-Lyon, Lyon-Nice (à cause des circuits)

Résultat(s) de l'opérateur de chemin

- Dans le cas réel, le résultat n'est pas un chemin mais un ensemble de chemins.
- Le résultat final n'est pas l'union des chemins (notamment dès qu'une fonction d'agrégat est en jeu)
 - Problème de signature des opérateurs
 - Restitution des résultats
- Gestion de la composition d'opérateurs

Distance (hors sémantique)

- Distance entre deux noeuds :
 - Longueur du plus court chemin/chaîne entre ces noeuds (distincts)
- Diamètre d'un graphe :
 - La plus longue des distances entre deux noeuds quelconques, mais distincts, du graphe
- Excentricité d'un sommet :
 - La plus longue des distances à partir de ce sommet
- Centre d'un graphe
 - noeud(s) d'excentricité minimale (appelée rayon)

Distance (2)

- Cycle:
 - Longueur : nombre de arêtes (ou noeuds)
 - -g(G): longueur du cycle minimal
 - Périmètre de G : longueur maximale d'un cycle
- Acyclique:
 - -g(G)=0
 - Périmètre infini