	INSTITUT NATIONAL DES SCIENCES APPLIQUÉES ROUEN NORMANDIE	Constrained Optimization	DÉPARTEMENT ARCHITECTURE DES SYSTEMES D'INFORMATION $4^{\text {th }}$ year G. Gasso

Objective

We aim to use the Python package CVXPY to solve convex optimization problems ranging from an introductory example to more elaborated problems.

1 Introduction example

Consider the following convex optimization problem

$$
\begin{aligned}
\min _{\theta_{1}, \theta_{2}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right) \\
\text { s.t. } & \theta_{1}-\theta_{2} \geq 1
\end{aligned}
$$

1. Write the problem in the standard form.
2. Write the associated Lagrangian function \mathcal{L} to the problem.
3. Derive the stationary KKT condition i.e. $\nabla_{\boldsymbol{\theta}} L=0$.
4. Deduce the dual function and the dual problem.
5. Using a plot of the dual function, guess the solution μ^{*} of the dual problem. Deduce then the optimal primal solution $\boldsymbol{\theta}^{*}$.

2 A more evolved problem

We want to solve the following problem

$$
\begin{array}{cl}
\underset{\boldsymbol{\theta}}{\min } & \frac{1}{2}\left(\theta_{1}-3\right)^{2}+\frac{1}{2}\left(\theta_{2}-1\right)^{2} \tag{1}\\
\text { s.t. } & \theta_{1}+\theta_{2}-1 \leq 0 \\
& \theta_{1}-\theta_{2}-1 \leq 0 \\
& -\theta_{1}+\theta_{2}-1 \leq 0 \\
& -\theta_{1}-\theta_{2}-1 \leq 0
\end{array}
$$

2.1 Mathematical derivation...

1. Let $\boldsymbol{\theta}$ be $\boldsymbol{\theta}=\left[\begin{array}{l}\theta_{1} \\ \theta_{2}\end{array}\right]$. Show that the problem can be cast into the matrix form

$$
\begin{array}{cl}
\min _{\boldsymbol{\theta}} & \frac{1}{2}\|\boldsymbol{\theta}-\mathbf{c}\|_{2}^{2} \tag{2}\\
\text { s.t. } & \mathbf{A} \boldsymbol{\theta}-\mathbf{b} \leq \mathbf{0}
\end{array}
$$

with the vectors \mathbf{c}, \mathbf{b} and the matrix \mathbf{A} to be specified. $\mathbf{0}$ is a zeros vector of dimension 4 .
2. Show that the Lagrangian function associated to Problem (2) is:

$$
\mathcal{L}=\frac{1}{2}\|\boldsymbol{\theta}-\mathbf{c}\|_{2}^{2}+\boldsymbol{\mu}^{\top}(\mathbf{A} \boldsymbol{\theta}-\mathbf{b})
$$

with $\boldsymbol{\mu} \in \mathbb{R}^{4}$ and $\boldsymbol{\mu} \geq 0$ a vector of Lagragange multipliers.
3. To get the stationary KKT condition, we need to know some useful derivatives.
(a) Show that $\|\boldsymbol{\theta}-\mathbf{c}\|_{2}^{2}=\boldsymbol{\theta}^{\top} \boldsymbol{\theta}-2 \boldsymbol{\theta}^{\top} \mathbf{c}+\mathbf{c}^{\top} \mathbf{c}$.
(b) Using the directional derivative, establish that $\nabla_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\top} \boldsymbol{\theta}\right)=2 \boldsymbol{\theta}$ and $\nabla_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\top} \mathbf{c}\right)=\mathbf{c}$. Deduce that $\nabla_{\boldsymbol{\theta}}\|\boldsymbol{\theta}-\mathbf{c}\|_{2}^{2}=2(\boldsymbol{\theta}-\mathbf{c})$.

Reminder on gradient calculation:
Let $J(\boldsymbol{\theta})$ a function of $\boldsymbol{\theta} \in \mathbb{R}^{d}$. Assume $\phi(t)=J(\boldsymbol{\theta}+t \mathbf{h})$ with $\mathbf{h} \in \mathbb{R}^{d}$ and $t \in \mathbb{R}$.
The directional derivative of J in the direction \mathbf{h} is given by
$d d(\mathbf{h})=\lim _{t \rightarrow 0} \frac{J_{a}(\boldsymbol{\theta}+t \mathbf{h})-J(\boldsymbol{\theta})}{t} \quad$ wich is equal to $\quad d d(\mathbf{h})=\phi^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\phi(t)-\phi(0)}{t}$
If the directional derivative is linear in \mathbf{h} that is

$$
d d(\mathbf{h})=\mathbf{g}^{\top} \mathbf{h} \quad \Longrightarrow \quad \text { the gradient of } J \text { at } \boldsymbol{\theta} \text { is } \quad \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\mathbf{g}
$$

4. From the previous question express the KKT stationary condition; deduce the expression of $\boldsymbol{\theta}$ as a function of $\boldsymbol{\mu}$.
5. Establish that the dual problem is

$$
\begin{array}{cl}
\min _{\boldsymbol{\lambda}} & \frac{1}{2} \boldsymbol{\mu}^{\top} \mathbf{H} \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \mathbf{q} \tag{4}\\
\text { s.c. } & \boldsymbol{\mu} \geq 0
\end{array}
$$

where the matrix \mathbf{H} and the vector \mathbf{q} are to be specified.
with $\mathbf{H}=\mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{q}=-(\mathbf{A c}-\mathbf{b})$

2.2 ... and numerical implementation

We want to compute the solution of Problem (2). We will use CVXPy package at https: //www.cvxpy.org/index.html. This package solves convex optimization problems.

1. To start under CVXPy, let solve the primal problem (2).
(a) Define matrix \mathbf{A} and vectors \mathbf{b} and \mathbf{c} as in subsection 2.1
```
import numpy as np
c = np.array([3, 1])
b = np.ones(4)
A = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1]])
```

(b) Visualize the objective function and the constraints of Problem (2).

```
from utility import plot_contours_exercice_section2
plot_contours_exercice_section2(A, b, c)
```

Intuitively and using the plot, what is the solution to Problem (2)?
(c) Define the primal problem under CVXPy and compute the solution.

```
import cvxpy as cvx
print("----------- Solving the primal Problem -----------------")
# define theta as the optimization problem variables
d = 2 #dimension of theta
theta = cvx.Variable(d)
# define, using CVXPy format, the primal objective function
obj = cvx.Minimize(0.5*cvx.quad_form(theta-c, np.eye(d)))
# define the constraints
constraints = [A@ theta - b <= 0]
# set the primal as a CVX problem
primal = cvx.Problem(obj, constraints)
# Compute the solution
primal.solve(verbose = False)
# Print the results
print("status of the solution = {}".format(primal.status))
print("Primal optimal solution = {}".format(theta.value))
obj_primal = 0.5*cvx.quad_form(theta-c, np.eye(d))
print("primal objective function at optimality = {}".format(
    obj_primal.value))
```

Compare the obtained solution to your intuitive guess.
2. Now let solve the dual problem and deduce $\boldsymbol{\theta}$ as established at question 2.1.4. Inspiring from the previous question, write the appropriate code to solve Problem (4).
Hint: some useful matrix/vector operations under numpy

- the matrix vector (matrix) multiplication Ac is: A@c
- the transpose of A is either A. T or np.transpose (A)

```
print("----------- Solving the dual Problem ----------------")
# define matrix H
H = ...
# define vector q
q = ...
# define the dual variables
m = ... #dimension of dual variables mu
mu = ... #dual variables
# define, using CVXPy format, the dual objective function
obj = cvx.Minimize(...)
# define the constraints
constraints = ...
# set the dual problem and solve it
dual = cvx.Problem(...)
dual.solve(verbose = False) #compute the solution
```

```
# deduce the primal solution knowing the dual vector mu
theta_from_dual = c - np.asarray(A.T@(mu.value))
```

How both primal solutions compare?

3 Minimum enclosing ball

Assume a sub-urban area with n houses located at given coordinates $\mathbf{x}_{i} \in \mathbb{R}^{2}, i=1, \cdots, n$. To build the firehouse a survey gets to the solution of settling the firehouse at position $\mathbf{z} \in \mathbb{R}^{2}$ so that its distance from the farthest house is minimal (see figure 3).

Mathematically, this translates into $\min _{\mathbf{z}} \max _{i=1, \cdots, n}\left\|\mathbf{z}-\mathbf{x}_{i}\right\|_{2}^{2}$
This problem can be equivalently expressed as

$$
\begin{array}{cc}
\min _{R \in \mathbb{R}, \mathbf{z} \in \mathbb{R}^{2}} & R^{2} \\
\text { s.c. } & \left\|\mathbf{z}-\mathbf{x}_{i}\right\|_{2}^{2} \leq R^{2} \quad \forall i=1, \cdots, n
\end{array}
$$

3.1 Again the mathematical derivation of the solution

1. What are the unknown variables of the problem? How many constraints does it involve?
2. Write the Lagrange function \mathcal{L}
3. Derive the stationary optimal conditions of the problem. Deduce the expression of \mathbf{z} as a function of the Lagrange multipliers.
4. Using the optimality conditions show that the dual function is

$$
\mathcal{L}=-\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \mu_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}+\sum_{i=1}^{n} \mu_{i} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}
$$

where the μ_{i} are the associated Lagrange multipliers to the primal.
5. Formulate the dual problem
6. From the dual solution $\boldsymbol{\mu}$, how to get the position \mathbf{z} of the firehouse and the distance R to the farthest house?

3.2 Solution computation

Let the matrix

$$
\mathbf{H}=\left(\begin{array}{cccc}
\mathbf{x}_{1}^{\top} \mathbf{x}_{1} & \mathbf{x}_{1}^{\top} \mathbf{x}_{2} & \cdots & \mathbf{x}_{1}^{\top} \mathbf{x}_{n} \\
\vdots & \vdots & \cdots & \vdots \\
\mathbf{x}_{n}^{\top} \mathbf{x}_{1} & \mathbf{x}_{n}^{\top} x_{2} & \cdots & \mathbf{x}_{n}^{\top} \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{n \times n} \text { and the vector } \mathbf{q}=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}^{\top} \mathbf{x}_{n}
\end{array}\right)
$$

The dual function can be written in the matrix form (easier to implement under CVXPy) :

$$
\mathcal{L}=-\boldsymbol{\mu}^{\top} \mathbf{H} \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \mathbf{q}, \quad \text { with } \quad \boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

The coordinates of the houses are provided in the matrix $\mathbf{X}=\left(\begin{array}{c}\mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top}\end{array}\right) \in \mathbb{R}^{n \times 2}$.
The data are provided in the file maisons.csv and can be retrieved using.

```
import numpy as np
X = np.genfromtxt("maisons.csv", delimiter=",")
print(X)
```

Given the matrix \mathbf{X}, we can note that $\mathbf{H}=\mathbf{X} \mathbf{X}^{\top}$.

1. From these elements, solve the dual problem with CVXPy..
```
import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cvx
# matrix and vectors of the dual problem
H = X.dot(X.T)
q = np.diag(H)
n = H.shape[0]
e = np.ones(n)
zer = np.zeros(n)
# mu is defined as the optimization variable
mu = cvx.Variable(n)
# Fill in the blank to define the objective function
obj = cvx.Minimize(...)
# Fill in the blank to define the constraints
constr = [...]
# Solve the constrained optimization problem
prob = cvx.Problem(obj, constr)
```

```
prob.solve(verbose = False)
# The dual solution mu is squeezed to get a vector (ndarray)
mu = np.squeeze(np.asarray(mu.value))
#Print the dual solution
print('Dual solution mu = ', mu)
#Print the dual objective value
print("Objective function value = ', -1.0*prob.value)
```

2. From the dual solution $\boldsymbol{\mu}$, compute the primal solutions \mathbf{z} and R.
```
# Computation of z : uncomment the lines below to use t
z = np.zeros(2)
for i in range(n):
    z += mu[i]*X[i,:]
# A matrix way to compute z: uncomment the line below to use this
    computation
#z = np.multiply(X, np.outer(mu, np.ones(X.shape[1]))).sum(axis=0)
print("The center z = ", z)
# compute the ray R
threshold = 1e-3
pos = np.where(mu >= seuil) #index des coeff mu non nuls
Distancequad = z.dot(z) - 2*(X.dot(z)) + q #% distance d(z, xi)^2
R2 = np.mean(Distancequad[pos])
```

3. Plot the points \mathbf{x}_{i}, the location \mathbf{z}. and the enclosing ball.
```
# plot the samples x_i and z
fig = plt.figure()
plt.plot(X[:,0], X[:,1], "s", color="b", markerfacecolor="b", markersize
    = 10)
plt.plot(z[0], z[1], "rp", markersize=15)
# plot of minimum enclosing ball
t = np.arange(0, 2*np.pi+0.02, 0.01)
plt.figure(fig.number)
plt.plot(Z[0] + np.sqrt(R2)*np.cos(t), Z[1] + np.sqrt(R2)*np.sin(t), "m"
    )
# plot of the farthest house (those located on the circle centered on z
    and of ray R)
plt.plot(X[pos,0], X[pos,1], "og", alpha=0.5, markersize = 15, linewidth
    =2)
```

4. Now assurme we are given two new coordinates as follows
```
outliers = [
    [3.0000, -3.0000],
    [2.5000, 2.5000]
    ]
Xoutliers = np.array(outliers)
```

Are these samples inside the minimal enclsoing ball? You may illustrate on a figure the enclosing ball and the new samples.
5. To allow these new samples to be more closer to the sought center \mathbf{z}, the optimisation problem is augmented by including the constraints $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2}^{2} \leq R^{2} \quad \forall j=1, \cdots, m$ (here $m=2$) related to the new samples \mathbf{x}_{j} in Xoutliers. Show that the new optimization problem admist a dual function of the form

$$
\mathcal{L}=-\tilde{\boldsymbol{\mu}}^{\top} \tilde{\mathbf{H}} \tilde{\boldsymbol{\mu}}+\tilde{\boldsymbol{\mu}}^{\top} \tilde{\mathbf{q}}
$$

with

$$
\tilde{\boldsymbol{\mu}}=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}+m
\end{array}\right) \in \mathbb{R}^{n+m}, \quad \tilde{\mathbf{X}}=\binom{\mathbf{X}}{\mathbf{X}_{\text {outliers }}} \in \mathbb{R}^{(n+m) \times 2} \quad \text { and } \quad \tilde{\mathbf{H}}=\tilde{\mathbf{X}} \tilde{\mathbf{X}}^{\top}
$$

6. Using CVXPY, solve the new dual problem and infer the new solution location \tilde{z}. Plot in a graphics the new enclosing ball, \tilde{z} along with all samples. Compare to solution obtained at question 3. What do you remark? Which approach can you propose to alleviate the issue related to far located houses (outliers)?
