
Constrained Optimization 4th year
G. Gasso

Objective
We aim to use the Python package CVXPY to solve convex optimization problems ranging from
an introductory example to more elaborated problems.

1 Introduction example

Consider the following convex optimization problem

min
θ1,θ2

1

2

(
θ21 + θ22

)
s.t. θ1 − θ2 ≥ 1

1. Write the problem in the standard form.

2. Write the associated Lagrangian function L to the problem.

3. Derive the stationary KKT condition i.e. ∇θL = 0.

4. Deduce the dual function and the dual problem.

5. Using a plot of the dual function, guess the solution µ∗ of the dual problem. Deduce then
the optimal primal solution θ∗.

2 A more evolved problem

We want to solve the following problem

min
θ

1

2
(θ1 − 3)2 +

1

2
(θ2 − 1)2 (1)

s.t. θ1 + θ2 − 1 ≤ 0

θ1 − θ2 − 1 ≤ 0

−θ1 + θ2 − 1 ≤ 0

−θ1 − θ2 − 1 ≤ 0

2.1 Mathematical derivation. . .

1. Let θ be θ =

[
θ1
θ2

]
. Show that the problem can be cast into the matrix form

min
θ

1

2
∥θ − c∥22 (2)

s.t. Aθ − b ≤ 0

with the vectors c, b and the matrix A to be specified. 0 is a zeros vector of dimension 4.

p.1/7

https://www.cvxpy.org/

ASI4 DM

2. Show that the Lagrangian function associated to Problem (2) is:

L =
1

2
∥θ − c∥22 + µ⊤(Aθ − b)

with µ ∈ R4 and µ ≥ 0 a vector of Lagragange multipliers.

3. To get the stationary KKT condition, we need to know some useful derivatives.

(a) Show that ∥θ − c∥22 = θ⊤θ − 2θ⊤c+ c⊤c.

(b) Using the directional derivative, establish that ∇θ(θ
⊤θ) = 2θ and ∇θ(θ

⊤c) = c.
Deduce that ∇θ∥θ − c∥22 = 2(θ − c).

Reminder on gradient calculation:
Let J(θ) a function of θ ∈ IRd. Assume ϕ(t) = J(θ + th) with h ∈ IRd and t ∈ IR.
The directional derivative of J in the direction h is given by

dd(h) = lim
t→0

Ja(θ + th)− J(θ)

t
wich is equal to dd(h) = ϕ′(0) = lim

t→0

ϕ(t)− ϕ(0)

t

If the directional derivative is linear in h that is

dd(h) = g⊤h =⇒ the gradient of J at θ is ∇θJ(θ) = g

4. From the previous question express the KKT stationary condition; deduce the expression of
θ as a function of µ.

5. Establish that the dual problem is

min
λ

1

2
µ⊤Hµ+ µ⊤q (4)

s.c. µ ≥ 0

where the matrix H and the vector q are to be specified.

with H = AA⊤ and q = −(Ac− b)

2.2 . . . and numerical implementation

We want to compute the solution of Problem (2). We will use CVXPy package at https:
//www.cvxpy.org/index.html. This package solves convex optimization problems.

1. To start under CVXPy, let solve the primal problem (2).

(a) Define matrix A and vectors b and c as in subsection 2.1

import numpy as np

c = np.array([3, 1])
b = np.ones(4)
A = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1]])

p.2/7

https://www.cvxpy.org/index.html
https://www.cvxpy.org/index.html

ASI4 DM

(b) Visualize the objective function and the constraints of Problem (2).

from utility import plot_contours_exercice_section2
plot_contours_exercice_section2(A, b, c)

Intuitively and using the plot, what is the solution to Problem (2)?

(c) Define the primal problem under CVXPy and compute the solution.

import cvxpy as cvx
print("----------- Solving the primal Problem ---------------")
define theta as the optimization problem variables
d = 2 #dimension of theta
theta = cvx.Variable(d)
define, using CVXPy format, the primal objective function
obj = cvx.Minimize(0.5*cvx.quad_form(theta-c, np.eye(d)))
define the constraints
constraints = [A@ theta - b <= 0]
set the primal as a CVX problem
primal = cvx.Problem(obj, constraints)
Compute the solution
primal.solve(verbose = False)

Print the results
print("status of the solution = {}".format(primal.status))
print("Primal optimal solution = {}".format(theta.value))
obj_primal = 0.5*cvx.quad_form(theta-c, np.eye(d))
print("primal objective function at optimality = {}".format(

obj_primal.value))

Compare the obtained solution to your intuitive guess.

2. Now let solve the dual problem and deduce θ as established at question 2.1.4. Inspiring
from the previous question, write the appropriate code to solve Problem (4).
Hint: some useful matrix/vector operations under numpy

• the matrix vector (matrix) multiplication Ac is: A@c

• the transpose of A is either A.T or np.transpose(A)

print("----------- Solving the dual Problem ---------------")
define matrix H
H = ...
define vector q
q = ...

define the dual variables
m = ... #dimension of dual variables mu
mu = ... #dual variables

define, using CVXPy format, the dual objective function
obj = cvx.Minimize(...)
define the constraints
constraints = ...
set the dual problem and solve it
dual = cvx.Problem(...)
dual.solve(verbose = False) #compute the solution

p.3/7

ASI4 DM

deduce the primal solution knowing the dual vector mu
theta_from_dual = c - np.asarray(A.T@(mu.value))

How both primal solutions compare?

3 Minimum enclosing ball

Assume a sub-urban area with n houses located at given coordinates xi ∈ R2, i = 1, · · · , n. To
build the firehouse a survey gets to the solution of settling the firehouse at position z ∈ R2 so
that its distance from the farthest house is minimal (see figure 3).

1 2 3 4 5 6
−5

−4

−3

−2

−1

0

Mathematically, this translates into minzmaxi=1,··· ,n ∥z− xi∥22
This problem can be equivalently expressed as

min
R∈R,z∈R2

R2

s.c. ∥z− xi∥22 ≤ R2 ∀ i = 1, · · · , n

3.1 Again the mathematical derivation of the solution

1. What are the unknown variables of the problem? How many constraints does it involve?

2. Write the Lagrange function L

3. Derive the stationary optimal conditions of the problem. Deduce the expression of z as a
function of the Lagrange multipliers.

4. Using the optimality conditions show that the dual function is

L = −
n∑

i=1

n∑
j=1

µiµjx
⊤
i xj +

n∑
i=1

µix
⊤
i xi

where the µi are the associated Lagrange multipliers to the primal.

p.4/7

ASI4 DM

5. Formulate the dual problem

6. From the dual solution µ, how to get the position z of the firehouse and the distance R to
the farthest house?

3.2 Solution computation

Let the matrix

H =

x⊤
1 x1 x⊤

1 x2 · · · x⊤
1 xn

...
... · · ·

...
x⊤
nx1 x⊤

n x2 · · · x⊤
nxn

 ∈ Rn×n and the vector q =

x⊤
1 x1
...

x⊤
nxn

The dual function can be written in the matrix form (easier to implement under CVXPy) :

L = −µ⊤Hµ+ µ⊤q, with µ =

µ1
...
µn

 ∈ Rn

The coordinates of the houses are provided in the matrix X =

x⊤
1
...

x⊤
n

 ∈ Rn×2.

The data are provided in the file maisons.csv and can be retrieved using.

import numpy as np
X = np.genfromtxt("maisons.csv", delimiter=",")
print(X)

Given the matrix X, we can note that H = XX⊤.

1. From these elements, solve the dual problem with CVXPy..

import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cvx

matrix and vectors of the dual problem
H = X.dot(X.T)
q = np.diag(H)
n = H.shape[0]
e = np.ones(n)
zer = np.zeros(n)

mu is defined as the optimization variable
mu = cvx.Variable(n)
Fill in the blank to define the objective function
obj = cvx.Minimize(...)
Fill in the blank to define the constraints
constr = [...]

Solve the constrained optimization problem
prob = cvx.Problem(obj, constr)

p.5/7

ASI4 DM

prob.solve(verbose = False)

The dual solution mu is squeezed to get a vector (ndarray)
mu = np.squeeze(np.asarray(mu.value))

#Print the dual solution
print('Dual solution mu = ', mu)
#Print the dual objective value
print("Objective function value = ', -1.0*prob.value)

2. From the dual solution µ, compute the primal solutions z and R.

Computation of z : uncomment the lines below to use t
z = np.zeros(2)
for i in range(n):
z += mu[i]*X[i,:]

A matrix way to compute z: uncomment the line below to use this
computation

#z = np.multiply(X, np.outer(mu, np.ones(X.shape[1]))).sum(axis=0)

print("The center z = ", z)

compute the ray R
threshold = 1e-3
pos = np.where(mu >= seuil) #index des coeff mu non nuls
Distancequad = z.dot(z) - 2*(X.dot(z)) + q #% distance d(z, xi)^2
R2 = np.mean(Distancequad[pos])

3. Plot the points xi, the location z. and the enclosing ball.
plot the samples x_i and z
fig = plt.figure()
plt.plot(X[:,0], X[:,1], "s", color="b", markerfacecolor="b", markersize

= 10)
plt.plot(z[0], z[1], "rp", markersize=15)

plot of minimum enclosing ball
t = np.arange(0, 2*np.pi+0.02, 0.01)
plt.figure(fig.number)
plt.plot(Z[0] + np.sqrt(R2)*np.cos(t), Z[1] + np.sqrt(R2)*np.sin(t), "m"

)
plot of the farthest house (those located on the circle centered on z

and of ray R)
plt.plot(X[pos,0], X[pos,1], "og", alpha=0.5, markersize = 15, linewidth

=2)

4. Now assurme we are given two new coordinates as follows
outliers = [
[3.0000, -3.0000],
[2.5000, 2.5000]
]

Xoutliers = np.array(outliers)

p.6/7

ASI4 DM

Are these samples inside the minimal enclsoing ball? You may illustrate on a figure the
enclosing ball and the new samples.

5. To allow these new samples to be more closer to the sought center z, the optimisation
problem is augmented by including the constraints ∥z−xj∥22 ≤ R2 ∀ j = 1, · · · ,m (here
m = 2) related to the new samples xj in Xoutliers. Show that the new optimization
problem admist a dual function of the form

L = −µ̃⊤H̃µ̃+ µ̃⊤q̃,

with

µ̃ =

 µ1
...

µn +m

 ∈ Rn+m, X̃ =

(
X

Xoutliers

)
∈ R(n+m)×2 and H̃ = X̃X̃⊤

6. Using CVXPY, solve the new dual problem and infer the new solution location z̃. Plot in a
graphics the new enclosing ball, z̃ along with all samples. Compare to solution obtained at
question 3. What do you remark? Which approach can you propose to alleviate the issue
related to far located houses (outliers)?

p.7/7

	Introduction example
	A more evolved problem
	Mathematical derivation…
	…and numerical implementation

	Minimum enclosing ball
	Again the mathematical derivation of the solution
	Solution computation

