Introduction to constrained optimization

Gilles Gasso
INSA Rouen - ASI Departement
Laboratory LITIS

September 19, 2019

Plan

(1) Introduction
(2) Formulation
(3) Concept of Lagrangian and duality, condition of optimality

- Concept of Lagrangian
- Concept of duality
(4) QP Problem

Constrained optimizing problems

- Where do these problems come from?
- What is the connection with Machine Learning?
- How to formulate them ?

Example 1: sparse Regression

- Output to be predicted: $y \in \mathbb{R}$
- Input variables: $x \in \mathbb{R}^{d}$
- Linear model: $f(x)=\mathbf{x}^{\top} \boldsymbol{\theta}$
- $\boldsymbol{\theta} \in \mathbb{R}^{d}$: parameters of the model

Determination of a sparse $\boldsymbol{\theta}$

- Minimization of square error
- Only a few paramters are non-zero

$$
\begin{gathered}
\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{x}_{i}^{\top} \boldsymbol{\theta}\right)^{2} \\
\text { s.c. }\|\boldsymbol{\theta}\|_{p} \leq k
\end{gathered}
$$

with $\|\boldsymbol{\theta}\|_{p}^{p}=\sum_{j=1}^{d}\left|\theta_{j}\right|^{p}$

http://www.ds100.org/sp17/assets/notebooks/
linear_regression/Regularization.html

Example 2: where to settle the firehouse?

- House M_{i} : defined by its coordinates $\mathbf{z}_{i}=\left[x_{i} y_{i}\right]^{\top}$
- Let $\boldsymbol{\theta}$ be the coordinates of the firehouse
- Minimize the distance from the firehouse to the farthest house

Problem formulation

$$
\min _{\boldsymbol{\theta}} \max _{i=1, \cdots, N}\left\|\boldsymbol{\theta}-\mathbf{z}_{i}\right\|^{2}
$$

Equivalent problem

$$
\min _{t \in \mathbb{R}, \boldsymbol{\theta} \in \mathbb{R}^{2}} t
$$

$$
\text { s.c. }\left\|\boldsymbol{\theta}-\mathbf{z}_{i}\right\|^{2} \leq t \quad \forall i=1, \cdots, N
$$

Third example: Support vector machine (SVM)

- $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right) \in \mathbb{R}^{d} \times\{-1,1\}\right\}_{i=1}^{N}$ linearly separable points
- Goal: find a function $f(\mathbf{x})=\boldsymbol{\theta}^{\top} \mathbf{x}+b$ that correctly predicts the class of each x_{i} while maximizing the margin between positives and negatives

$$
\begin{array}{lll}
\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|\boldsymbol{\theta}\|^{2} & \text { maximisation of the margin } \\
\text { s.t. } & y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \cdots, N & \text { correct classification }
\end{array}
$$

SVM example: where are the constraints?

$\min _{\boldsymbol{\theta}, b} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2}$
function $J(\theta)$ to be minimized
s.t.
$y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \cdots, N$
Contraints to be satisfied

Contraints

- How many constraints ?
- N constraints $y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right) \geq 1$ with $i=1, \cdots, N$
- Type of constraints ?
- Inequality constraints

Goal

Find the minimum $\boldsymbol{\theta}^{*}$ of $J(\boldsymbol{\theta})$ such as every constraint being satisfied

Constrained optimization

Elements of the problem

- $\boldsymbol{\theta} \in \mathbb{R}^{d}$: vector of unknown real parameters
- $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$: the function to be minimized on its domain dom J
- f_{i} and g_{j} are differentiable functions of \mathbb{R}^{d} on \mathbb{R}

Formulation of the primal problem \mathcal{P}

$\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}}$	$J(\boldsymbol{\theta})$	
function to be minimized		
s.c.	$f_{i}(\boldsymbol{\theta})=0$	$\forall i=1, \cdots, n$
	$g_{j}(\boldsymbol{\theta}) \leq 0$	$\forall j=1, \cdots, m$
	m equality Constraints	
	inequality Constraints	

Feasibility
Let $p^{*}=\min _{\theta}\left\{J(\theta)\right.$ such that $f_{i}(\theta)=0 \forall i$ and $\left.g_{j}(\theta) \leq 0 \forall j\right\}$

- If $p^{*}=\infty$ then the problem does not admit a feasible solution

Characterization of the solutions

Feasibility domain
The feasible domain is defined by the set of constraints

$$
\Omega(\boldsymbol{\theta})=\left\{\boldsymbol{\theta} \in \mathbb{R}^{d} ; \quad f_{i}(\boldsymbol{\theta})=0 \forall i \text { and } g_{j}(\boldsymbol{\theta}) \leq 0 \forall j\right\}
$$

Feasible points

- $\boldsymbol{\theta}_{0}$ is feasible if $\boldsymbol{\theta}_{0} \in$ domJ and $\boldsymbol{\theta}_{0} \in \Omega(\boldsymbol{\theta})$ ie θ_{0} fulfills all the constraints and $J\left(\theta_{0}\right)$ has a finite value
- $\boldsymbol{\theta}^{*}$ is a global solution of the problem if $\boldsymbol{\theta}^{*}$ is a feasible solution such that $J\left(\theta^{*}\right) \leq J(\boldsymbol{\theta})$ for every $\boldsymbol{\theta}$
- $\hat{\boldsymbol{\theta}}$ is a local optimal solution if $\hat{\boldsymbol{\theta}}$ is feasible and $J(\hat{\boldsymbol{\theta}}) \leq J(\boldsymbol{\theta})$ for every $\|\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}\| \leq \epsilon$

Example 1

$$
\begin{array}{lc}
\min _{\theta} & 0.9 \theta_{1}^{2}-0.74 \theta_{1} \theta_{2} \\
& +0.75 \theta_{1}^{2}-5.4 \theta_{1}-1.2 \theta_{2} \\
\text { s.c. } & -4 \leq \theta_{1} \leq-1 \\
& -3 \leq \theta_{2} \leq 4
\end{array}
$$

- Parameters: $\boldsymbol{\theta}=\binom{\theta_{1}}{\theta_{2}}$
- Objective function:

$$
J(\boldsymbol{\theta})=0.9 \theta_{1}^{2}-0.74 \theta_{1} \theta_{2}+0.75 \theta_{1}^{2}-5.4 \theta_{1}-1.2 \theta_{2}
$$

- Feasibility domain (four inequality constraints) :

$$
\Omega(\boldsymbol{\theta})=\left\{\boldsymbol{\theta} \in \mathbb{R}^{2} ;-4 \leq \boldsymbol{\theta}_{1} \leq-1 \text { and }-3 \leq \boldsymbol{\theta}_{2} \leq 4\right\}
$$

Example 2

Example

$$
\min _{\theta \in \mathbb{R}^{2}} \quad \theta_{1}+\theta_{2}
$$

$$
\text { s.c. } \quad \theta_{1}^{2}+\theta_{2}^{2}-2=0
$$

- An equality constraint
- Domain of feasibility: a circle with center at $\mathbf{0}$ and diameter equals to 2
- The optimal solution is obtained for $\boldsymbol{\theta}^{*}=\left(\begin{array}{ll}-1 & -1\end{array}\right)^{\top}$ and we have $J\left(\boldsymbol{\theta}^{*}\right)=-2$

Optimality

- How to assess a solution of the primal problem?
- Do we have optimality conditions similar to those of unconstrained optimization?

Notion of Lagrangian

Primal problem \mathcal{P}

$\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}}$	$J(\boldsymbol{\theta})$	
	$f_{i}(\boldsymbol{\theta})=0$	$\forall i=1, \cdots, n$
s.c.	$g_{j}(\boldsymbol{\theta}) \leq 0 \quad \forall j=1, \cdots, m$	

n equality constraints m inequality constraints
θ is called primal variable

Principle of Lagrangian

- Each constraint is associated to a scalar parameter called Lagrange multiplier
- Equality constraint $f_{i}(\boldsymbol{\theta})=0$: we associate $\lambda_{i} \in \mathbb{R}$
- Inequality constraint $g_{j}(\boldsymbol{\theta}) \leq 0$: we associate $\mu_{j} \geq 0^{a}$
- Lagrangian allows to transform the problem with constraints into a problem without constraints with additional variables: λ_{i} and μ_{j}.

[^0]
Lagrangian formulation

$$
\begin{array}{lll}
\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}} & J(\boldsymbol{\theta}) \\
& f_{i}(\boldsymbol{\theta})=0 \quad \forall i=1, \cdots, n \\
\text { s.c. } & g_{j}(\boldsymbol{\theta}) \leq 0 \quad \forall j=1, \cdots, m
\end{array}
$$

Associated Lagrange parameters None
λ_{i} any real number $\forall i=1, \cdots, n$
$\mu_{j} \geq 0 \quad \forall j=1, \cdots, m$
Lagrangien
The Lagrangian is defined by :
$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})=J(\boldsymbol{\theta})+\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{\theta})+\sum_{j=1}^{m} \mu_{j} g_{j}(\boldsymbol{\theta}) \quad$ avec $\quad \mu_{j} \geq 0, \forall j=1, \cdots, m$

- Parameters $\lambda_{i}, i=1, \cdots, n$ and $\mu_{j}, j=1, \cdots, m$ are called dual variables
- Dual variables are unknown parameters to be determined

Examples

Example 1

$\min _{\theta \in \mathbb{R}^{2}} \quad \theta_{1}+\theta_{2}$
$\theta \in \mathbb{R}^{2}$
S.C.
$\theta_{1}^{2}+2 \theta_{2}^{2}-2 \leq 0$
s.c.

$$
\theta_{2} \geq 0
$$

inequality constraint inequality constraint (mind the type of inequality)

Lagrangian : $\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta})=\left(\theta_{1}+\theta_{2}\right)+\mu_{1}\left(\theta_{1}^{2}+2 \theta_{2}^{2}-2\right)+\mu_{2}\left(-\theta_{2}\right), \quad \mu_{1} \geq 0, \mu_{2} \geq 0$
Example 2

$$
\begin{array}{lll}
\min _{\boldsymbol{\theta} \in \mathbb{R}^{3}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right) & \\
\text { s.c. } & \theta_{1}+\theta_{2}+2 \theta_{3}=1 & \text { equality constraint } \\
& \theta_{1}+4 \theta_{2}+2 \theta_{3}=3 & \text { equality constraint }
\end{array}
$$

Lagrangian :
$\mathcal{L}(\lambda, \boldsymbol{\theta})=\frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right)+\lambda_{1}\left(\theta_{1}+\theta_{2}+2 \theta_{3}-1\right)+\lambda_{2}\left(\theta_{1}+4 \theta_{2}+2 \theta_{3}-3\right), \quad \lambda_{1}, \lambda_{2}$ any

Necessary optimality conditions

Assume that J, f_{i}, g_{j} are differentiable functions. Let $\boldsymbol{\theta}^{*}$ be a feasible solution to the problem \mathcal{P}. Then there exists dual variables $\lambda_{i}^{*}, i=1, \cdots, n, \mu_{j}^{*}, j=1, \cdots, m$ such that the following conditions are satisfied.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity

Primal feasibility
$f_{i}(\boldsymbol{\theta})=0 \quad \forall i=1, \cdots, n$
$g_{j}(\theta) \leq 0 \quad \forall j=1, \cdots, m$
Dual feasibility
Complementary slackness $\quad \mu_{j} g_{j}(\boldsymbol{\theta})=0 \quad \forall j=1, \cdots, m$

Example

$$
\begin{array}{cl}
\min _{\theta \in \mathbb{R}^{2}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right) \\
\text { s.c. } & \theta_{1}-2 \theta_{2}+2 \leq 0
\end{array}
$$

- Lagrangian : $\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta})=\frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right)+\mu\left(\theta_{1}-2 \theta_{2}+2\right), \quad \mu \geq 0$
- KKT Conditions
- Stationarity: $\nabla_{\theta} \mathcal{L}(\mu, \boldsymbol{\theta})=0 \Rightarrow\left\{\begin{array}{l}\theta_{1}=-\mu \\ \theta_{2}=-2 \mu\end{array}\right.$
- Primal feasibility : $\theta_{1}-2 \theta_{2}+2 \leq 0$
- Dual feasibility: $\mu \geq 0$
- Complementary slackness : $\mu\left(\theta_{1}-2 \theta_{2}+2\right)=0$
- Remarks on the complementary slackness
- If $\theta_{1}-2 \theta_{2}+2<0$ (inactive constraint) $\Rightarrow \mu=0$ (no penalty required as the constraint is satisfied)
- If $\mu>0 \Rightarrow \theta_{1}-2 \theta_{2}+2=0$ (active constraint)

Duality

Dual function

Let $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ be the lagrangian of the primal problem \mathcal{P} with $\mu_{j} \geq 0$. The dual function corresponding to it is $\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\theta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$

Theorem [Weak duality]
Let $p^{*}=\min _{\theta}\left\{J(\boldsymbol{\theta})\right.$ such that $f_{i}(\boldsymbol{\theta})=0 \forall i$ and $\left.g_{j}(\boldsymbol{\theta}) \leq 0 \forall j\right\}$ be the optimum value (supposed finite) of the problem \mathcal{P}. Then, for any value of $\mu_{j} \geq 0, \forall j$ and $\lambda_{i}, \forall i$, we have

$$
\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu}) \leq p^{*}
$$

Dual problem

- The weak duality indicates that the dual function $\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\theta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is a lower bound of p^{*}
- Bridge the gap: maximize the dual w.r.t. dual variables $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ to make this lower bound close to p^{*}

Dual problem

$\max _{\lambda, \mu}$	$\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu})$	
s.c.	$\lambda_{j} \geq 0$	$\forall j=1, \cdots, m$

strong duality

weak duality
http://www.onmyphd.com/?p=duality.theory

Interest of the dual problem

Remarks

- Transform the primal problem into an equivalent dual problem possibly much simpler to solve
- Solving the dual problem can lead to the solution of the primal problem
- Solving the dual problem gives the optimal values of the Lagrange multipliers

Example: inequality constraints

$$
\begin{array}{cl}
\min _{\theta \in \mathbb{R}^{2}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right) \\
\text { s.c. } & \theta_{1}-2 \theta_{2}+2 \leq 0
\end{array}
$$

- Lagrangian : $\mathcal{L}(\boldsymbol{\theta}, \mu)=\frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right)+\mu\left(\theta_{1}-2 \theta_{2}+2\right), \quad \mu \geq 0$
- Stationarity of the KKT Condition:

$$
\nabla_{\theta} \mathcal{L}(\mu, \boldsymbol{\theta})=0 \quad \Rightarrow \quad\left\{\begin{array}{l}
\theta_{1}=-\mu \tag{1}\\
\theta_{2}=2 \mu
\end{array}\right.
$$

- Dual function $\mathcal{D}(\mu)=\min _{\theta} L(\boldsymbol{\theta}, \mu)$: by substituting (1) in \mathcal{L} we obtain

$$
\mathcal{D}(\mu)=-\frac{5}{2} \mu^{2}+2 \mu
$$

- Dual problem : $\max _{\mu} \mathcal{D}(\mu) \quad$ s.c. $\quad \mu \geq 0$
- Dual solution

$$
\begin{equation*}
\nabla \mathcal{D}(\mu)=0 \Rightarrow \mu=\frac{2}{5} \quad(\text { that satisfies } \mu \geq 0) \tag{2}
\end{equation*}
$$

- Primal solution : (2) and (1) lead to $\boldsymbol{\theta}=\left(\begin{array}{cc}-\frac{2}{5} & \frac{4}{5}\end{array}\right)^{\top}$

Constrained optimization with equality constraints

$$
\begin{array}{rll}
\min _{\boldsymbol{\theta} \in \mathbb{R}^{3}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right) & \text { Matrix form } \\
\text { s.c. } & \theta_{1}+\theta_{2}+2 \theta_{3}-1=0 & \min _{\boldsymbol{\theta} \in \mathbb{R}^{3}}
\end{array} \frac{1}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta} \quad \text { s.c. } \quad \mathbf{A} \boldsymbol{\theta}-\mathbf{b}=0
$$

- Lagrangian : $\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta})=\frac{1}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}+\boldsymbol{\lambda}^{\top}(\mathbf{A} \boldsymbol{\theta}-\mathbf{b}), \quad \boldsymbol{\lambda} \in \mathbb{R}^{2}$
- KKT Conditions
- Stationarity : $\nabla_{\theta} \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta})=0 \Rightarrow \boldsymbol{\theta}=-\mathbf{A}^{\top} \boldsymbol{\lambda}$
- Dual function: by substituting (1) in \mathcal{L} we get

$$
\mathcal{D}(\boldsymbol{\lambda})=-\frac{1}{2} \boldsymbol{\lambda}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\lambda}-\lambda^{\top} \mathbf{b}
$$

- Dual Problem : $\max _{\boldsymbol{\lambda}} \mathcal{D}(\boldsymbol{\lambda})$
- Dual Solution

$$
\begin{equation*}
\nabla \mathcal{D}(\boldsymbol{\lambda})=0 \Rightarrow \boldsymbol{\lambda}=-\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{b} \tag{3}
\end{equation*}
$$

- Primal Solution:
(3) in (1) gives $\boldsymbol{\theta}=\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{b}$

Convex constrained optimization

Convexity condition

$\min _{\boldsymbol{\theta} \in \mathbb{R}^{d}}$	$J(\boldsymbol{\theta})$	
	$f_{i}(\boldsymbol{\theta})=0$	$\forall i=1, \cdots, n$
s.c.	$g_{j}(\boldsymbol{\theta}) \leq 0 \quad \forall j=1, \cdots, m$	

J is a convex function
f_{i} are linear $\forall i=1, n$
g_{j} are convex functions $\quad \forall j=1, m$

Problems of interest

- Linear Programming (LP)
- Quadratic Programming (QP)
- Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX ...)

QP convex problem

Standard form
min
$\theta \in \mathbb{R}^{d}$
s.c.

$$
\begin{aligned}
& \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{G} \boldsymbol{\theta}+\mathbf{q}^{\top} \boldsymbol{\theta}+r \\
& \mathbf{a}_{i}^{\top} \boldsymbol{\theta}=b_{i} \\
& \mathbf{c}_{j}^{\top} \boldsymbol{\theta} \geq d_{j}
\end{aligned}
$$

$\forall i=1, \cdots, n \quad$ affine equality constraint $\forall j=1, \cdots, m \quad$ linear inequality constraints
with $\mathbf{q}, \mathbf{a}_{i}, \mathbf{c}_{j} \in \mathbb{R}^{d}, \mathbf{d}_{i}$ and d_{j} real scalar values and $\mathbf{G} \in \mathbb{R}^{d \times d}$ a positive definite matrix

Examples
SVM Problem

$$
\begin{array}{cl}
\min _{\theta \in \mathbb{R}^{2}} & \frac{1}{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right) \\
\text { s.c. } & \theta_{1}-2 \theta_{2}+2 \leq 0
\end{array}
$$

Summary

- Optimization under constraints: involved problem in the general case
- Lagrangian: allows to reduce to an unconstrained problem via Lagrange multipliers
- Lagrange multipliers
- to a constraint corresponds a multiplier \Rightarrow
- act as a penalty if the corresponding constraints are violated
- Optimally: Stationary condition + feasibility conditions + Complementary conditions
- Duality: provides lower bound on the primal problem. Dual problem sometimes easier to solve than primal.

A reference book

Stephen Boyd and Lieven Vandenberghe
 Convex
 Optimization

[^0]: ${ }^{a}$ Beware of the sense of the inequality $g_{j}(\boldsymbol{\theta}) \leq 0$

