Introduction to constrained optimization

Gilles Gasso

INSA Rouen - ASI Departement Laboratory LITIS

September 19, 2019

- Formulation
- Concept of Lagrangian and duality, condition of optimality
 - Concept of Lagrangian
 - Concept of duality

Constrained optimizing problems

- Where do these problems come from?
- What is the connection with Machine Learning?
- How to formulate them ?

Example 1: sparse Regression

- Output to be predicted: $y \in \mathbb{R}$
- Input variables: $\mathbf{x} \in \mathbb{R}^d$
- Linear model: $f(x) = \mathbf{x}^\top \boldsymbol{\theta}$
- $oldsymbol{ heta} \in \mathbb{R}^d$: parameters of the model

Determination of a sparse heta

- Minimization of square error
- Only a few paramters are non-zero

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \boldsymbol{\theta})^2$$
s.c. $\|\boldsymbol{\theta}\|_p \leq k$

with
$$\|\boldsymbol{\theta}\|_p^p = \sum_{j=1}^d |\theta_j|^p$$

Gilles Gasso

http://www.ds100.org/sp17/assets/notebooks/ linear_regression/Regularization.html

Example 2: where to settle the firehouse?

Problem formulation

$$\min_{\boldsymbol{\theta}} \max_{i=1,\cdots,N} \|\boldsymbol{\theta} - \mathbf{z}_i\|^2$$

- House M_i : defined by its coordinates $\mathbf{z}_i = [x_i \ y_i]^\top$
- Let *θ* be the coordinates of the firehouse
- Minimize the distance from the firehouse to the farthest house

Equivalent problem
$$\min_{\substack{t \in \mathbb{R}, \theta \in \mathbb{R}^2} \\ \text{s.c. } \|\theta - \mathsf{z}_i\|^2 \leq t \quad \forall i = 1, \cdots, N$$

Third example: Support vector machine (SVM)

- $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^N$ linearly separable points
- Goal: find a function f(x) = θ^Tx + b that correctly predicts the class of each x_i while maximizing the margin between positives and negatives

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}, b \in \mathbb{R}} \quad \frac{1}{2} \|\boldsymbol{\theta}\|^{2} \qquad \text{maximisation of the margin} \\ \text{s.t.} \qquad y_{i}(\boldsymbol{\theta}^{\top} \mathbf{x}_{i} + b) \geq 1 \quad \forall i = 1, \cdots, N \quad \text{correct classification} \\ \\ \downarrow^{i} \downarrow$$

SVM example: where are the constraints?

$$\begin{array}{ll} \min_{\boldsymbol{\theta}, b} & \frac{1}{2} \|\boldsymbol{\theta}\|^2 & \text{function } J(\boldsymbol{\theta}) \text{ to be minimized} \\ \text{s.t.} & y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b) \geq 1 \quad \forall i = 1, \cdots, N & \text{Contraints to be satisfied} \end{array}$$

Contraints

- How many constraints ?
 - N constraints $y_i(\boldsymbol{\theta}^{\top}\mathbf{x}_i + b) \geq 1$ with $i = 1, \cdots, N$
- Type of constraints ?
 - Inequality constraints

Goal

Find the minimum θ^* of $J(\theta)$ such as every constraint being satisfied

Constrained optimization

Elements of the problem

- $oldsymbol{ heta} \in \mathbb{R}^d$: vector of unknown real parameters
- $J: \mathbb{R}^d \to \mathbb{R}$: the function to be minimized on its domain domJ
- f_i and g_j are differentiable functions of \mathbb{R}^d on \mathbb{R}

Formulation of the primal problem $\ensuremath{\mathcal{P}}$

$$\begin{array}{ll} \min_{\boldsymbol{\theta} \in \mathbb{R}^d} & J(\boldsymbol{\theta}) & \text{function to be minimized} \\ \text{s.c.} & f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \cdots, n \quad n \quad \text{equality Constraints} \\ & g_j(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \cdots, m \quad m \quad \text{inequality Constraints} \end{array}$$

Feasibility

Let
$$p^* = \min_{\theta} \{ J(\theta) \text{ such that } f_i(\theta) = 0 \ \forall i \text{ and } g_j(\theta) \leq 0 \ \forall j \}$$

• If $p^* = \infty$ then the problem does not admit a feasible solution

Characterization of the solutions

Feasibility domain

The feasible domain is defined by the set of constraints

$$\Omega(oldsymbol{ heta}) = \left\{oldsymbol{ heta} \in \mathbb{R}^d \, ; \; \; f_i(oldsymbol{ heta}) = 0 \; orall i \; ext{and} \; g_j(oldsymbol{ heta}) \leq 0 \; orall j
ight\}$$

Feasible points

- θ_0 is feasible if $\theta_0 \in \text{domJ}$ and $\theta_0 \in \Omega(\theta)$ ie θ_0 fulfills all the constraints and $J(\theta_0)$ has a finite value
- θ^{*} is a global solution of the problem if θ^{*} is a feasible solution such that J(θ^{*}) ≤ J(θ) for every θ
- $\hat{\theta}$ is a local optimal solution if $\hat{\theta}$ is feasible and $J(\hat{\theta}) \leq J(\theta)$ for every $\|\theta \hat{\theta}\| \leq \epsilon$

Example 1

$$\min_{\theta} \quad 0.9\theta_1^2 - 0.74\theta_1\theta_2 \\ + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2 \\ \text{s.c.} \quad -4 \le \theta_1 \le -1 \\ -3 \le \theta_2 \le 4$$

• Parameters:
$$\boldsymbol{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

• Objective function:

 $J(\theta) = 0.9\theta_1^2 - 0.74\theta_1\theta_2 + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2$

• Feasibility domain (four inequality constraints) :

$$\Omega(oldsymbol{ heta}) = ig\{oldsymbol{ heta} \in \mathbb{R}^2 \, ; \, -4 \leq oldsymbol{ heta}_1 \leq -1 \, ext{ and } \, -3 \leq oldsymbol{ heta}_2 \leq 4ig\}$$

Formulation

Example 2

- An equality constraint
- Domain of feasibility: a circle with center at **0** and diameter equals to 2
- The optimal solution is obtained for $\theta^* = \begin{pmatrix} -1 & -1 \end{pmatrix}^\top$ and we have $J(\theta^*) = -2$

Optimality

- How to assess a solution of the primal problem?
- Do we have optimality conditions similar to those of unconstrained optimization?

Notion of Lagrangian

Primal problem ${\mathcal P}$

 $\begin{array}{ll} \min_{\boldsymbol{\theta} \in \mathbb{R}^d} & J(\boldsymbol{\theta}) \\ & f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \cdots, n \\ \text{s.c.} & g_j(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \cdots, m \end{array}$

n equality constraints *m* inequality constraints

 θ is called primal variable

Principle of Lagrangian

- Each constraint is associated to a scalar parameter called Lagrange multiplier
- Equality constraint $f_i(\boldsymbol{\theta}) = 0$: we associate $\lambda_i \in \mathbb{R}$
- Inequality constraint $g_j(heta) \leq 0$: we associate $\mu_j \geq 0^a$
- Lagrangian allows to transform the problem with constraints into a problem without constraints with additional variables: λ_i and μ_j.

^aBeware of the sense of the inequality $g_j(\theta) \leq 0$

Lagrangian formulation

$$\begin{array}{ll} \min_{\boldsymbol{\theta} \in \mathbb{R}^d} & J(\boldsymbol{\theta}) \\ & f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \cdots, n \\ \text{s.c.} & g_j(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \cdots, m \end{array}$$

Lagrangien

The Lagrangian is defined by :

Associated Lagrange parameters None

$$\lambda_i$$
 any real number $\forall i = 1, \cdots, n$
 $\mu_j \ge 0$ $\forall j = 1, \cdots, m$

 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = J(\boldsymbol{\theta}) + \sum_{i=1}^{n} \lambda_i f_i(\boldsymbol{\theta}) + \sum_{j=1}^{m} \mu_j g_j(\boldsymbol{\theta}) \quad \text{avec} \quad \mu_j \ge 0, \forall j = 1, \cdots, m$

• Parameters λ_i , $i = 1, \dots, n$ and μ_j , $j = 1, \dots, m$ are called dual variables

• Dual variables are unknown parameters to be determined

Examples

Example 1

$$\begin{array}{ll} \min_{\theta \in \mathbb{R}^2} & \theta_1 + \theta_2 \\ \text{s.c.} & \theta_1^2 + 2\theta_2^2 - 2 \leq 0 \\ \text{s.c.} & \theta_2 \geq 0 \end{array} \quad \begin{array}{l} \text{inequality constraint} \\ \text{inequality constraint} (\text{mind the type of inequality}) \end{array}$$

 $\mathsf{Lagrangian}: \ \mathcal{L}(\boldsymbol{\lambda},\boldsymbol{\theta}) = (\theta_1 + \theta_2) + \mu_1(\theta_1^2 + 2\theta_2^2 - 2) + \mu_2(-\theta_2), \quad \mu_1 \ge 0, \mu_2 \ge 0$

Example 2

$$\begin{array}{l} \min_{\theta \in \mathbb{R}^3} & \frac{1}{2} \left(\theta_1^2 + \theta_2^2 + \theta_3^2 \right) \\ \text{s.c.} & \theta_1 + \theta_2 + 2\theta_3 = 1 \quad \text{equality constraint} \\ & \theta_1 + 4\theta_2 + 2\theta_3 = 3 \quad \text{equality constraint} \end{array}$$

Lagrangian :

$$\mathcal{L}(\lambda,\boldsymbol{\theta}) = \frac{1}{2} \left(\theta_1^2 + \theta_2^2 + \theta_3^2 \right) + \lambda_1 (\theta_1 + \theta_2 + 2\theta_3 - 1) + \lambda_2 (\theta_1 + 4\theta_2 + 2\theta_3 - 3), \quad \lambda_1, \lambda_2 \text{ any}$$

Necessary optimality conditions

Assume that J, f_i, g_j are differentiable functions. Let θ^* be a feasible solution to the problem \mathcal{P} . Then there exists dual variables $\lambda_i^*, i = 1, \cdots, n, \ \mu_j^*, j = 1, \cdots, m$ such that the following conditions are satisfied.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity	$ abla \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\theta}) = 0$ ie $ abla J(\boldsymbol{\theta}) + \sum_{i=1}^{n} \lambda_i \nabla f_i(\boldsymbol{\theta}) + \sum_{j=1}^{m} \mu_j \nabla g_j(\boldsymbol{\theta}) = 0$	
Primal feasibility	$egin{aligned} f_i(oldsymbol{ heta}) &= 0 \ g_j(oldsymbol{ heta}) &\leq 0 \end{aligned}$	$orall i = 1, \cdots, n$ $orall j = 1, \cdots, m$
Dual feasibility	$\mu_j \geq 0$	$\forall j = 1, \cdots, m$
Complementary slackness	$\mu_j g_j(\boldsymbol{ heta}) = 0$	$orall j=1,\cdots,m$
Gilles Gasso	int	roduction to constrained optimization 16 / 26

Example

$$\min_{\theta \in \mathbb{R}^2} \qquad \frac{1}{2} (\theta_1^2 + \theta_2^2) \\ \text{s.c.} \qquad \theta_1 - 2\theta_2 + 2 \le 0$$

• Lagrangian : $\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta}) = \frac{1}{2}(\theta_1^2 + \theta_2^2) + \mu(\theta_1 - 2\theta_2 + 2), \quad \mu \geq 0$

- KKT Conditions
 - Stationarity: $\nabla_{\theta} \mathcal{L}(\mu, \theta) = 0 \qquad \Rightarrow \qquad \begin{cases} \theta_1 = -\mu \\ \theta_2 = -2\mu \end{cases}$
 - Primal feasibility : $\theta_1 2\theta_2 + 2 < 0$
 - Dual feasibility : $\mu > 0$
 - Complementary slackness : $\mu(\theta_1 2\theta_2 + 2) = 0$
- Remarks on the complementary slackness
 - If $\theta_1 2\theta_2 + 2 < 0$ (inactive constraint) $\Rightarrow \mu = 0$ (no penalty required as the constraint is satisfied)

• If
$$\mu > 0 \Rightarrow \theta_1 - 2\theta_2 + 2 = 0$$
 (active constraint)

Duality

Dual function

Let $\mathcal{L}(\theta, \lambda, \mu)$ be the lagrangian of the primal problem \mathcal{P} with $\mu_j \geq 0$. The dual function corresponding to it is $\mathcal{D}(\lambda, \mu) = \min_{\theta} \mathcal{L}(\theta, \lambda, \mu)$

Theorem [Weak duality]

Let $p^* = \min_{\theta} \{J(\theta) \text{ such that } f_i(\theta) = 0 \ \forall i \text{ and } g_j(\theta) \leq 0 \ \forall j\}$ be the optimum value (supposed finite) of the problem \mathcal{P} . Then, for any value of $\mu_j \geq 0, \forall j \text{ and } \lambda_i, \forall i, \text{ we have}$

 $\mathcal{D}(oldsymbol{\lambda},oldsymbol{\mu})\leq oldsymbol{
ho}^*$

Dual problem

- The weak duality indicates that the dual function $\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\theta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is a lower bound of p^*
- Bridge the gap: maximize the dual w.r.t. dual variables λ and μ to make this lower bound close to p^*

Interest of the dual problem

Remarks

- Transform the primal problem into an equivalent dual problem possibly much simpler to solve
- Solving the dual problem can lead to the solution of the primal problem
- Solving the dual problem gives the optimal values of the Lagrange multipliers

Example : inequality constraints

$$\min_{\theta \in \mathbb{R}^2} \qquad \frac{1}{2} (\theta_1^2 + \theta_2^2) \\ \text{s.c.} \qquad \theta_1 - 2\theta_2 + 2 \le 0$$

- Lagrangian : $\mathcal{L}(\boldsymbol{\theta}, \mu) = \frac{1}{2}(\theta_1^2 + \theta_2^2) + \mu(\theta_1 2\theta_2 + 2), \quad \mu \ge 0$
- Stationarity of the KKT Condition : $\nabla_{\theta} \mathcal{L}(\mu, \theta) = 0 \qquad \Rightarrow \qquad \begin{cases} \theta_1 = -\mu \\ \theta_2 = 2\mu \end{cases}$ (1)
- Dual function $\mathcal{D}(\mu) = \min_{\theta} L(\theta, \mu)$: by substituting (1) in \mathcal{L} we obtain

$$\mathcal{D}(\mu) = -\frac{5}{2}\mu^2 + 2\mu$$

• Dual problem : $\max_{\mu} \mathcal{D}(\mu)$ s.c. $\mu \geq 0$

Dual solution

$$abla \mathcal{D}(\mu) = 0 \Rightarrow \mu = rac{2}{5} \quad (ext{that satisfies } \mu \geq 0) \qquad (2)$$

• Primal solution : (2) and (1) lead to $\theta = \begin{pmatrix} -\frac{2}{5} & \frac{4}{5} \end{pmatrix}^{\top}$

Gilles Gasso

Constrained optimization with equality constraints

$$\begin{split} \min_{\substack{\theta \in \mathbb{R}^3 \\ \text{s.c.}}} & \frac{1}{2} \begin{pmatrix} \theta_1^2 + \theta_2^2 + \theta_3^2 \end{pmatrix} & \text{Matrix form} \\ & \min_{\substack{\theta \in \mathbb{R}^3 \\ \theta_1 + \theta_2 + 2\theta_3 - 1 = 0 \\ \theta_1 + 4\theta_2 + 2\theta_3 - 3 = 0 \\ \text{with } \mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 4 & 2 \end{pmatrix}, \, \mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ \text{Lagrangian} : \mathcal{L}(\boldsymbol{\lambda}, \theta) = \frac{1}{2} \theta^\top \theta + \boldsymbol{\lambda}^\top \left(\mathbf{A} \theta - \mathbf{b} \right), \quad \boldsymbol{\lambda} \in \mathbb{R}^2 \end{split}$$

KKT Conditions

۰

• Stationarity :
$$abla_ heta \mathcal{L}(oldsymbol{\lambda},oldsymbol{ heta}) = 0 \quad \Rightarrow \quad oldsymbol{ heta} = - oldsymbol{\mathsf{A}}^ op oldsymbol{\lambda} \quad (1)$$

 $\bullet\,$ Dual function : by substituting (1) in ${\cal L}$ we get

$$\mathcal{D}(oldsymbol{\lambda}) = -rac{1}{2}oldsymbol{\lambda}^{ op} oldsymbol{\mathsf{A}} oldsymbol{\mathsf{A}}^{ op} oldsymbol{\lambda} - oldsymbol{\lambda}^{ op} oldsymbol{\mathsf{b}}$$

• Dual Problem : $\max_{\lambda} \mathcal{D}(\lambda)$

Dual Solution

$$\nabla \mathcal{D}(\boldsymbol{\lambda}) = 0 \Rightarrow \boldsymbol{\lambda} = -\left(\mathbf{A}\mathbf{A}^{\top}\right)^{-1}\mathbf{b}$$
 (3)

• Primal Solution : (3) in (1) gives $\theta = \mathbf{A}^{\top} (\mathbf{A}\mathbf{A}^{\top})^{-1} \mathbf{b}$

Convex constrained optimization

$$\begin{array}{ll} \min_{\boldsymbol{\theta} \in \mathbb{R}^d} & J(\boldsymbol{\theta}) \\ & f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \cdots, n \\ \text{s.c.} & g_j(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \cdots, m \end{array}$$

Convexity condition J is a convex function f_i are linear $\forall i = 1, n$ g_i are convex functions $\forall j = 1, m$

Problems of interest

- Linear Programming (LP)
- Quadratic Programming (QP)
- Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX ...)

QP convex problem

Standard form

$$\begin{array}{ll} \min_{\theta \in \mathbb{R}^d} & \frac{1}{2} \boldsymbol{\theta}^\top \mathbf{G} \boldsymbol{\theta} + \mathbf{q}^\top \boldsymbol{\theta} + r \\ \text{s.c.} & \mathbf{a}_i^\top \boldsymbol{\theta} = b_i & \forall i = 1, \cdots, n \quad \text{affine equality constraint} \\ \mathbf{c}_j^\top \boldsymbol{\theta} \geq d_j & \forall j = 1, \cdots, m \quad \text{linear inequality constraints} \end{array}$$

with $q, a_i, c_j \in \mathbb{R}^d$, d_i and d_j real scalar values and $G \in \mathbb{R}^{d \times d}$ a positive definite matrix

Examples

SVM Problem

$$\begin{array}{ll} \min_{\theta \in \mathbb{R}^2} & \frac{1}{2}(\theta_1^2 + \theta_2^2) & \min_{\theta, b \mathbb{R}} & \frac{1}{2} \|\boldsymbol{\theta}\|^2 \\ \text{s.c.} & \theta_1 - 2\theta_2 + 2 \leq 0 & \text{s.t.} & y_i(\boldsymbol{\theta}^\top x_i + b) \geq 1 \quad \forall i = 1, N \end{array}$$

Summary

- Optimization under constraints: involved problem in the general case
- Lagrangian: allows to reduce to an unconstrained problem via Lagrange multipliers
- Lagrange multipliers
 - ${\, \bullet \,}$ to a constraint corresponds a multiplier \Rightarrow
 - act as a penalty if the corresponding constraints are violated
- Optimally: Stationary condition + feasibility conditions + Complementary conditions
- Duality: provides lower bound on the primal problem. Dual problem sometimes easier to solve than primal.

A reference book

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

Gilles Gasso

Introduction to constrained optimization