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Introduction

Constrained optimizing problems

Where do these problems come from?
What is the connection with Machine Learning?
How to formulate them ?
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Introduction

Example 1: sparse Regression

Output to be predicted: y ∈ R
Input variables: x ∈ Rd

Linear model: f (x) = x>θ
θ ∈ Rd : parameters of the model

Determination of a sparse θ
Minimization of square error
Only a few paramters are non-zero

θ∈Rd
min 1

2

∑N
i=1(yi − x>i θ)2

s.c. ‖θ‖p ≤ k

with ‖θ‖pp =
∑d

j=1 |θj |p
http://www.ds100.org/sp17/assets/notebooks/
linear_regression/Regularization.html
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Introduction

Example 2: where to settle the firehouse?

?

MaisonCaserne House Mi : defined by its coordinates
zi = [xi yi ]

>

Let θ be the coordinates of the
firehouse

Minimize the distance from the
firehouse to the farthest house

Problem formulation

min
θ

max
i=1,··· ,N

‖θ − zi‖2

Equivalent problem

t∈R,θ∈R2
min t

s.c. ‖θ − zi‖2 ≤ t ∀ i = 1, · · · ,N
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Introduction

Third example: Support vector machine (SVM)

D = {(xi , yi ) ∈ Rd × {−1, 1}}Ni=1 linearly separable points
Goal: find a function f (x) = θ>x + b that correctly predicts the class
of each xi while maximizing the margin between positives and
negatives

minθ∈Rd ,b∈R
1
2‖θ‖

2 maximisation of the margin
s.t. yi (θ

>xi + b) ≥ 1 ∀i = 1, · · · ,N correct classification
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Introduction

SVM example: where are the constraints?

minθ,b 1
2‖θ‖

2 function J(θ) to be minimized
s.t. yi (θ

>xi + b) ≥ 1 ∀i = 1, · · · ,N Contraints to be satisfied

Contraints
How many constraints ?

N constraints yi (θ>xi + b) ≥ 1 with i = 1, · · · ,N

Type of constraints ?

Inequality constraints

Goal
Find the minimum θ∗ of J(θ) such as every constraint being satisfied
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Formulation

Constrained optimization

Elements of the problem

θ ∈ Rd : vector of unknown real parameters
J : Rd → R : the function to be minimized on its domain domJ

fi and gj are differentiable functions of Rd on R

Formulation of the primal problem P

minθ∈Rd J(θ) function to be minimized
s.c. fi (θ) = 0 ∀i = 1, · · · , n n equality Constraints

gj(θ) ≤ 0 ∀j = 1, · · · ,m m inequality Constraints

Feasibility

Let p∗ = minθ {J(θ) such that fi (θ) = 0 ∀i and gj(θ) ≤ 0∀j}
If p∗ =∞ then the problem does not admit a feasible solution
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Formulation

Characterization of the solutions

Feasibility domain
The feasible domain is defined by the set of constraints

Ω(θ) =
{
θ ∈ Rd ; fi (θ) = 0 ∀i and gj(θ) ≤ 0 ∀j

}

Feasible points

θ0 is feasible if θ0 ∈ domJ and θ0 ∈ Ω(θ) ie θ0 fulfills all the
constraints and J(θ0) has a finite value
θ∗ is a global solution of the problem if θ∗ is a feasible solution such
that J(θ∗) ≤ J(θ) for every θ
θ̂ is a local optimal solution if θ̂ is feasible and J(θ̂) ≤ J(θ) for every
‖θ − θ̂‖ ≤ ε
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Formulation

Example 1

min
θ

0.9θ2
1 − 0.74θ1θ2

+0.75θ2
1 − 5.4θ1 − 1.2θ2

s.c. −4 ≤ θ1 ≤ −1
−3 ≤ θ2 ≤ 4
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J(θ) = c

Domaine Ω

Parameters: θ =

(
θ1
θ2

)
Objective function:

J(θ) = 0.9θ2
1 − 0.74θ1θ2 + 0.75θ2

1 − 5.4θ1 − 1.2θ2

Feasibility domain (four inequality constraints) :

Ω(θ) =
{
θ ∈ R2 ; −4 ≤ θ1 ≤ −1 and − 3 ≤ θ2 ≤ 4

}
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Formulation

Example 2

Example

min
θ∈R2

θ1 + θ2

s.c. θ2
1 + θ2
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An equality constraint

Domain of feasibility: a circle with center at 0 and diameter equals to 2

The optimal solution is obtained for θ∗ =
(
−1 −1

)> and we have
J(θ∗) = −2
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Formulation

Optimality

How to assess a solution of the primal problem?
Do we have optimality conditions similar to those of unconstrained
optimization?
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Concept of Lagrangian and duality, condition of optimality Concept of Lagrangian

Notion of Lagrangian

Primal problem P
minθ∈Rd J(θ)

fi (θ) = 0 ∀i = 1, · · · , n n equality constraints
s.c. gj(θ) ≤ 0 ∀j = 1, · · · ,m m inequality constraints

θ is called primal variable

Principle of Lagrangian

Each constraint is associated to a scalar parameter called Lagrange
multiplier

Equality constraint fi (θ) = 0 : we associate λi ∈ R

Inequality constraint gj(θ) ≤ 0 : we associate µj ≥ 0a

Lagrangian allows to transform the problem with constraints into a problem
without constraints with additional variables: λi and µj .

aBeware of the sense of the inequality gj(θ) ≤ 0
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Concept of Lagrangian and duality, condition of optimality Concept of Lagrangian

Lagrangian formulation

Associated Lagrange parameters
minθ∈Rd J(θ) None

fi (θ) = 0 ∀i = 1, · · · , n λi any real number ∀i = 1, · · · , n
s.c. gj(θ) ≤ 0 ∀j = 1, · · · ,m µj ≥ 0 ∀j = 1, · · · ,m

Lagrangien
The Lagrangian is defined by :

L(θ,λ,µ) = J(θ)+
n∑

i=1

λi fi (θ)+
m∑
j=1

µjgj(θ) avec µj ≥ 0,∀j = 1, · · · ,m

Parameters λi , i = 1, · · · , n and µj , j = 1, · · · ,m are called dual
variables
Dual variables are unknown parameters to be determined
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Concept of Lagrangian and duality, condition of optimality Concept of Lagrangian

Examples
Example 1

min
θ∈R2

θ1 + θ2

s.c. θ2
1 + 2θ2

2 − 2 ≤ 0 inequality constraint
s.c. θ2 ≥ 0 inequality constraint (mind the type of inequality)

Lagrangian : L(λ,θ) = (θ1 + θ2) + µ1(θ
2
1 + 2θ2

2 − 2) + µ2(−θ2), µ1 ≥ 0, µ2 ≥ 0

Example 2

min
θ∈R3

1
2

(
θ2
1 + θ2

2 + θ2
3
)

s.c. θ1 + θ2 + 2θ3 = 1 equality constraint
θ1 + 4θ2 + 2θ3 = 3 equality constraint

Lagrangian :

L(λ,θ) = 1
2
(
θ2
1 + θ2

2 + θ2
3
)
+λ1(θ1+θ2+2θ3−1)+λ2(θ1+4θ2+2θ3−3), λ1, λ2 any

Gilles Gasso Introduction to constrained optimization 15 / 26



Concept of Lagrangian and duality, condition of optimality Concept of Lagrangian

Necessary optimality conditions

Assume that J, fi , gj are differentiable functions. Let θ∗ be a feasible
solution to the problem P. Then there exists dual variables
λ∗i , i = 1, · · · , n, µ∗j , j = 1, · · · ,m such that the following conditions are
satisfied.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity ∇L(λ,µ,θ) = 0 ie
∇J(θ) +

∑n
i=1 λi∇fi (θ) +

∑m
j=1 µj∇gj(θ) = 0

Primal feasibility fi (θ) = 0 ∀i = 1, · · · , n
gj(θ) ≤ 0 ∀j = 1, · · · ,m

Dual feasibility µj ≥ 0 ∀j = 1, · · · ,m

Complementary slackness µjgj(θ) = 0 ∀j = 1, · · · ,m
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Concept of Lagrangian and duality, condition of optimality Concept of Lagrangian

Example

min
θ∈R2

1
2
(θ2

1 + θ2
2)

s.c. θ1 − 2θ2 + 2 ≤ 0

Lagrangian : L(λ,θ) = 1
2 (θ

2
1 + θ2

2) + µ(θ1 − 2θ2 + 2), µ ≥ 0

KKT Conditions

Stationarity: ∇θL(µ,θ) = 0 ⇒
{
θ1 = −µ
θ2 = −2µ

Primal feasibility : θ1 − 2θ2 + 2 ≤ 0

Dual feasibility : µ ≥ 0

Complementary slackness : µ(θ1 − 2θ2 + 2) = 0

Remarks on the complementary slackness
If θ1 − 2θ2 + 2 < 0 (inactive constraint) ⇒ µ = 0 (no penalty required
as the constraint is satisfied)

If µ > 0 ⇒ θ1 − 2θ2 + 2 = 0 (active constraint)
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Concept of Lagrangian and duality, condition of optimality Concept of duality

Duality

Dual function
Let L(θ,λ,µ) be the lagrangian of the primal problem P with µj ≥ 0. The
dual function corresponding to it is D(λ,µ) = minθ L(θ,λ,µ)

Theorem [Weak duality]

Let p∗ = minθ {J(θ) such that fi (θ) = 0 ∀i and gj(θ) ≤ 0∀j} be the
optimum value (supposed finite) of the problem P. Then, for any value of
µj ≥ 0,∀j and λi , ∀i , we have

D(λ,µ) ≤ p∗
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Concept of Lagrangian and duality, condition of optimality Concept of duality

Dual problem

The weak duality indicates that the dual function
D(λ,µ) = minθ L(θ,λ,µ) is a lower bound of p∗

Bridge the gap: maximize the dual w.r.t. dual variables λ and µ to make
this lower bound close to p∗

Dual problem

max
λ,µ

D(λ,µ)

s.c. λj ≥ 0 ∀ j = 1, · · · ,m

http://www.onmyphd.com/?p=duality.theory
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Concept of Lagrangian and duality, condition of optimality Concept of duality

Interest of the dual problem

Remarks

Transform the primal problem into an equivalent dual problem possibly
much simpler to solve

Solving the dual problem can lead to the solution of the primal problem

Solving the dual problem gives the optimal values of the Lagrange multipliers
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Concept of Lagrangian and duality, condition of optimality Concept of duality

Example : inequality constraints

min
θ∈R2

1
2
(θ2

1 + θ2
2)

s.c. θ1 − 2θ2 + 2 ≤ 0

Lagrangian : L(θ, µ) = 1
2 (θ

2
1 + θ2

2) + µ(θ1 − 2θ2 + 2), µ ≥ 0

Stationarity of the KKT Condition :

∇θL(µ,θ) = 0 ⇒
{
θ1 = −µ
θ2 = 2µ (1)

Dual function D(µ) = minθ L(θ, µ) : by substituting (1) in L we obtain

D(µ) = −5
2
µ2 + 2µ

Dual problem : maxµD(µ) s.c. µ ≥ 0

Dual solution

∇D(µ) = 0⇒ µ =
2
5

(that satisfies µ ≥ 0) (2)

Primal solution : (2) and (1) lead to θ =
(
− 2

5
4
5

)>
Gilles Gasso Introduction to constrained optimization 21 / 26



Concept of Lagrangian and duality, condition of optimality Concept of duality

Constrained optimization with equality constraints

min
θ∈R3

1
2
(
θ2
1 + θ2

2 + θ2
3
)

s.c. θ1 + θ2 + 2θ3 − 1 = 0

θ1 + 4θ2 + 2θ3 − 3 = 0

Matrix form

min
θ∈R3

1
2
θ>θ s.c. Aθ − b = 0

with A =

(
1 1 2
1 4 2

)
, b =

(
1
3

)
Lagrangian : L(λ,θ) = 1

2θ
>θ + λ> (Aθ − b) , λ ∈ R2

KKT Conditions
Stationarity : ∇θL(λ,θ) = 0 ⇒ θ = −A>λ (1)

Dual function : by substituting (1) in L we get

D(λ) = −1
2
λ>AA>λ− λ>b

Dual Problem : maxλD(λ)
Dual Solution

∇D(λ) = 0⇒ λ = −
(
AA>

)−1
b (3)

Primal Solution : (3) in (1) gives θ = A>
(
AA>

)−1 b
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Concept of Lagrangian and duality, condition of optimality Concept of duality

Convex constrained optimization

Convexity condition
minθ∈Rd J(θ) J is a convex function

fi (θ) = 0 ∀i = 1, · · · , n fi are linear ∀i = 1, n
s.c. gj(θ) ≤ 0 ∀j = 1, · · · ,m gj are convex functions ∀j = 1,m

Problems of interest

Linear Programming (LP)

Quadratic Programming (QP)

Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX . . . )
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QP Problem

QP convex problem

Standard form

min
θ∈Rd

1
2θ
>Gθ + q>θ + r

s.c. a>i θ = bi ∀i = 1, · · · , n affine equality constraint
c>j θ ≥ dj ∀j = 1, · · · ,m linear inequality constraints

with q, ai , cj ∈ Rd , di and dj real scalar values and G ∈ Rd×d a positive
definite matrix

Examples

min
θ∈R2

1
2

(θ2
1 + θ2

2)

s.c. θ1 − 2θ2 + 2 ≤ 0

SVM Problem

minθ,bR 1
2‖θ‖

2

s.t. yi (θ
>xi + b) ≥ 1 ∀i = 1,N
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QP Problem

Summary

Optimization under constraints: involved problem in the general case

Lagrangian: allows to reduce to an unconstrained problem via Lagrange
multipliers

Lagrange multipliers

to a constraint corresponds a multiplier ⇒

act as a penalty if the corresponding constraints are violated

Optimally: Stationary condition + feasibility conditions + Complementary
conditions

Duality: provides lower bound on the primal problem. Dual problem
sometimes easier to solve than primal.
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QP Problem

A reference book
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