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Introduction

Constrained optimizing problems

@ Where do these problems come from?
@ What is the connection with Machine Learning?

o How to formulate them 7
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Introduction

Example 1: sparse Regression

@ Output to be predicted: y € R
e Input variables: x € RY
o Linear model: f(x) =x'8

e 0 € RY: parameters of the model

Determination of a sparse 6
@ Minimization of square error

@ Only a few paramters are non-zero

Weight
sharing

min 2570 (v — %/ 0)?

Compromise...

inducing

Two parameters ...
ocr?
L1 Norm 12Nom L1 +12 Nom
s.c. 0], <k
http://www.ds100.o0rg/spl7/assets/notebooks/
H d linear_regression/Regularization.html
P — |p _reg gu
with [|6]5 = >"7, |6}

Gilles Gasso Introduction to constrained optimization 4/26


 http://www.ds100.org/sp17/assets/notebooks/linear_regression/Regularization.html
 http://www.ds100.org/sp17/assets/notebooks/linear_regression/Regularization.html

Introduction

Example 2: where to settle the firehouse?

O caseme @ Maison @ House M;: defined by its coordinates
) o 0 zi =[x yi]"
e ? @ Let 0 be the coordinates of the
(o] 0 o firehouse
(0]
0 @ Minimize the distance from the
P firehouse to the farthest house
(0]
Problem formulation Equivalent problem
min t
. 5 teR,0€R?
min _max (|6 —z| sc. |0—z|2<t Vi=1,-- N

)
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Third example: Support vector machine (SVM)

o D= {(xi,y;) € RY x {~1,1}} ¥, linearly separable points
e Goal: find a function f(x) = 8" x + b that correctly predicts the class
of each x; while maximizing the margin between positives and

negatives
MiNgcrd per L& maximisation of the margin
s.t. vi(@Tx;+b)>1 Vi=1,--- N correct classification
4 w-d
. | >
3t : >
¥ o
o '
1 |
B E— R A
-2 -1 g 7
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Introduction

SVM example: where are the constraints?

ming,» 30| function J(@) to be minimized
s.t. vi(@Tx;+b)>1 Vi=1,---,N Contraints to be satisfied

Contraints
e How many constraints ?

o N constraints y,-(BTx,- +b)>1withi=1--- N

@ Type of constraints 7

e Inequality constraints

Goal

Find the minimum 0" of J(0) such as every constraint being satisfied
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Formulation

Constrained optimization

Elements of the problem
@ 6 € RY : vector of unknown real parameters
e J:RY = R : the function to be minimized on its domain dom.J

e f; and gj are differentiable functions of R? on R

Formulation of the primal problem P

Mingcrs  J(O) function to be minimized
s.C. (0)=0 Vi=1,---,n n equality Constraints
gi(0) <0 Vj=1,---,m m inequality Constraints
Feasibility

Let p* = ming {J(@) such that f;(#) =0 Vi and g;(§) < 0V}
o If p* = co then the problem does not admit a feasible solution
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Formulation

Characterization of the solutions

Feasibility domain

The feasible domain is defined by the set of constraints

Q(0) = {0 € RY; £(6) = 0i and g;(6) < 0}

Feasible points

@ 0 is feasible if 8y € domJ and g € Q2(8) ie Oy fulfills all the
constraints and J(0y) has a finite value

e 0% is a global solution of the problem if " is a feasible solution such

that J(0*) < J(O) for every 0

e 0 is a local optimal solution if 8 is feasible and J(8) < J(8) for every

16— 8] < e
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Formulation

Example 1
6
mein 099% — 0.749192 4
2
+0.7502 — 5.40; — 1.205 .
.C. —4 < < — _ -,
s.c 4<0;<-1 2 —
-3 S 92 S 4 _fs " S—Domaine!:o

@ Parameters: 0 = <01>
)

@ Objective function:
J(8) = 0.96% — 0.74010 + 0.750% — 5.40; — 1.26,
@ Feasibility domain (four inequality constraints) :

Q0)={0ecR? —4<6; <—land —3<6, <4}

Gilles Gasso Introduction to constrained optimization 10/26




Formulation

Example 2
Example N
min 01+ 0> a
ER? e
sc. 02+603-2=0

@ An equality constraint
@ Domain of feasibility: a circle with center at 0 and diameter equals to 2

@ The optimal solution is obtained for " = (-1 —1)T and we have
J(O7) = —2
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Optimality

@ How to assess a solution of the primal problem?

@ Do we have optimality conditions similar to those of unconstrained
optimization?
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Concept of Lagrangian and duality, condition of optimality eI IACTN EE-I=T F-E]

Notion of Lagrangian

Primal problem P

mingere  J(O)
(0)=0 Vi=1,---,n n equality constraints
s.C. g(0)<0 Vj=1,---.,m m inequality constraints

0 s called primal variable

Principle of Lagrangian

@ Each constraint is associated to a scalar parameter called Lagrange
multiplier

@ Equality constraint f;(6) = 0 : we associate \; € R
@ Inequality constraint g;(@) < 0 : we associate ; > 0?

@ Lagrangian allows to transform the problem with constraints into a problem
without constraints with additional variables: A; and ;.

“Beware of the sense of the inequality gj(8) < 0
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Concept of Lagrangian and duality, condition of optimality eI IACTN EE-I=T F-E]

Lagrangian formulation

Associated Lagrange parameters

mingcrs  J(6) None
fi(0)=0 Vi=1,---,n \; any real number Vi=1,---,n
Lagrangien

The Lagrangian is defined by :

m
L0, p) = Z)\f —I—Zujgj(a) avec p; >0,Vj=1,--- 'm
=1
e Parameters \;,i =1,--- ,nand pj,j=1,---, m are called dual
variables

@ Dual variables are unknown parameters to be determined
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Concept of Lagrangian and duality, condition of optimality eI IACTN EE-I=T F-E]

Examples
Example 1
min 61 + 0>
0cR2
s.C. 62 +205 —2 <0 inequality constraint
s.c. 02 >0 inequality constraint (mind the type of inequality)

Lagrangian : £L(X,0) = (01 + 02) + u1(03 + 205 — 2) + pa(—02), p1 > 0,2 >0

Example 2
H 1 92 92 02
erT]elle (63 +605+63)
s.C. 01+ 602+203 =1  equality constraint
01 + 46> + 2605 =3 equality constraint
Lagrangian :

L(\,0) (91 + 65 + 93) FA1(014+62+203— 1)+ Ao(01 +402+205—3), A1, X2 any

V.
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Concept of Lagrangian and duality, condition of optimality eI IACTN EE-I=T F-E]

Necessary optimality conditions

Assume that J, f;, g; are differentiable functions. Let 8 be a feasible
solution to the problem P. Then there exists dual variables
Afi=1 npij=1-,m such that the following conditions are

satisfied.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity

Primal feasibility

Dual feasibility

Complementary slackness 11;g;(0) =0 Vji=1,---,m

Gilles Gasso

VLA 1,0)=0 e
VJ(0) + 371 AiVEi(0) + >, 1jVegi(0) =0

£(0)=0 Vi=1,--,n
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Concept of Lagrangian and duality, condition of optimality eI IACTN EE-I=T F-E]
Example

. 1 .- 2
~(01 +0
9"2]'152 2( 1 +02)

S.C. 91—292+2§0
@ Lagrangian : £(X,0) = (63 +63) + (61 — 202 +2), ;>0
@ KKT Conditions

. o o 91 = U
e Stationarity: VoL(u,0) =0 = { 0y = —2p1

Primal feasibility : 6; — 20, +2 <0
o Dual feasibility : >0
o Complementary slackness : p(¢1 — 26, +2) =0

@ Remarks on the complementary slackness

o If 61 — 260, + 2 < 0 (inactive constraint) = p = 0 (no penalty required
as the constraint is satisfied)

o If 4 >0= 6; — 20, + 2 =0 (active constraint)
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%
Duality

Dual function

Let £(0, A, ) be the lagrangian of the primal problem P with j1; > 0. The
dual function corresponding to it is D(X, p) = ming L£(0, A, )

v

Theorem [Weak duality]

Let p* = ming {J(0) such that f;(0) = 0 Vi and gj(@) < 0V} be the
optimum value (supposed finite) of the problem P. Then, for any value of
pj > 0,Yj and \;,Vi, we have

D(A, p) < p*
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%

Dual problem

@ The weak duality indicates that the dual function
D(\, p) = ming L(0, A, ) is a lower bound of p*

@ Bridge the gap: maximize the dual w.r.t. dual variables A and g to make
this lower bound close to p*

Dual problem

fa) 7(z)

q(N) = (™) a(N) < fla*)
T,au),( ID(A7 “I) T A T A
S.C. )\J ZO VJ: ]_, ,m q() q(N)

strong duality weak duality

http://www.onmyphd.com/?p=duality.theory

Gilles Gasso
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%

Interest of the dual problem

Remarks

@ Transform the primal problem into an equivalent dual problem possibly
much simpler to solve

@ Solving the dual problem can lead to the solution of the primal problem

@ Solving the dual problem gives the optimal values of the Lagrange multipliers
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%

Example : inequality constraints

. 1 5 0
~(01 + 6
9"2;{2 2( 1+02)

S.C. 01 —20,+2<0
Lagrangian : £(0, ) = 2(63 +63) + (61 — 202 +2), p >0
Stationarity of the KKT Condition :

_ 01 =—p
Vol(1,0)=0 = { oo (1)

Dual function D(p) = ming L(0, ) : by substituting (1) in £ we obtain

5
D(p) = —51° +2p

Dual problem : max, D(p) s.c. p>0
Dual solution

VD(p)=0=p= % (that satisfies p > 0) 2)

Primal solution : (2) and (1) lead to 6 = (—2 %)T
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%

Constrained optimization with equality constraints

] 1, 5 ) ) Matrix form
min 5 (91 —+ 02 + 93)

6eR3 . 1
= c AO—b=
sc.  Oi40:420—1=0 min 300 sc AG-b=0
01 +40>+203—-3=0 A 1 1 2 B 1
WIBR=1 4 2)°7 3

@ Lagrangian: £(X,0) =1070+ AT (A0 —b), XeR?
@ KKT Conditions
o Stationarity : Vo£(X,0) =0 = 6=-ATXx (1)
@ Dual function : by substituting (1) in £ we get
D(A) = —%)\TAATA -2'b
@ Dual Problem : maxx D(\)

@ Dual Solution
-1
VD(A):O:A:—(AA ) b (3)

@ Primal Solution : (3) in (1) gives @ = AT (AAT)_1 b
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Concept of Lagrangian and duality, condition of optimality eI Loy NC TE[14%

Convex constrained optimization

Convexity condition

mingcrs  J(0) J is a convex function
(0)=0 Vi=1---,n f; arelinear Vi=1,n
s.c. g(0)<0 Vj=1,---,m gj are convex functions Vj=1m

Problems of interest
@ Linear Programming (LP)
@ Quadratic Programming (QP)
@ Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX .. .)

D2 mosek ‘%¥%ﬁ

Gilles Gasso Introduction to constrained optimization 23 /26




QP Problem

QP convex problem

Standard form

min %OTG0+qT9+r
HcRrd

s.C. a0 = b Vi=1,---,n affine equality constraint
CJTQ > d; Vj=1,---,m linear inequality constraints

with q,aj,¢c; € RY, d; and d; real scalar values and G € R9*9 3 positive
definite matrix

Examples
SVM Problem
min 1(9% + 62) ming, bR %||0u2 .
HcR? 2 s.t. yi(@' xi+b)>1 Vi=1N

s.c. 0y —20,4+2<0
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QP Problem

Summary

@ Optimization under constraints: involved problem in the general case

@ Lagrangian: allows to reduce to an unconstrained problem via Lagrange
multipliers

@ Lagrange multipliers
e to a constraint corresponds a multiplier =
e act as a penalty if the corresponding constraints are violated

@ Optimally: Stationary condition + feasibility conditions + Complementary
conditions

@ Duality: provides lower bound on the primal problem. Dual problem
sometimes easier to solve than primal.
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QP Problem

A reference book

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization
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