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Formulation

Unconstrained optimization

Elements of the problem

θ ∈ Rd : vector of unknown real parameters
J : Rd → R : the function to be minimized.
Assumption: J is differentiable all over its domain
domJ =

{
θ ∈ Rd | J(θ) <∞

}
Problem formulation

(P) min
θ∈Rd

J(θ)

Gilles Gasso Descent methods 3 / 27



Formulation

Unconstrained optimization

Examples

J(θ) =
1
2
θ⊤Pθ + q⊤θ + r

with P a positive definite matrix
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J(θ) = cos(θ1−θ2)+sin(θ1+θ2)+
θ1

4
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Optimality conditions

Different solutions

Global solution
θ∗ is said to be the global minimum solution of the problem if
J(θ∗) ≤ J(θ), ∀θ ∈ domJ

Local solution

θ̂ is a local minimum solution of problem (P) if it holds
J(θ̂) ≤ J(θ), ∀θ ∈ domJ such that ∥θ̂ − θ∥ ≤ ϵ, ϵ > 0

Illustration

J(θ) = cos(θ1 − θ2) + sin(θ1 + θ2) +
θ1
4
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Optimality conditions

Optimality conditions

How do we assess a solution to the problem?
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Optimality conditions

First order necessary condition

Theorem [First order condition]

Let J : Rd → R be a differential function on its domain. A vector θ0 is a
(local or global) solution of the problem (P), if it necessarily satisfies the
condition ∇J(θ0) = 0.

Vocabulary

Any vector θ0 that verifies ∇J(θ0) = 0 is called a stationary point or critical
point

∇J(θ) ∈ Rd is the gradient vector of J at θ.

The gradient is the unique vector such that the directional derivative can be
written as:

lim
t→0

J(θ + th)− J(θ)

t
= ∇J(θ)⊤h, h ∈ Rd , t ∈ R
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Optimality conditions

Example of a first order optimality condition

J(θ) = θ4
1 + θ4

2 − 4θ1θ2

Gradient ∇J(θ) =
(

4θ3
1 − 4θ2

−4θ1 + 4θ3
2

)
Stationary points that verify ∇J(θ) = 0.

Three solutions θ(1) =

(
0
0

)
, θ(2) =

(
1
1

)
and

θ(3) =

(
−1
−1

) −1
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Remarks

θ(2) and θ(3) are local minimal but not θ(1)

every stationary point can be deemed a local extremum

We need another optimality condition
How to ensure that a stationary point is a minimum solution?
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Optimality conditions

Hessian matrix

Twice differential function

J : Rd → R is said to be a twice differentiable function on its domain
domJ if, at every point θ ∈, there exists a unique symmetric matrix
H(θ) ∈ Rd×d called Hessian matrix such that
J(θ + h) = J(θ) +∇J(θ)⊤h + h⊤H(θ)h + ∥h∥2ε(h).
ε(h) is a continuous function at 0 with limh→0 ε(h) = 0

H(θ) is the second derivative matrix

H(θ) =


∂2J

∂θ1∂θ1

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θd

...
... · · ·

...
∂2J

∂θd ∂θ1

∂2J
∂θd ∂θ2

· · · ∂2J
∂θd ∂θd


H(θ) = ∇θ⊤(∇θJ(θ)) is the Jacobian of the gradient function
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Optimality conditions

Examples

Example 1
Objective function
J(θ) = θ4

1 + θ4
2 − 4θ1θ2

Gradient

∇J(θ) =
(

4θ3
1 − 4θ2

−4θ1 + 4θ3
2

)
Hessian matrix

H(θ) =

(
12θ2

1 −4
−4 12θ2

2

)

Exemple 2
Quadratic objective function
J(θ) = 1

2θ
⊤Pθ + q⊤θ + r

Directional derivative
D(h,θ) = limt→0

J(θ+th)−J(θ)
t

D(h,θ) = (Pθ + q)⊤h

Gradient ∇J(θ) = Pθ + q

Hessian matrix H(θ) = P
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Optimality conditions

Second order optimality condition

Theorem [Second order optimality condition]

Let J : Rd → R be a twice differentiable function on its domain. If θ0 is a
minimum of J, then ∇J(θ0) = 0 and H(θ0) is a positive definite matrix.

Remarks

H is positive definite if and only if all its eigenvalues are positive

H is negative definite if and only if all its eigenvalues are negative

For θ ∈ R, this condition means that the gradient of J at the minimum is
null, J ′(θ) = 0 and its second derivative is positive i.e. J ′′(θ) > 0

If at a stationary point θ0, H(θ0)) is negative definite, θ0 is a local
maximum of J
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Optimality conditions

Illustration of the second order optimality condition

J(θ) = θ4
1 + θ4

2 − 4θ1θ2

Gradient : ∇J(θ) =
(

4θ3
1 − 4θ2

−4θ1 + 4θ3
2

)
Stationary points : θ(1) =

(
0
0

)
, θ(2) =

(
1
1

)
and

θ(3) =

(
−1
−1

)
Hessian matrix H(θ) =

(
12θ2

1 −4
−4 12θ2

2

)
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(

0 −4
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) (
12 −4
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) (
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)
Eigenvalues 4,−4 8, 16 8, 16

Type of solution Saddle point Minimum Minimum
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Optimality conditions

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition ]

Assume the hessian matrix H(θ0) of J(θ) at θ0 exists and is positive
definite. Assume also the gradient ∇J(θ0) = 0. Then θ0 is a (local or
global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition]

Let J be a convex function. Every local solution θ̂ is a global solution θ∗.

Recall

A function J : Rd → R is convex if it verifies

J(αθ + (1− α)z) ≤ αJ(θ) + (1− α)J(z), ∀θ, z ∈ domJ, 0 ≤ α ≤ 1
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Optimality conditions

How to find the solution(s)?

We have seen how to assess a solution to the problem

A question to be addressed now is how to compute a solution?
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Descent algorithms

Principle of descent algorithms

Direction of descent

Let the function J : Rd → R. The vector h ∈ Rd is called a descent
direction in θ if there exists α > 0 such that J(θ + αh) < J(θ)

Principle of descent methods
Start from an initial point θ0

Design a sequence of points {θk} with θk+1 = θk + αkhk
Ensure that the sequence {θk} converges to a stationary point θ̂

hk : direction of descent
αk : step size
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Descent algorithms

General approach

General algorithm
1: Let k = 0, initialize θk

2: repeat

3: Find a descent direction hk ∈ Rd

4: Line search: find a step size αk > 0 in the direction hk such that
J(θk + αkhk) decreases "enough"

5: Update: θk+1 ← θk + αkhk and k ← k + 1
6: until ∥∇J(θk)∥ < ϵ

The methods of descent differ by the choice of:
h: gradient algorithm, Newton, Quasi-Newton algorithm

α: backtracking. . .
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Descent algorithms Main methods of descent

Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let J(θ) be a differential function. The direction h = −∇J(θ) ∈ Rd is a
descent direction.

Proof.
J being differentiable, for any t > 0 we have
J(θ + th) = J(θ) + t∇J(θ)⊤h + t∥h∥ϵ(th). Setting h = −∇J(θ), we get
J(θ + th)− J(θ) = −t∥∇J(θ)∥2 + t∥h∥ϵ(th). For t small enough ϵ(th)→ 0 and
so J(θ + th)− J(θ) = −t∥∇J(θ)∥2 < 0. It is then a descent direction.

Characteristics of the gradient algorithm

Choice of the descent direction at θk : hk = −∇J(θk)

Complexity of the update: θk+1 ← θk − αk∇J(θk) costs O(d)
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Descent algorithms Main methods of descent

Newton algorithm

2nd order approximation of J at θk

J(θ + h) ≈ J(θk) +∇J(θk)
⊤h +

1
2
h⊤H(θk)h

with H(θk) the positive definite Hessian matrix
The direction hk which minimizes this approximation is obtained by

∇J(θ + hk) = 0 ⇒ hk = −H(θk)
−1∇J(θk)

Features

Descent direction at θk : hk = −H(θk)
−1∇J(θk)

Complexity of the update: θk+1 ← θk − αkH(θk)
−1∇(θk) costs

O(d3) flops
H(θk) is not always guaranteed to be positive definite matrix. Hence
we cannot always ensure that hk is a direction of descent
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Descent algorithms Main methods of descent

Illustration of gradient and Newton methods

Local approximation of the two methods
in 1D
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Descent algorithms Main methods of descent

Quasi-Newton method

Main features

Descent direction at θk : hk = −B(θk)
−1∇J(θk)

B(θk) is an positive definite approximation of the Hessian matrix
Complexity of the update: most of the times O(d2)
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Descent algorithms Research of the step

Line search
Assume the direction of descent hk at θk is fixed. We aim to find the step
size αk > 0 in the direction hk such that the function J(θk + αkhk)
decreases enough (compared to J(θk))

Several options
Fixed step size: use a fixed value α > 0 at each iteration k

θk+1 ← θk + αhk

Optimal step size α∗
k

θk+1 ← θk + α∗
khk with α∗

k = argmin
α>0

J(θk + αhk)

Variable step size: the choice αk is adapted to the current iteration

θk+1 ← θk + αkhk
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Descent algorithms Research of the step

Line search

Pros and cons
Fixed step size strategy: often not very effective

Optimal step size: can be costly in calculation time
Variable step: most commonly used approach

The step is often imprecise
A trade-off between computation cost and decrease of J
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Descent algorithms Research of the step

Variable step sizeh
Armijo’s rule

Determine the step size αk in order to have a sufficient decrease of J i.e.

J(θk + αkh) ≤ J(θk) + c αk∇J(θk)
⊤hk

Usually c is chosen in the range
[
10−5, 10−1

]
Having hk the direction of descent, we have ∇J(θk)

⊤hk < 0, which ensures
the decrease of J

Backtracking

1: Fix an initial step ᾱ, choose 0 < ρ < 1, α← ᾱ

2: repeat
3: α← ρα

4: until J(θk + αh) > J(θk) + c α∇J(θk)
⊤hk

Interpretation: as long as J does not decrease, we
decrease the value of the step size

Choice of the initial step

Newton method:
ᾱ = 1

Gradient method:
ᾱ = 2 J(θk )−J(θk−1)

∇J(θk )
⊤hk
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Descent algorithms Summary

Summary of descent methods

General algorithm

1: Initialize θk
2: repeat
3: Find direction of descent hk ∈ Rd

4: Line search: find the step αk > 0
5: Update: θk+1 ← θk + αkhk

6: until convergence

Method Direction of descent h Complexity Convergence
Gradient −∇J(θ) O(d) linear
Quasi-Newton −B(θ)−1∇J(θ) O(d2) superlinear
Newton −H(θ)−1∇J(θ) O(d3) quadratic

Step size computation: backtracking (common) or optimal step size

Complexity of each method: depends on the complexity of calculating h, the
search for α, and the number of iterations performed until convergence
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Illustration of descent methods

Gradient method

J along the iterations
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Illustration of descent methods

Newton method

J along the iterations
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Illustration of descent methods

Conclusion

Unconstrained optimization of smooth objective function

Characterization of the solution(s) requires checking the optimality
conditions

Computation of a solution using descent methods

Gradient descent method
Newton method

Not covered in this lecture:
Convergence analysis of the studied algorithms
Non-smooth optimization
Gradient-free optimzation
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