Descent methods for unconstrained optimization

Gilles Gasso

INSA Rouen - ASI Departement Laboratory LITIS

September 25, 2023

Formulation

Oescent algorithms

- Main methods of descent
- Research of the step
- Summary

Unconstrained optimization

Elements of the problem

- $oldsymbol{ heta} \in \mathbb{R}^d$: vector of unknown real parameters
- $J: \mathbb{R}^d \to \mathbb{R}$: the function to be minimized.
- Assumption: J is differentiable all over its domain dom $J = \left\{ \boldsymbol{\theta} \in \mathbb{R}^d \, | \, J(\boldsymbol{\theta}) < \infty \right\}$

Problem formulation

$$(P) \quad \min_{\boldsymbol{\theta} \in \mathbb{R}^d} J(\boldsymbol{\theta})$$

Unconstrained optimization

Examples

$$J(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^{\top}\boldsymbol{P}\boldsymbol{\theta} + \boldsymbol{q}^{\top}\boldsymbol{\theta} + \boldsymbol{r}$$

with \boldsymbol{P} a positive definite matrix

$$J(\boldsymbol{\theta}) = \cos(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2) + \frac{\theta_1}{4}$$

Gilles Gasso

Descent methods

Different solutions

Global solution

 $oldsymbol{ heta}^*$ is said to be the global minimum solution of the problem if $J(oldsymbol{ heta}^*) \leq J(oldsymbol{ heta}), \quad orall oldsymbol{ heta} \in dom J$

Local solution

 $\hat{\theta}$ is a local minimum solution of problem (P) if it holds $J(\hat{\theta}) \leq J(\theta), \ \forall \theta \in \text{domJ}$ such that $\|\hat{\theta} - \theta\| \leq \epsilon, \epsilon > 0$

Illustration

$$J(\boldsymbol{\theta}) = \cos(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2) + \frac{\theta_1}{4}$$

Optimality conditions

• How do we assess a solution to the problem?

First order necessary condition

Theorem [First order condition]

Let $J : \mathbb{R}^d \to \mathbb{R}$ be a differential function on its domain. A vector θ_0 is a (local or global) solution of the problem (P), if it necessarily satisfies the condition $\nabla J(\theta_0) = 0$.

Vocabulary

- Any vector θ₀ that verifies ∇J(θ₀) = 0 is called a stationary point or critical point
- $\nabla J(\theta) \in \mathbb{R}^d$ is the gradient vector of J at θ .
- The gradient is the unique vector such that the directional derivative can be written as:

$$\lim_{t\to 0}\frac{J(\theta+t\mathsf{h})-J(\theta)}{t}=\nabla J(\theta)^{\top}\mathsf{h},\quad\mathsf{h}\in\mathbb{R}^d,\quad t\in\mathbb{R}$$

Example of a first order optimality condition

• $J(\theta) = \theta_1^4 + \theta_2^4 - 4\theta_1\theta_2$ • Gradient $\nabla J(\theta) = \begin{pmatrix} 4\theta_1^3 - 4\theta_2 \\ -4\theta_1 + 4\theta_2^3 \end{pmatrix}$ • Stationary points that verify $\nabla J(\theta) = 0$. • Three solutions $\theta^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\theta^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $-1 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Remarks

- $heta^{(2)}$ and $heta^{(3)}$ are local minimal but not $heta^{(1)}$
- every stationary point can be deemed a local extremum

We need another optimality condition

How to ensure that a stationary point is a minimum solution?

۸ٍلا

2

9

14

Hessian matrix

Twice differential function

 $J: \mathbb{R}^{d} \to \mathbb{R} \text{ is said to be a twice differentiable function on its domain domJ if, at every point <math>\theta \in$, there exists a unique symmetric matrix $H(\theta) \in \mathbb{R}^{d \times d}$ called Hessian matrix such that $J(\theta + h) = J(\theta) + \nabla J(\theta)^{\top}h + h^{\top}H(\theta)h + \|h\|^{2}\varepsilon(h).$ $\varepsilon(h)$ is a continuous function at 0 with $\lim_{h\to 0} \varepsilon(h) = 0$

• $H(\theta)$ is the second derivative matrix

$$\boldsymbol{H}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_1}} & \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_2}} & \cdots & \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_d}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_1}} & \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_2}} & \cdots & \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_d}} \end{pmatrix}$$

• $H(heta) =
abla_{ heta^ op} (
abla_ heta J(heta))$ is the Jacobian of the gradient function

Examples

Example 1

- Objective function $J(\theta) = \theta_1^4 + \theta_2^4 - 4\theta_1\theta_2$
- Gradient $\nabla J(\boldsymbol{\theta}) = \begin{pmatrix} 4\theta_1^3 - 4\theta_2 \\ -4\theta_1 + 4\theta_2^3 \end{pmatrix}$
- Hessian matrix $\boldsymbol{H}(\boldsymbol{\theta}) = \begin{pmatrix} 12\theta_1^2 & -4\\ -4 & 12\theta_2^2 \end{pmatrix}$

Exemple 2

- Quadratic objective function $J(\theta) = \frac{1}{2} \theta^{\top} \boldsymbol{P} \theta + q^{\top} \theta + r$
- Directional derivative $D(h, \theta) = \lim_{t \to 0} \frac{J(\theta + th) - J(\theta)}{t}$ $D(h, \theta) = (\boldsymbol{P}\theta + q)^{\top}h$
- Gradient $\nabla J(\boldsymbol{\theta}) = \boldsymbol{P}\boldsymbol{\theta} + q$
- Hessian matrix $\boldsymbol{H}(\boldsymbol{ heta}) = \boldsymbol{P}$

Second order optimality condition

Theorem [Second order optimality condition]

Let $J : \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function on its domain. If θ_0 is a minimum of J, then $\nabla J(\theta_0) = 0$ and $H(\theta_0)$ is a positive definite matrix.

Remarks

- H is positive definite if and only if all its eigenvalues are positive
- H is negative definite if and only if all its eigenvalues are negative
- For θ ∈ ℝ, this condition means that the gradient of J at the minimum is null, J'(θ) = 0 and its second derivative is positive i.e. J''(θ) > 0
- If at a stationary point θ_0 , $H(\theta_0)$) is negative definite, θ_0 is a local maximum of J

Illustration of the second order optimality condition

• $J(\theta) = \theta_1^4 + \theta_2^4 - 4\theta_1\theta_2$ • Gradient : $\nabla J(\theta) = \begin{pmatrix} 4\theta_1^3 - 4\theta_2 \\ -4\theta_1 + 4\theta_2^3 \end{pmatrix}$ • Stationary points : $\theta^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\theta^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ • Hessian matrix $H(\theta) = \begin{pmatrix} 12\theta_1^2 & -4 \\ -4 & 12\theta_2^2 \end{pmatrix}$

	$ heta^{(1)}$	$\theta^{(2)}$	$ heta^{(3)}$
Hessian	$ \begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix} $	$ \begin{pmatrix} 12 & -4 \\ -4 & 12 \end{pmatrix} $	$ \begin{pmatrix} 12 & -4 \\ -4 & 12 \end{pmatrix} $
Eigenvalues	4, -4	8,16	8,16
Type of solution	Saddle point	Minimum	Minimum
Gilles Gasso		Descent methods	

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition]

Assume the hessian matrix $H(\theta_0)$ of $J(\theta)$ at θ_0 exists and is positive definite. Assume also the gradient $\nabla J(\theta_0) = 0$. Then θ_0 is a (local or global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition] Let J be a convex function. Every local solution $\hat{\theta}$ is a global solution θ^* .

Recall

A function $J : \mathbb{R}^d \to \mathbb{R}$ is convex if it verifies

 $J(\alpha \boldsymbol{\theta} + (1 - \alpha)z) \leq \alpha J(\boldsymbol{\theta}) + (1 - \alpha)J(z), \quad \forall \boldsymbol{\theta}, z \in \mathsf{dom}J, \quad \mathbf{0} \leq \alpha \leq 1$

How to find the solution(s)?

- We have seen how to assess a solution to the problem
- A question to be addressed now is how to compute a solution?

Principle of descent algorithms

Direction of descent

Let the function $J : \mathbb{R}^d \to \mathbb{R}$. The vector $h \in \mathbb{R}^d$ is called a descent direction in θ if there exists $\alpha > 0$ such that $J(\theta + \alpha h) < J(\theta)$

Principle of descent methods

- Start from an initial point $heta_0$
- Design a sequence of points $\{\boldsymbol{\theta}_k\}$ with $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \boldsymbol{h}_k$
- Ensure that the sequence $\{m{ heta}_k\}$ converges to a stationary point $\hat{m{ heta}}$

- h_k: direction of descent
- α_k : step size

General approach

General algorithm

- 1: Let k = 0, initialize $\boldsymbol{\theta}_k$
- 2: repeat
- 3: Find a descent direction $h_k \in \mathbb{R}^d$
- 4: Line search: find a step size $\alpha_k > 0$ in the direction h_k such that $J(\theta_k + \alpha_k h_k)$ decreases "enough"
- 5: Update: $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \mathbf{h}_k$ and $k \leftarrow k+1$
- 6: until $\|\nabla J(\boldsymbol{\theta}_k)\| < \epsilon$
 - The methods of descent differ by the choice of:
 - h: gradient algorithm, Newton, Quasi-Newton algorithm
 - α : backtracking...

Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let $J(\theta)$ be a differential function. The direction $h = -\nabla J(\theta) \in \mathbb{R}^d$ is a descent direction.

Proof.

J being differentiable, for any t > 0 we have $J(\theta + th) = J(\theta) + t\nabla J(\theta)^{\top}h + t \|h\|\epsilon(th)$. Setting $h = -\nabla J(\theta)$, we get $J(\theta + th) - J(\theta) = -t \|\nabla J(\theta)\|^2 + t \|h\|\epsilon(th)$. For t small enough $\epsilon(th) \to 0$ and so $J(\theta + th) - J(\theta) = -t \|\nabla J(\theta)\|^2 < 0$. It is then a descent direction.

Characteristics of the gradient algorithm

- Choice of the descent direction at θ_k : $h_k = -\nabla J(\theta_k)$
- Complexity of the update: $\theta_{k+1} \leftarrow \theta_k \alpha_k \nabla J(\theta_k)$ costs $\mathcal{O}(d)$

Newton algorithm

• 2nd order approximation of J at θ_k

$$J(\boldsymbol{ heta} + \mathbf{h}) pprox J(\boldsymbol{ heta}_k) +
abla J(\boldsymbol{ heta}_k)^{ op} \mathbf{h} + rac{1}{2} \mathbf{h}^{ op} \boldsymbol{H}(\boldsymbol{ heta}_k) \mathbf{h}$$

with $H(\theta_k)$ the positive definite Hessian matrix

• The direction h_k which minimizes this approximation is obtained by

$$abla J(oldsymbol{ heta}+oldsymbol{h}_k)=0 \quad \Rightarrow \quad oldsymbol{h}_k=-oldsymbol{H}(oldsymbol{ heta}_k)^{-1}
abla J(oldsymbol{ heta}_k)$$

Features

- Descent direction at $\boldsymbol{\theta}_k$: $\mathbf{h}_k = -\boldsymbol{H}(\boldsymbol{\theta}_k)^{-1} \nabla J(\boldsymbol{\theta}_k)$
- Complexity of the update: $\theta_{k+1} \leftarrow \theta_k \alpha_k H(\theta_k)^{-1} \nabla(\theta_k)$ costs $\mathcal{O}(d^3)$ flops
- *H*(θ_k) is not always guaranteed to be positive definite matrix. Hence we cannot always ensure that h_k is a direction of descent

Illustration of gradient and Newton methods

Quasi-Newton method

Main features

- Descent direction at θ_k : $h_k = -B(\theta_k)^{-1}\nabla J(\theta_k)$
- $B(\theta_k)$ is an positive definite approximation of the Hessian matrix
- Complexity of the update: most of the times $\mathcal{O}(d^2)$

Line search

Assume the direction of descent h_k at θ_k is fixed. We aim to find the step size $\alpha_k > 0$ in the direction h_k such that the function $J(\theta_k + \alpha_k h_k)$ decreases enough (compared to $J(\theta_k)$)

Several options

• Fixed step size: use a fixed value $\alpha > 0$ at each iteration k

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha \boldsymbol{\mathsf{h}}_k$$

• Optimal step size α_k^*

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k^* \boldsymbol{\mathsf{h}}_k \quad \text{with} \quad \alpha_k^* = \arg\min_{\alpha > 0} J(\boldsymbol{\theta}_k + \alpha \boldsymbol{\mathsf{h}}_k)$$

• Variable step size: the choice α_k is adapted to the current iteration

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \boldsymbol{\mathsf{h}}_k$$

Line search

Pros and cons

- Fixed step size strategy: often not very effective
- Optimal step size: can be costly in calculation time
- Variable step: most commonly used approach
 - The step is often imprecise
 - A trade-off between computation cost and decrease of J

Variable step sizeh

Armijo's rule

Determine the step size α_k in order to have a sufficient decrease of J i.e.

 $J(\boldsymbol{\theta}_k + \alpha_k \mathsf{h}) \leq J(\boldsymbol{\theta}_k) + c \, \alpha_k \nabla J(\boldsymbol{\theta}_k)^\top \mathsf{h}_k$

- Usually c is chosen in the range $\left[10^{-5}, 10^{-1}\right]$
- Having h_k the direction of descent, we have ∇J(θ_k)^Th_k < 0, which ensures the decrease of J

Backtracking

- 1: Fix an initial step $\bar{\alpha}$, choose 0 < ρ < 1, $\alpha \leftarrow \bar{\alpha}$
- 2: repeat
- 3: $\alpha \leftarrow \rho \alpha$
- 4: until $J(\boldsymbol{\theta}_k + \alpha \mathbf{h}) > J(\boldsymbol{\theta}_k) + c \, \alpha \nabla J(\boldsymbol{\theta}_k)^\top \mathbf{h}_k$

Interpretation: as long as J does not decrease, we decrease the value of the step size

Choice of the initial step

- Newton method: $\bar{\alpha} = 1$
- Gradient method: $\bar{\alpha} = 2 \frac{J(\theta_k) - J(\theta_{k-1})}{\nabla J(\theta_k)^{\top} \mathbf{h}_k}$

Gilles Gasso

Descent methods

Summary of descent methods

General algorithm

- 1: Initialize θ_k
- 2: repeat
- 3: Find direction of descent $h_k \in \mathbb{R}^d$
- 4: Line search: find the step $\alpha_k > 0$
- 5: Update: $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \mathbf{h}_k$
- 6: until convergence

Method	Direction of descent h	Complexity	Convergence
Gradient	$- abla J(oldsymbol{ heta})$	$\mathcal{O}(d)$	linear
Quasi-Newton	$-B(oldsymbol{ heta})^{-1} abla J(oldsymbol{ heta})$	$\mathcal{O}(d^2)$	superlinear
Newton	$-oldsymbol{H}(heta)^{-1} abla J(heta)$	$\mathcal{O}(d^3)$	quadratic

- Step size computation: backtracking (common) or optimal step size
- Complexity of each method: depends on the complexity of calculating h, the search for α , and the number of iterations performed until convergence

Gradient method

J along the iterations

Evolution of the iterates

Newton method

J along the iterations

Evolution of the iterates

 At each iteration we considered the matrix *H*(θ) + λl instead of *H* to guarantee the positive definite property of Hessian

Conclusion

- Unconstrained optimization of smooth objective function
- Characterization of the solution(s) requires checking the optimality conditions
- Computation of a solution using descent methods
 - Gradient descent method
 - Newton method
- Not covered in this lecture:
 - Convergence analysis of the studied algorithms
 - Non-smooth optimization
 - Gradient-free optimzation