
ITI3

Algorithmique avancée

et

Programmation C

Durée : 1h50
Documents autorisés : AUCUN

Informations

Avant de commencer l’examen

Connectez vous à la machine et suivez les instructions suivantes :
— copiez l’archive examen.zip qui se trouve dans /opt/files dans votre répertoire (commande cp) ;
— après l’avoir décompressée (commande unzip 1), renommez le répertoire C en lui donnant comme nom :

votre nom suivi de votre prénom, sans espace, sans caractères accentués et en minuscule sauf pour les
premières lettres du prénom et du nom. Par exemple, si ≪ Paul Du Villaré ≫ devait passer cet examen,
il nommerai son répertoire ≪ DuvillarePaul ≫.

À la fin de l’examen

Cinq minutes avant la fin de l’examen :
— assurez vous que les fichiers sont au format UTF-8 (c’est par défaut le cas) ;
— assurez vous que votre projet compile ;
— créez une archive de votre répertoire (commande zip), que vous nommerez comme le répertoire ;
— déposez sur moodle votre archive (cours ≪ algorithmique avancée et programmation C ≫, section ≪ exa-

mens pratiques ≫).

Attention :
— le lien de dépôt est actif uniquement 10 minutes, si vous dépassez le délai, votre note sera 0 ;
— on ne peut déposer qu’une seule fois le projet sur Moodle.

Quelques conseils

Pour réussir votre examen suivez les conseils suivants :
— respectez bien les consignes données ci dessus. Le fait de ne pas les respecter vous fera perdre 2

points sur la note finale ;
— par défaut le projet compile et s’exécute. Après le développement de chaque fonction C, compilez votre

projet (make) et ne passez à la fonction suivante que lorsque votre projet compile : le fait de rendre
un projet qui ne compile pas ou ne s’exécute pas (par exemple à cause d’un segmentation
fault), divisera par deux votre note finale ;

— la note finale sera fonction :
— du nombre de tests unitaires et d’assertions qui seront valides ;
— du nombre de Warning (compilation avec l’option -Wall) qui seront affichés ;
— de la quantité, de la qualité et de la lisibilité du code (indentation et nom des identifiants).

1. si vous décompressez cette archive à partir de l’interface graphique d’Ubuntu, elle produira le répertoire examen/C, ce que
je ne veux pas, je veux uniquement le répertoire C !

1



Une bibliothèque proposant des AVL génériques

L’objectif de cet examen est le développement d’un module (avl) en C proposant le type
AVL_ArbreBinaireRecherche générique. La conception de ce type utilise le type AB_ArbreBinaire, lui aussi
générique, proposé par le module arbreBinaire vu en cours.

Analyse

Le type C AVL_ArbreBinaireRecherche est l’implantation en C du TAD ABR (pour Arbre Binaire de
Recherche) suivant :

Nom: ABR (ArbreBinaireDeRecherche)

Paramètre: Element (∀e1 ∈ Element, e2 ∈ Element, e1 ̸= e2⇒ e1 < e2 ou e1 > e2)

Utilise: Booleen

Opérations: aBR: → ABR

estVide: ABR → Booleen

inserer: ABR × Element ↛ ABR

supprimer: ABR × Element → ABR

estPresent: ABR × Element → Booleen

obtenirElement: ABR ↛ Element

obtenirFilsGauche: ABR ↛ ABR

obtenirFilsDroit: ABR ↛ ABR

Préconditions: obtenirElement(a): non(estV ide(a))

. . .: . . .

Conception

Dans le paradigme de la programmation structurée, ces opérations correspondent aux signatures des
procédures et fonctions suivantes :

— fonction aBR () : ABR
— fonction estVide (unArbre : ABR) : Booleen
— procédure insérer (E/S unArbre : ABR, E element : Element)
— procédure supprimer (E/S unArbre : ABR, E element : Element)
— fonction estPresent (unArbre : ABR, element : Element) : Booleen
— fonction obtenirElement (unArbre : ABR) : Element

⌊précondition(s) non estVide(unArbre)

— fonction obtenirFilsGauche (unArbre : ABR) : ABR

⌊précondition(s) non estVide(unArbre)

— fonction obtenirFilsDroit (unArbre : ABR) : ABR

⌊précondition(s) non estVide(unArbre)

Conception détaillée

L’algorithme de la fonction estPresent est :

fonction estPresent (a : ABR, e : Element) : Booleen

Déclaration temp : ABR

debut

2



si estVide(a) alors
retourner FAUX

sinon
si e=obtenirElement(a) alors

retourner VRAI
sinon

si e<obtenirElement(a) alors
retourner estPresent(obtenirFilsGauche(a),e)

sinon
retourner estPresent(obtenirFilsDroit(a),e)

finsi ‘
finsi

finsi
fin

Nous avons vu en cours et en TD que l’on peut concevoir un ABR à l’aide du SDD ArbreBinaire :

Type ArbreBinaireRecherche = ArbreBinaire

Pour que la recherche d’un élément dans un arbre binaire de recherche soit efficace, il faut utiliser les
algorithmes d’insertion et de suppression AVL, utilisant les algorithmes de rotation. Par exemple l’algorithme
des simples et doubles rotations à droite sont :

procédure faireSimpleRotationADroite (E/S a : ABR)

⌊précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp ← obtenirFilsGauche(a)
fixerFilsGauche(a,obtenirFilsDroit(temp))
fixerFilsDroit(temp,a)
a ← temp

fin
procédure faireDoubleRotationADroite (E/S a : ABR)

⌊précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))
et non(estVide(obtenirFilsDroit(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp ← obtenirFilsGauche(a)
faireSimpleRotationAGauche(temp)
fixerFilsGauche(a,temp)
faireSimpleRotationADroite(a)

fin

L’algorithme de la procédure inserer est alors :

procédure inserer (E/S a : ABR, E e : Element)

⌊précondition(s) temp : ABR

debut
si estVide(a) alors

a ← ajouterRacine(arbreBinaireRecherche(), arbreBinaireRecherche(), e)
sinon

si e≤obtenirElementRacine(a) alors
temp ← obtenirFilsGauche(a)

3



inserer(temp, e)
fixerFilsGauche(a, temp)

sinon
temp ← obtenirFilsDroit(a)
inserer(temp, e)
fixerFilsDroit(a, temp)

finsi
finsi
equilibrerSiNecessaire(a)

fin

Elle utilise la procédure de rééquilibrage suivante :

procédure equilibrerSiNecessaire (E/S a : ABR)
debut

si hauteur(obtenirFilsGauche(a))> hauteur(obtenirFilsDroit(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a)))≥ hauteur(obtenirFilsDroit(obtenirFilsGauche(a)))
alors

faireSimpleRotationDroite(a)
sinon

faireDoubleRotationDroite(a)
finsi

sinon
si hauteur(obtenirFilsDroit(a))> hauteur(obtenirFilsGauche(a))+1 alors

si hauteur(obtenirFilsGauche(obtenirFilsDroit(a)))≤ hauteur(obtenirFilsDroit(obtenirFilsDroit(a)))
alors

faireSimpleRotationGauche(a)
sinon

faireDoubleRotationGauche(a)
finsi

finsi
finsi

fin

La procédure de suppression est :

procédure supprimer (E/S a : ABR ; E e : Element)

Déclaration temp,tempG,tempD : ABR

debut
si non estVide(a) alors

si e < obtenirElement(a) alors
temp ← obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)

sinon
si e > obtenirElement(a) alors

temp ← obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)

sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors

supprimerRacine(a,tempG,tempD)
sinon

si estVide(obtenirFilsGauche(a)) ou estVide(obtenirFilsDroit(a)) alors

4



supprimerRacine(a,tempG,tempD)
si estVide(tempG) alors

a ← tempD
sinon

a ← tempG
finsi

sinon
e ← obtenirPlusGrand(obtenirFilsGauche(a))
fixerElement(a,e)
temp ← obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)

finsi
finsi

finsi
finsi

finsi
equilibrerSiNecessaire(a)

fin

Elle utilise la fonction qui permet d’obtenir l’élément le plus grand d’un arbre :

fonction obtenirPlusGrand (a : ABR) : Element

⌊précondition(s) non estVide(a)

debut
si non estVide(obtenirFilsDroit(a)) alors

retourner obtenirPlusGrand(obtenirFilsDroit(a))
sinon

retourner obtenirElement(a)
finsi

fin

Travail à réaliser

L’utilisation du make génère un test unitaire (tests/testsAVL). L’utilisation de la commande doxygen

permet de générer la documentation HTML et LATEX dans le répertoire doc.

Vous devez compléter le fichier src/avl.c (toutes les fonctions avec les commentaires code à compléter
ou code à remplacer) de façon à ce que tous les tests unitaires passent :

$ tests/testsAVL

CUnit - A unit testing framework for C - Version 2.1-3

http://cunit.sourceforge.net/

Suite: Tests boite noire du type AVL_ArbreBinaireRecherche

Test: AVL_arbreBinaireRecherche est vide ...passed

Test: AVL_arbreBinaireRecherche obtenir element à la racine ...passed

Test: AVL_inserer sans rotation ...passed

Test: AVL_inserer avec simple rotation droite ...passed

Test: AVL_inserer avec simple rotation gauche ...passed

Test: AVL_inserer avec double rotation droite ...passed

Test: AVL_inserer avec double rotation gauche ...passed

Test: AVL_supprimer non présent ...passed

Test: AVL_supprimer feuille ...passed

Test: AVL_supprimer avec fils gauche vide ...passed

5



Test: AVL_supprimer avec fils droit vide ...passed

Test: AVL_supprimer avec fils gauche et droit sans rééquilibrage ...passed

Test: AVL_supprimer avec fils gauche et droit avec rééquilibrage ...passed

Suite: Tests boite blanche du type AVL_ArbreBinaireRecherche

Test: AVL_arbreBinaireRecherche est de hauteur -1 ...passed

Test: Arbre non vide hauteur 1/2 ...passed

Test: Arbre non vide hauteur 2/2 ...passed

Test: AVL_obtenirElement ...passed

Test: AVL_obtenirFilsGauche ...passed

Test: AVL_obtenirFilsDroit ...passed

Test: AVL_faireSimpleRotationADroite ...passed

Test: AVL_faireSimpleRotationAGauche ...passed

Test: AVL_faireDoubleRotationADroite ...passed

Test: AVL_faireDoubleRotationAGauche ...passed

Run Summary: Type Total Ran Passed Failed Inactive

suites 2 2 n/a 0 0

tests 23 23 23 0 0

asserts 23 23 23 0 n/a

Elapsed time = 0.000 seconds

6


