ITI3

Algorithmique avancée
et
Programmation C

Durée : 1h50
Documents autorisés : AUCUN

Informations

Avant de commencer ’examen

Connectez vous a la machine et suivez les instructions suivantes :

— copiez l'archive examen.zip qui se trouve dans /opt/files dans votre répertoire (commande cp);

— apres 'avoir décompressée (commande unzip!), renommez le répertoire C en lui donnant comme nom :
votre nom suivi de votre prénom, sans espace, sans caracteres accentués et en minuscule sauf pour les
premieres lettres du prénom et du nom. Par exemple, si <« Paul Du Villaré > devait passer cet examen,
il nommerai son répertoire « DuvillarePaul >.

A la fin de ’examen

Cing minutes avant la fin de I’examen :

— assurez vous que les fichiers sont au format UTF-8 (c’est par défaut le cas);

— assurez vous que votre projet compile;

— créez une archive de votre répertoire (commande zip), que vous nommerez comme le répertoire ;

— déposez sur moodle votre archive (cours < algorithmique avancée et programmation C >, section < exa-
mens pratiques > ).

Attention :
— le lien de dépot est actif uniquement 10 minutes, si vous dépassez le délai, votre note sera 0 ;
— on ne peut déposer qu'une seule fois le projet sur Moodle.

Quelques conseils

Pour réussir votre examen suivez les conseils suivants :

— respectez bien les consignes données ci dessus. Le fait de ne pas les respecter vous fera perdre 2
points sur la note finale;

— par défaut le projet compile et s’exécute. Apres le développement de chaque fonction C, compilez votre
projet (make) et ne passez a la fonction suivante que lorsque votre projet compile : le fait de rendre
un projet qui ne compile pas ou ne s’exécute pas (par exemple a cause d’un segmentation
fault), divisera par deux votre note finale;

— la note finale sera fonction :

— du nombre de tests unitaires et d’assertions qui seront valides;
— du nombre de Warning (compilation avec 'option -Wall) qui seront affichés;
— de la quantité, de la qualité et de la lisibilité du code (indentation et nom des identifiants).

1. si vous décompressez cette archive a partir de I'interface graphique d’Ubuntu, elle produira le répertoire examen/C, ce que
je ne veux pas, je veux uniquement le répertoire C!



Une bibliotheque proposant des AVL génériques

L’objectif de cet examen est le développement d’un module (avl) en C proposant le type
AVL_ArbreBinaireRecherche générique. La conception de ce type utilise le type AB_ArbreBinaire, lui aussi
générique, proposé par le module arbreBinaire vu en cours.

Analyse

Le type C AVL_ArbreBinaireRecherche est I'implantation en C du TAD ABR (pour Arbre Binaire de
Recherche) suivant :

Nom: ABR (ArbreBinaireDeRecherche)
Parameétre: Element (Ve; € Element,es € Element,e; # €2 = e1 < ez ou e1 > e3)
Utilise: Booleen
Opérations: aBR: — ABR
estVide: ABR — Booleen
inserer: ABR x Element - ABR
supprimer: ABR x Element — ABR
estPresent: ABR x Element — Booleen

obtenirElement: ABR -+ Element
obtenirFilsGauche: ABR - ABR
obtenirFilsDroit: ABR - ABR

Préconditions: obtenirElement(a): non(estVide(a))

Conception

Dans le paradigme de la programmation structurée, ces opérations correspondent aux signatures des
procédures et fonctions suivantes :

— fonction aBR () : ABR

— fonction estVide (unArbre : ABR) : Booleen

— procédure insérer (E/S unArbre : ABR, E element : Element)

— procédure supprimer (E/S unArbre : ABR, E element : Element)
— fonction estPresent (unArbre : ABR, element : Element) : Booleen
— fonction obtenirElement (unArbre : ABR) : Element

|précondition(s) non estVide(unArbre)

— fonction obtenirFilsGauche (unArbre : ABR) : ABR
|précondition(s) non estVide(unArbre)

— fonction obtenirFilsDroit (unArbre : ABR) : ABR

|précondition(s) non estVide(unArbre)

Conception détaillée

L’algorithme de la fonction estPresent est :
fonction estPresent (a : ABR, e : Element) : Booleen
Déclaration temp : ABR
debut



si estVide(a) alors
retourner FAUX
sinon
si e=obtenirElement(a) alors
retourner VRAI
sinon
si e<obtenirElement(a) alors
retourner estPresent(obtenirFilsGauche(a),e)
sinon
retourner estPresent(obtenirFilsDroit(a),e)
finsi °
finsi
finsi
fin

Nous avons vu en cours et en TD que 'on peut concevoir un ABR & I’aide du SDD ArbreBinaire :
Type ArbreBinaireRecherche = ArbreBinaire

Pour que la recherche d’un élément dans un arbre binaire de recherche soit efficace, il faut utiliser les
algorithmes d’insertion et de suppression AVL, utilisant les algorithmes de rotation. Par exemple I’algorithme
des simples et doubles rotations & droite sont :

procédure faireSimpleRotationADroite (E/S a : ABR)
|précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp < obtenirFilsGauche(a)
fixerFilsGauche(a,obtenirFilsDroit(temp))
fixerFilsDroit(temp,a)
a < temp

fin

procédure faireDoubleRotationADroite (E/S a : ABR)

|précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))
et non(estVide(obtenirFilsDroit(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp < obtenirFilsGauche(a)
faireSimpleRotationAGauche(temp)
fixerFilsGauche(a,temp)
faireSimpleRotationADroite(a)

fin

L’algorithme de la procédure inserer est alors :

procédure inserer (E/S a : ABR, E e : Element)
|précondition(s) temp : ABR
debut
si estVide(a) alors
a < ajouterRacine(arbreBinaireRecherche(), arbreBinaireRecherche(), e)
sinon
si e<obtenirElementRacine(a) alors
temp < obtenirFilsGauche(a)



inserer(temp, e)
fixerFilsGauche(a, temp)
sinon
temp <— obtenirFilsDroit(a)
inserer(temp, e)
fixerFilsDroit(a, temp)
finsi
finsi
equilibrerSiNecessaire(a)
fin

Elle utilise la procédure de rééquilibrage suivante :

procédure equilibrerSiNecessaire (E/S a : ABR)
debut
si hauteur(obtenirFilsGauche(a))> hauteur(obtenirFilsDroit(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a))) > hauteur(obtenirFilsDroit(obtenirFilsGauche(a)))
alors
faireSimpleRotationDroite(a)
sinon
faireDoubleRotationDroite(a)
finsi
sinon
si hauteur(obtenirFilsDroit(a))> hauteur(obtenirFilsGauche(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsDroit(a))) < hauteur(obtenirFilsDroit(obtenirFilsDroit(a)))
alors
faireSimpleRotationGauche(a)
sinon
faireDoubleRotationGauche(a)
finsi
finsi
finsi
fin

La procédure de suppression est :

procédure supprimer (E/S a: ABR; E e : Element)
Déclaration temp,tempG,tempD : ABR

debut
si non estVide(a) alors
si e < obtenirElement(a) alors
temp <« obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)
sinon
si e > obtenirElement(a) alors
temp < obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)
sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors
supprimerRacine(a,tempG,tempD)
sinon
si estVide(obtenirFilsGauche(a)) ou estVide(obtenirFilsDroit(a)) alors



supprimerRacine(a,tempG,tempD)
si estVide(tempG) alors
a < tempD
sinon
a < tempG
finsi
sinon
e < obtenirPlusGrand(obtenirFilsGauche(a))
fixerElement(a,e)
temp < obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)
finsi
finsi
finsi
finsi
finsi
equilibrerSiNecessaire(a)
fin

Elle utilise la fonction qui permet d’obtenir I’élément le plus grand d’un arbre :
fonction obtenirPlusGrand (a : ABR) : Element
|précondition(s) non estVide(a)

debut
si non estVide(obtenirFilsDroit(a)) alors
retourner obtenirPlusGrand(obtenirFilsDroit(a))
sinon
retourner obtenirElement(a)
finsi
fin

Travail a réaliser

L’utilisation du make géneére un test unitaire (tests/testsAVL). L’utilisation de la commande doxygen
permet de générer la documentation HTML et IXTEX dans le répertoire doc.

Vous devez compléter le fichier src/avl. c (toutes les fonctions avec les commentaires code a compléter

ou code & remplacer) de fagon a ce que tous les tests unitaires passent :

$ tests/testsAVL

CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

Suite: Tests boite noire du type AVL_ArbreBinaireRecherche

Test: AVL_arbreBinaireRecherche est vide ...passed

Test: AVL_arbreBinaireRecherche obtenir element & la racine ...passed
Test: AVL_inserer sans rotation ...passed

Test: AVL_inserer avec simple rotation droite ...passed

Test: AVL_inserer avec simple rotation gauche ...passed

Test: AVL_inserer avec double rotation droite ...passed

Test: AVL_inserer avec double rotation gauche ...passed

Test: AVL_supprimer non présent ...passed

Test: AVL_supprimer feuille ...passed

Test: AVL_supprimer avec fils gauche vide ...passed



Test: AVL_supprimer avec fils droit vide ...passed

Test: AVL_supprimer avec fils gauche et droit sans rééquilibrage ...passed

Test: AVL_supprimer avec fils gauche et droit avec rééquilibrage ...passed
Suite: Tests boite blanche du type AVL_ArbreBinaireRecherche

Test: AVL_arbreBinaireRecherche est de hauteur -1 ...passed

Test: Arbre non vide hauteur 1/2 ...passed

Test: Arbre non vide hauteur 2/2 ...passed

Test: AVL_obtenirElement ...passed

Test: AVL_obtenirFilsGauche ...passed

Test: AVL_obtenirFilsDroit ...passed

Test: AVL_faireSimpleRotationADroite ...passed
Test: AVL_faireSimpleRotationAGauche ...passed
Test: AVL_faireDoubleRotationADroite ...passed
Test: AVL_faireDoubleRotationAGauche ...passed

Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0
tests 23 23 23 0 0
asserts 23 23 23 0 n/a
Elapsed time = 0.000 seconds



