
ITI3 3 Novembre 2025

Algorithmique avancée et programmation C

Durée : 1h30
Documents autorisés : AUCUN

Remarques :
— Vos réponses aux exercices 2 et 3 seront sur des copies doubles différentes
— Veuillez lire attentivement les questions avant de répondre ;
— Rendez une copie propre ;
— N’utilisez pas de crayon à papier sur votre copie ;
— Pour chaque exercice, il est indiqué, entre parenthèses, le nombre d’Attendus d’Apprentissage Disciplinaires

(AAD) évalués ;
— Vous trouverez en annexe les signatures de fonctions et procédures sur des collections, SDD nécessaires à

certains exercices.

1 QCM (3 AAD)

Répondez au qcm ci joint (à rendre avec votre copie). La note de chaque question peut varier de −1 à +1.
Soit B le nombre de bonnes réponses à une question et soit M le nombre de mauvaises réponses à cette

même question (B +M est égal au nombre de réponses à la question). Chaque bonne réponse cochée rapporte
1/B points et chaque mauvaise réponse −1/M points.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— DEV001 : Compiler et linker un programme C (options de base de gcc)
— DEV008 : Traduire des passages de paramètre algorithme en passage de paramètre C
— DEV009 : Utiliser les pointeurs, tableaux et châınes de caractères en C

2 L’indice de la dernière occurrence d’un entier (8 AAD)

Écrire une fonction récursive, indiceMax, qui détermine, en O(log2(n)), le plus grand indice d’un entier e,
obligatoirement présent dans un tableau t de nb entiers, trié dans l’ordre croissant. Cet entier peut bien entendu
être présent plusieurs fois dans le tableau t.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD004 : Écrire des algos avec le pseudo code utilisé à l’INSA
— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)
— CD009 : Écrire un algorithme qui résout le problème
— CD104 : Écrire un algorithme d’une complexité donnée
— CD201 : Identifier et résoudre le problème des cas non récursifs(pour g=d)
— CD201 : Identifier et résoudre le problème des cas non récursifs(pour d=g+1)
— CD202 : Identifier et résoudre le problème des cas récursifs
— CD204 : Penser à avoir une fonction/procédure récursive privée pour respecter une signature

générale

fonction indiceMax (t : Tableau[1..MAX] d’Entier, e : Entier, nb : NaturelNonNul) : NaturelNonNul

⌊précondition(s) nb≤MAX
∃i ∈ 1..nb tel que t[i] = e

debut

1



retourner indiceMaxR(t,e,1,nb)
fin
fonction indiceMaxR (t : Tableau[1..MAX] d’Entier, e : Entier, g,d : NaturelNonNul) : NaturelNon-
Nul

⌊précondition(s) g≤d et d≤MAX

debut
si g=d alors

retourner g
sinon

si d=g+1 alors
si t[d]=e alors

retourner d
sinon

retourner g
finsi

sinon
m ← (g+d) div 2
si t[m]=e alors

retourner indiceMaxR(t,e,m,d)
sinon

si t[m]>e alors
retourner indiceMaxR(t,e,g,m-1)

sinon
retourner indiceMaxR(t,e,m+1,d)

finsi
finsi

finsi
finsi

fin

3 Multiensemble (10 AAD)

D’après Wikipédia, un ≪ multiensemble [. . .] est une sorte d’ensemble dans lequel chaque élément peut
apparâıtre plusieurs fois. [. . .] On nomme multiplicité d’un élément donné le nombre de fois où il apparâıt.

Formellement, un multiensemble est un couple (A,m) où A est un ensemble appelé support et m une
fonction de A dans l’ensemble des entiers naturels, appelée multiplicité. Dans le multiensemble (A,m), l’élément
x apparâıt m(x) fois. ≫

3.1 Analyse

Soit le TAD MultiEnsemble possédant les opérations suivantes :
— obtenir un multiensemble vide ;
— savoir si un multiensemble est vide ;
— ajouter un élément ;
— savoir si un élément est présent ;
— obtenir la multiplicité d’un élément (la multiplicité d’un élément non présent est de 0) ;
— supprimer un élément ayant une multiplicité strictement positive. Cette opération décrémente la multiplicité

de l’élément. L’élément n’est alors plus considéré comme présent si sa multiplicité est de 0 ;
— obtenir le support.

Formaliser (axiomes compris) le TAD MultiEnsemble.

Solution proposée :

2



Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD
— AN202 : Définir des TAD génériques
— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier
— AN204 : Formaliser des opérations d’un TAD
— AN205 : Formaliser les préconditions d’une opération d’un TAD
— AN206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD

Nom: MultiEnsemble

Paramètre: Element

Utilise: Booleen, Naturel, Ensemble

Opérations: multiensemble: → MultiEnsemble

estVide: MultiEnsemble → Booleen

ajouter: MultiEnsemble × Element → MultiEnsemble

estPresent: MultiEnsemble × Element → Booleen

multiplicite: MultiEnsemble × Element → Naturel

supprimer: MultiEnsemble × Element ↛ MultiEnsemble

support: MultiEnsemble → Ensemble<Element>

Préconditions: supprimer(m,e): estPresent(m,e)

Axiomes: - estVide(multiensemble())
- non estVide(ajouter(m,e))
- estPresent(ajouter(m,e),e)
- multiplicite(ajouter(m,e),e)=multiplicite(m,e)+1
- multiplicite(supprimer(m,e),e)=multiplicite(m,e)-1
- non estPresent(m,e) et multiplicite(m,e)=0
- estVide(m) ⇒ cardinalite(support(m))=0
- estPresent(m,e) ⇒ estPresent(support(m),e)
- non estPresent(m,e) ⇒ non estPresent(support(m),e)

3.2 Conception préliminaire

Donnez les signatures des fonctions et procédures du type MultiEnsemble.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)
— CP005 : Choisir un passage de paramètre (E, S, E/S)

— fonction multiensemble () : MultiEnsemble
— fonction estVide (m : MultiEnsemble) : Booleen
— procédure ajouter (E/S m : MultiEnsemble,E e : Element)
— fonction estPresent (m : MultiEnsemble, e : Element) : Booleen
— fonction multiplicite (m : MultiEnsemble, e : Element) : Naturel
— procédure supprimer (E/S m : MultiEnsemble,E e : Element)

⌊précondition(s) estPresent(m,e)

— fonction support (m : MultiEnsemble) : Ensemble<Element>

3.3 Conception détaillée

Proposez une conception détaillée pour le type MultiEnsemble (uniquement le type, on ne vous demande
pas les algorithmes de ses opérations).

Solution proposée :

3



Attendus d’apprentissages disciplinaires évalués

— CD901 : Concevoir un type de données adapté à la situation en terme d’espace mémoire et
d’efficacité

— Type MultiEnsemble = Dictionnaire<Element,Naturel>

3.4 Utilisation : l’intersection

D’après Wikipédia anglais, l’intersection de deux multiensembles A et B est un multiensemble C tel que le
support de C est l’intersection des supports de A et de B et tel que la multiplicité de ses éléments est le min
des multiplicités de ces éléments dans A et B.

1. Proposez l’analyse descendante de l’intersection de deux multiensembles en faisant apparâıtre toutes les
opérations que vous utilisez (du TAD MultiEnsemble ou autre) en respectant le nommage de Wikipédia.

2. Donnez l’algorithme correspondant.

Solution proposée :

1. L’analyse descendante :

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème
— AN102 : Décomposer logiquement un problème

intersection : MultiEnsemble × MultiEnsemble → MultiEnsemble
support : MultiEnsemble → Ensemble<Element>
intersection : Ensemble × Ensemble → Ensemble
multiensemble : → MultiEnsemble
multiplicite MultiEnsemble × Element → Naturel
min : Naturel × Naturel → Naturel
ajouterNFois : MultiEnsemble × Element × NaturelNonNul → MultiEnsemble

ajouter : MultiEnsemble × Element → MultiEnsemble

2. L’algorithme :

Attendus d’apprentissages disciplinaires évalués

— CD001 : Dissocier les deux rôles du développeur : concepteur et utilisateur
— CD002 : En tant qu’utilisateur, respecter une signature
— CD004 : Écrire des algos avec le pseudo code utilisé à l’INSA
— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)
— CD006 : Choisir la bonne itération
— CD009 : Écrire un algorithme qui résout le problème

fonction intersection (m1, m2 : MultiEnsemble) : MultiEnsemble

Déclaration res : MultiEnsemble
e : Element

debut
res ← multiensemble()
pour chaque e de Ensemble.intersection(support(m1), support(m2))

ajouterNFois(res, e, min(multiplicite(m1,e), multiplicite(m2,e)))
finpour
retourner res

fin

Annexe

Pour rappel le TAD Ensemble vu en cours est :

4



Nom: Ensemble

Paramètre: Element

Utilise: Booleen,Naturel

Opérations: ensemble: → Ensemble

ajouter: Ensemble × Element → Ensemble

retirer: Ensemble × Element → Ensemble

estPresent: Ensemble × Element → Booleen

cardinalite: Ensemble → Naturel

union: Ensemble × Ensemble → Ensemble

intersection: Ensemble × Ensemble → Ensemble

soustraction: Ensemble × Ensemble → Ensemble

Axiomes: - ajouter(ajouter(s,e),e)=ajouter(s,e)
- retirer(ajouter(s,e),e)=s
- estPresent(ajouter(s,e),e)
- non estPresent(retirer(s,e),e)
- cardinalite(ensemble())=0
- cardinalite(ajouter(s,e))=1+cardinalite(s) et non estPresent(s,e)
- cardinalite(ajouter(s,e))=cardinalite(s) et estPresent(s,e)
. . .

5


