ITI3 3 Novembre 2025

Algorithmique avancée et programmation C

Durée : 1h30
Documents autorisés : AUCUN

Remarques :

— Vos réponses aux exercices 2 et 3 seront sur des copies doubles différentes

— Veuillez lire attentivement les questions avant de répondre;

— Rendez une copie propre;

— Nutilisez pas de crayon a papier sur votre copie;

— Pour chaque exercice, il est indiqué, entre parentheses, le nombre d’Attendus d’Apprentissage Disciplinaires
(AAD) évalués;

— Vous trouverez en annexe les signatures de fonctions et procédures sur des collections, SDD nécessaires a
certains exercices.

1 QCM (3 AAD)

Répondez au qcm ci joint (4 rendre avec votre copie). La note de chaque question peut varier de —1 a +1.

Soit B le nombre de bonnes réponses a une question et soit M le nombre de mauvaises réponses a cette
méme question (B + M est égal au nombre de réponses & la question). Chaque bonne réponse cochée rapporte
1/B points et chaque mauvaise réponse —1/M points.

Solution proposée :

[Attendus d’apprentissages disciplinaires évalués]

— DEVO001 : Compiler et linker un programme C (options de base de gce)
— DEVO008 : Traduire des passages de parametre algorithme en passage de parametre C
— DEVO009 : Utiliser les pointeurs, tableaux et chaines de caracteres en C

2 L’indice de la derniére occurrence d’un entier (8 AAD)
Ecrire une fonction récursive, indiceMax, qui détermine, en O(loga(n)), le plus grand indice d’un entier e,
obligatoirement présent dans un tableau t de nb entiers, trié dans ’ordre croissant. Cet entier peut bien entendu

étre présent plusieurs fois dans le tableau t.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

CP004 : Concevoir une signature (préconditions incluses)

CD004 : Ecrire des algos avec le pseudo code utilisé & P'INSA

— CDO005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)

CD009 : Ecrire un algorithme qui résout le probleme

CD104 : Ecrire un algorithme d’une complexité donnée

CD201 : Identifier et résoudre le probléme des cas non récursifs(pour g=d)

CD201 : Identifier et résoudre le probleme des cas non récursifs(pour d=g+1)

CD202 : Identifier et résoudre le probleme des cas récursifs

CD204 : Penser & avoir une fonction/procédure récursive privée pour respecter une signature
générale

fonction indiceMax (t : Tableau[l..MAX] d’Entier, e : Entier, nb : NaturelNonNul) : NaturelNonNul

|précondition(s) nb<MAX
Ji € 1.nb tel que t[i] = e

debut

retourner indiceMaxR(t,e,1,nb)
fin
fonction indiceMaxR (t : Tableau[l.. MAX] d’Entier, e : Entier, g,d : NaturelNonNul) : NaturelNon-
Nul

|précondition(s) g<d et dA<KMAX

debut
si g=d alors
retourner g
sinon
si d=g+1 alors
si t[d]=e alors
retourner d
sinon
retourner g
finsi
sinon
m + (g+d) div 2
si t{m|=e alors
retourner indiceMaxR(t,e,m,d)
sinon
si t[m|>e alors
retourner indiceMaxR(t,e,g,m-1)
sinon
retourner indiceMaxR(t,e,m+1,d)
finsi
finsi
finsi
finsi
fin

3 Multiensemble (10 AAD)

D’aprés Wikipédia, un < multiensemble [...] est une sorte d’ensemble dans lequel chaque élément peut
apparaitre plusieurs fois. [...] On nomme multiplicité d’un élément donné le nombre de fois ol il apparait.

Formellement, un multiensemble est un couple (A,m) ou A est un ensemble appelé support et m une
fonction de A dans I’ensemble des entiers naturels, appelée multiplicité. Dans le multiensemble (A, m), ’élément
x apparait m(x) fois. »

3.1 Analyse

Soit le TAD MultiEnsemble possédant les opérations suivantes :

— obtenir un multiensemble vide ;

— savoir si un multiensemble est vide;

— ajouter un élément ;

— savoir si un élément est présent ;

— obtenir la multiplicité d’un élément (la multiplicité d’un élément non présent est de 0);

— supprimer un élément ayant une multiplicité strictement positive. Cette opération décrémente la multiplicité
de I’élément. L’élément n’est alors plus considéré comme présent si sa multiplicité est de 0;

— obtenir le support.
Formaliser (axiomes compris) le TAD MultiEnsemble.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— ANZ201 : Identifier les dépendances d’'un TAD

— AN202 : Définir des TAD génériques

— AN203 : Savoir si une opération identifiée fait partie du TAD & spécifier

— AN204 : Formaliser des opérations d’'un TAD

— AN205 : Formaliser les préconditions d’une opération d’'un TAD

— ANZ206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’'un TAD

Nom: MultiEnsemble

Parametre: Element

Utilise: Booleen, Naturel, Ensemble

Opérations: multiensemble: — MultiEnsemble
estVide: MultiEnsemble — Booleen
ajouter: MultiEnsemble x Element — MultiEnsemble
estPresent: MultiEnsemble x Element — Booleen
multiplicite: MultiEnsemble x Element — Naturel
supprimer: MultiEnsemble x Element - MultiEnsemble
support: MultiEnsemble — Ensemble<Element>

Préconditions: supprimer(m,e): estPresent(m,e)
Axiomes: - estVide(multiensemble())
- non estVide(ajouter(m,e))
- estPresent(ajouter(m,e),e)
- multiplicite(ajouter(m,e),e)=multiplicite(m,e)+1
- multiplicite(supprimer(m,e),e)=multiplicite(m,e)-1
- non estPresent(m,e) et multiplicite(m,e)=0
- estVide(m) = cardinalite(support(m))=0
- estPresent(m,e) = estPresent(support(m),e)
- non estPresent(m,e) = non estPresent(support(m),e)

3.2 Conception préliminaire

Donnez les signatures des fonctions et procédures du type MultiEnsemble.

Solution proposée :

[Attendus d’apprentissages disciplinaires évalués]

— CPO003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)
— CPO005 : Choisir un passage de parametre (E, S, E/S)

— fonction multiensemble () : MultiEnsemble

— fonction estVide (m : MultiEnsemble) : Booleen

— procédure ajouter (E/S m : MultiEnsemble,E e : Element)

— fonction estPresent (m : MultiEnsemble, e : Element) : Booleen

— fonction multiplicite (m : MultiEnsemble, e : Element) : Naturel

— procédure supprimer (E/S m : MultiEnsemble,E e : Element)
|précondition(s) estPresent(m,e)

— fonction support (m : MultiEnsemble) : Ensemble<Element>

3.3 Conception détaillée

Proposez une conception détaillée pour le type MultiEnsemble (uniquement le type, on ne vous demande
pas les algorithmes de ses opérations).

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CD901 : Concevoir un type de données adapté a la situation en terme d’espace mémoire et
d’efficacité

— Type MultiEnsemble = Dictionnaire<Element,Naturel>

3.4 Utilisation : ’intersection

D’apres Wikipédia anglais, Iintersection de deux multiensembles A et B est un multiensemble C' tel que le
support de C' est 'intersection des supports de A et de B et tel que la multiplicité de ses éléments est le min
des multiplicités de ces éléments dans A et B.

1. Proposez ’analyse descendante de l'intersection de deux multiensembles en faisant apparaitre toutes les
opérations que vous utilisez (du TAD MultiEnsemble ou autre) en respectant le nommage de Wikipédia.

2. Donnez l’algorithme correspondant.

Solution proposée :

1. L’analyse descendante :

[Attendus d’apprentissages disciplinaires évalués]

— ANI101 : Identifier les entrées et sorties d’un probleme
— ANI102 : Décomposer logiquement un probléme

intersection : MultiEnsemble x MultiEnsemble — MultiEnsemble
support : MultiEnsemble — Ensemble<Element >
intersection : Ensemble x Ensemble — Ensemble
multiensemble : — MultiEnsemble
multiplicite MultiEnsemble x Element — Naturel
min : Naturel x Naturel — Naturel
ajouterNFois : MultiEnsemble x Element x NaturelNonNul — MultiEnsemble
ajouter : MultiEnsemble x Element — MultiEnsemble

2. L’algorithme :

Attendus d’apprentissages disciplinaires évalués

— CDO001 : Dissocier les deux roles du développeur : concepteur et utilisateur
— CDO002 : En tant qu’utilisateur, respecter une signature

— D004 : Ecrire des algos avec le pseudo code utilisé & 'INSA

— CD005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)
— CDO006 : Choisir la bonne itération

— CD009 : Ecrire un algorithme qui résout le probleme

\.

fonction intersection (m1, m2 : MultiEnsemble) : MultiEnsemble

Déclaration res : MultiEnsemble
e : Element

debut
res < multiensemble()
pour chaque e de Ensemble.intersection(support(ml), support(m2))
ajouterNFois(res, e, min(multiplicite(m1,e), multiplicite(m2,e)))
finpour

retourner res
fin

Annexe

Pour rappel le TAD Ensemble vu en cours est :

Nom: Ensemble

Parametre: Element

Utilise: Booleen,Naturel

Opérations: ensemble: — Ensemble
ajouter: Ensemble x Element — Ensemble
retirer: Ensemble x Element — Ensemble
estPresent: Ensemble x Element — Booleen
cardinalite: Ensemble — Naturel
union: Ensemble x Ensemble — Ensemble
intersection: Ensemble x Ensemble — Ensemble
soustraction: Ensemble x Ensemble — Ensemble

Axiomes: - ajouter(ajouter(s,e),e)=ajouter(s,e)

retirer(ajouter(s,e),e)=s

- estPresent(ajouter(s,e),e)

non estPresent(retirer(s,e),e)

- cardinalite(ensemble())=0

- cardinalite(ajouter(s,e))=14-cardinalite(s) et non estPresent(s,e)
cardinalite(ajouter(s,e))=cardinalite(s) et estPresent(s,e)

