
ITI3 mardi 5 novembre 2024

Algorithmique avancée et programmation C

Durée : 1h15
Documents autorisés : AUCUN

Remarques :
— Veuillez lire attentivement les questions avant de répondre ;
— Rendez une copie propre ;
— N’utilisez pas de crayon à papier sur votre copie ;
— Pour chaque section comportant des questions, il est indiqué, entre parenthèses, le nombre de compétences évaluées ;
— Vous trouverez en annexe les signatures de fonctions et procédures sur des collections, SDD nécessaires à certains exercices.

1 QCM (3 compétences)

Répondez au QCM ci joint (à rendre avec votre copie). La note de chaque question peut varier de −1 à +1.

Soit B le nombre de bonnes réponses à une question et soit M le nombre de mauvaises réponses à cette même question
(B+M est égal au nombre de réponses à la question). Chaque bonne réponse cochée rapporte 1/B points et chaque mauvaise
réponse −1/M points.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— DEV001 : Compiler et linker un programme C (options de base de gcc)
— DEV008 : Traduire des passages de paramètre algorithme en passage de paramètre C
— DEV009 : Utiliser les pointeurs, tableaux et châınes de caractères en C

2 Les arbres de Fenwick

Soit une suite de valeurs vi, i ∈ 1..n qui évoluent dans le temps. Dans de nombreux domaines, il est nécessaire de calculer
la somme des m premières valeurs (nommée somme préfixes). Avec un algorithme näıf cette opération est en O(n).

≪ Un arbre de Fenwick est une structure de données qui permet de mettre à jour efficacement des valeurs et de calculer
des sommes préfixes dans un tableau de valeurs.

Cette structure a été proposée par Boris Ryabko en 1989, avec une modification supplémentaire publiée en 1992. Elle est
devenue connue sous le nom d’arbre de Fenwick après que Peter Fenwick l’ait décrite dans un article de 1994.

Comparé à un tableau plat de valeurs, l’arbre de Fenwick réalise un bien meilleur équilibre entre deux opérations : la mise
à jour des valeurs et le calcul des sommes préfixes. ≫ (Wikipédia)

2.1 Principe

Un arbre de Fenwick est un arbre binaire équilibré, tel que les nœuds ont soit 0 fils (les feuilles) soit exactement 2 fils. Un
nœud d’un arbre de Fenwick représente un intervalle ou une valeur. Un nœud non feuille représente un intervalle (d..f) et

stocke la somme des valeurs sur cet intervalle
∑f

i=d vi. Le fils gauche d’un nœud non feuille représente l’intervalle de gauche
(d..(d+ f) div 2), et son fils droit l’intervalle de droite ((d+ f) div 2 + 1..f). Une feuille représente une valeur vi. S’il y a n
valeurs de référencées, l’intervalle dans la racine de l’arbre est 1..n.

On calcule la somme préfixes d’un indice j (
∑j

i=1 vi) de la manière suivante :
— si le nœud courant n’est pas une feuille, on compare l’indice j à l’intervalle d..f courant. Trois cas apparâıt alors :

— j < d : dans ce cas la somme préfixes vaut 0 ;
— j ≥ f : dans ce cas la somme préfixes vaut la valeur qu’il y a dans le nœud courant (la somme des valeurs contenu

dans les deux fils) ;
— j ≥ d et j < f : dans ce cas la somme préfixes vaut l’addition de la somme préfixes de j pour le sous arbre gauche et

de la somme préfixes de j pour le sous arbre droit.
— si le nœud courant est une feuille, la somme préfixe vaut vi.

Soit les 9 valeurs vi suivantes :

1



2 1 3 1 4 5 8 7 1
1 2 3 4 5 6 7 8 9

1. Dessinez l’arbre de Fenwick pour ces valeurs. Vous penserez à indiquer pour les nœuds non feuille les intervalles et les
sommes des valeurs sur ces intervalles. Pour les feuilles vous indiquerez i et vi.
Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

[1− 9]32

[1− 5]11

[1− 3]6

[1− 2]3

[1]2 [2]1

[3]3

[4− 5]5

[4]1 [5]4

[6− 9]21

[6− 7]13

[6]5 [7]8

[8− 9]8

[8]7 [9]1

2. En utilisant l’arbre que vous venez de dessiner, calculez la somme préfixes pour l’indice 7. Expliquez votre démarche.
Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— On part de la racine, 7 est au sein de l’intervalle 1..9, il faut donc additionner la somme préfixes pour le fils gauche et
la somme préfixes pour le fils droit :
— Pour le fils gauche, l’intervalle est de 1..5, 7 est donc supérieur à 5, cette somme vaut donc 11.
— Pour le fils droit, l’intervalle est 6..9, il faut donc additionner la somme préfixe pour le fils gauche et la somme

préfixe pour le fils droit :
— Pour le fils gauche, l’intervalle est de 6..7, 7 ≥ 7, cette somme vaut donc 13.
— Pour le fils droit, l’intervalle est de 8..9, 7 < 8, donc la somme vaut 0

Finalement la somme préfixes calculée est 11 + 13 soit 24

2.2 Analyse (4 compétences)

On considère que les valeurs stockées sont de type entier et qu’elles sont indicées à partir de 1.

Soit le TAD ArbreFenwick pour lequel on peut :

1. créer un arbre de Fenwick à partir d’un nombre de valeurs, toutes nulles ;

2. créer un arbre à partir d’une liste de valeurs ;

3. savoir si un arbre de Fenwick est une feuille ;

4. obtenir les deux arbres de Fenwick (fils gauche et droit) lorsque l’arbre de Fenwick n’est pas une feuille ;

5. obtenir l’indice d’une valeur lorsque l’arbre de Fenwick est une feuille ;

6. obtenir les indices de l’intervalle lorsque l’arbre de Fenwick n’est pas une feuille ;

7. obtenir la valeur se trouvant à la racine d’un arbre de Fenwick : vi si c’est une feuille,
∑f

i=d vi sinon

8. additionner un entier à une valeur identifiée à partir de son indice.

Décrivez ce TAD (sans les axiomes et sémantiques).

Solution proposée :

2



Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD
— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier
— AN204 : Formaliser des opérations d’un TAD
— AN205 : Formaliser les préconditions d’une opération d’un TAD

Nom: ArbreFenwick

Utilise: Booleen, NaturelNonNul, Entier, Liste

Opérations: afAPartirDeNZeros: NaturelNonNul → ArbreFenwick

afAPartirDeValeurs: Liste<Entier> ↛ ArbreFenwick

estUneFeuille: ArbreFenwick → Booleen

obtenirFilsGauche: ArbreFenwick ↛ ArbreFenwick

obtenirFilsDroit: ArbreFenwick ↛ ArbreFenwick

obtenirIndice: ArbreFenwick ↛ NaturelNonNul

obtenirIntervalle: ArbreFenwick ↛ NaturelNonNul × NaturelNonNul

obtenirValeur: ArbreFenwick → Entier

additionner: ArbreFenwick × NaturelNonNul × Entier ↛ ArbreFenwick

Préconditions: afAPartirDeValeurs(l): non estVide(l)

obtenirFilsGauche(af): non estUneFeuille(af)

obtenirFilsDroit(af): non estUneFeuille(af)

obtenirIndice(a): estUneFeuille(af)

obtenirIntervalle(af): non estUneFeuille(af)

additionner(af,i,v): (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f ←
obtenirIntervalle(af), i ∈ d..f)

2.3 Conception préliminaire (2 compétences)

Proposez les signatures des fonctions et procédures correspondant aux opérations du TAD ArbreFenwick.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)

— fonction afAPartirDeNZeros (n : NaturelNonNul) : ArbreFenwick
— fonction afAPartirDeValeurs (vs : Liste<Entier>) : ArbreFenwick

⌊précondition(s) non estVide(l)

— fonction estUneFeuille (af : ArbreFenwick) : Booleen
— fonction obtenirFilsGauche (af : ArbreFenwick) : ArbreFenwick

⌊précondition(s) non estUneFeuille(af)

— fonction obtenirFilsDroit (af : ArbreFenwick) : ArbreFenwick

⌊précondition(s) non estUneFeuille(af)

— fonction obtenirIndice (af : ArbreFenwick) : NaturelNonNul

⌊précondition(s) estUneFeuille(af)

— fonction obtenirIntervalle (af : ArbreFenwick) : NaturelNonNul × NaturelNonNul

⌊précondition(s) non estUneFeuille(af)

— fonction obtenirValeur (af : ArbreFenwick) : Entier
— procédure additionner (E/S af : ArbreFenwick, E i : NaturelNonNul, v : Entier)

⌊précondition(s) (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f ← obtenirInter-
valle(af), i ∈ d..f)

3



2.4 Conception détaillée (7 compétences)

On décide de représenter le type ArbreFenwick à l’aide de la SDD ArbreBinaire (cette SDD est rappelée en Annexe)
de la façon suivante :

Type Contenu = Structure
val : Entier
iDebut : NaturelNonNul
iFin : NaturelNonNul

finstructure
Type ArbreFenwick = ArbreBinaire<Contenu>

Tel que :
— val est la valeur si le noeud courant est une feuille, ou si ce n’est pas une feuille, val est égale à la somme des valeurs

contenu dans ses deux sous arbres ;
— iDebut, iF in sont les indices de l’intervalle, ou l’indice iDebut = iF in pour les feuilles.

On rappelle que l’arbre de Fenwick permet de mettre à jour efficacement une des valeurs vi. Cette mise à jour doit impacter
les éléments concernés de l’arbre. Donnez l’algorithme itératif de la fonction ou de la procédure qui permet d’additionner un
entier à une valeur désignée par son indice (opération numéro 8 de la question 2.2)
Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)
— CD002 : En tant qu’utilisateur, respecter une signature
— CD003 : Utiliser le principe d’encapsulation
— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)
— CD006 : Choisir la bonne itération
— CD009 : Écrire un algorithme qui résout le problème

procédure additionnerAuNoeud (E/S af : ArbreFenwick, E v : Entier)

Déclaration contenu : Contenu

debut
contenu ← obtenirElement(af)
contenu.val ← contenu.val+v
fixerElement(af,contenu)

fin
procédure additionner (E/S af : ArbreFenwick, E i : NaturelNonNul, v : Entier)

⌊précondition(s) (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f ← obtenirInter-
valle(af), i ∈ d..f)

Déclaration afCourant : ArbreFenwick
contenu : Contenu

debut
afCourant ← af
tant que non estUneFeuille(af) faire

additionnerAuNoeud(afCourant,v)
contenu ← obtenirElement(af)
si i≤(contenu.iDebut+contenu.iFin) div 2 alors

afCourant ← obtenirFilsGauche(afCourant)
sinon

afCourant ← obtenirFilsDroit(afCourant)
finsi

fintantque
additionnerAuNoeud(afCourant,v)

fin

Note : af aurait pu avoir un passage de paramètre en entrée car ce n’est pas le pointeur qui est modifié mais les nœuds
pointés. Le choix du passage de paramètre en entrée/sortie nous oblige à utiliser une variable locale (afCourant) pour
parcourir l’arbre.

4



2.5 Utilisation : somme préfixes (9 compétences)

Donnez l’algorithme récursif de la fonction ou de la procédure qui permet de calculer la somme préfixes des i premières
valeurs d’un arbre de Fenwick. Si i est plus grand que le nombre de valeurs alors la somme préfixes sera la somme de toutes
ces valeurs.

Votre algorithme récursif est-il terminal ? Qu’est-ce que cela implique ? Justifiez
Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)
— CD002 : En tant qu’utilisateur, respecter une signature
— CD003 : Utiliser le principe d’encapsulation
— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)
— CD009 : Écrire un algorithme qui résout le problème
— CD201 : Identifier et résoudre le problème des cas non récursifs
— CD202 : Identifier et résoudre le problème des cas récursifs
— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

fonction calculerSommePrefixes (af : ArbreFenwick, i : NaturelNonNul) : Entier

Déclaration d,f : NaturelNonNul

debut
si estUneFeuille(af) alors

retourner obtenirValeur(af)
finsi
d,f ← obtenirIntervalle(af)
si i<d alors

retourner 0
finsi
si i≥f alors

retourner obtenirSomme(af)
finsi
retourner calculerSommePrefixes(obtenirFilsGauche(af),i) + calculerSommePrefixes(obtenirFilsDroit(af),i)

fin

Il s’agit d’un algorithme non terminal (car il y a l’un des deux appels récusrifs n’est pas la dernière instruction. Il est donc
impossible de dérécursiver automatiquement cet algorithme.

Annexes

En cours nous avons conçu le SDD ArbreBinaire de la façon suivante :

Type ArbreBinaire = ˆ Noeud
Type Noeud = Structure

lElement : Element
filsGauche : ArbreBinaire
filsDroit : ArbreBinaire

finstructure

Que l’on peut utiliser à l’aide des fonctions et procédure suivantes :
— fonction arbreBinaire () : ArbreBinaire
— fonction estVide (a : ArbreBinaire) : Booleen
— fonction ajouterRacine (fg,fd : ArbreBinaire,e : Element) : ArbreBinaire
— fonction obtenirElement (a : ArbreBinaire) : Element

⌊précondition(s) non estVide(a)
— fonction obtenirFilsGauche (a : ArbreBinaire) : ArbreBinaire

⌊précondition(s) non estVide(a)
— fonction obtenirFilsDroit (a : ArbreBinaire) : ArbreBinaire

⌊précondition(s) non estVide(a)
— procédure fixerElement (E a : ArbreBinaire, e : Element)

5



⌊précondition(s) non estVide(a)

— procédure fixerFilsGauche (E a : ArbreBinaire, ag : ArbreBinaire)

⌊précondition(s) non estVide(a)

— procédure fixerFilsDroit (E a : ArbreBinaire, ad : ArbreBinaire)

⌊précondition(s) non estVide(a)

— procédure supprimerRacine (E/S a : ArbreBinaire, S fg,fd : ArbreBinaire)

⌊précondition(s) non estVide(a)

— procédure supprimer (E/S a : ArbreBinaire)

6


