ITI3 mardi 5 novembre 2024

Algorithmique avancée et programmation C

Durée : 1h15
Documents autorisés : AUCUN

Remarques :

— Veuillez lire attentivement les questions avant de répondre;

— Rendez une copie propre;

— N'utilisez pas de crayon a papier sur votre copie;

— Pour chaque section comportant des questions, il est indiqué, entre parentheses, le nombre de compétences évaluées ;

— Vous trouverez en annexe les signatures de fonctions et procédures sur des collections, SDD nécessaires a certains exercices.

1 QCM (3 compétences)

Répondez au QCM ci joint (& rendre avec votre copie). La note de chaque question peut varier de —1 & +1.

Soit B le nombre de bonnes réponses a une question et soit M le nombre de mauvaises réponses a cette méme question
(B4 M est égal au nombre de réponses a la question). Chaque bonne réponse cochée rapporte 1/B points et chaque mauvaise
réponse —1/M points.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— DEVO001 : Compiler et linker un programme C (options de base de gce)
— DEVO008 : Traduire des passages de parametre algorithme en passage de parametre C
— DEVO009 : Utiliser les pointeurs, tableaux et chaines de caracteres en C

2 Les arbres de Fenwick

Soit une suite de valeurs v;,4 € 1..n qui évoluent dans le temps. Dans de nombreux domaines, il est nécessaire de calculer
la somme des m premieres valeurs (nommée somme préfixes). Avec un algorithme naif cette opération est en O(n).

< Un arbre de Fenwick est une structure de données qui permet de mettre a jour efficacement des valeurs et de calculer
des sommes préfixes dans un tableau de valeurs.

Cette structure a été proposée par Boris Ryabko en 1989, avec une modification supplémentaire publiée en 1992. Elle est
devenue connue sous le nom d’arbre de Fenwick apres que Peter Fenwick 1’ait décrite dans un article de 1994.

Comparé a un tableau plat de valeurs, I’arbre de Fenwick réalise un bien meilleur équilibre entre deux opérations : la mise
a jour des valeurs et le calcul des sommes préfixes. » (Wikipédia)

2.1 Principe

Un arbre de Fenwick est un arbre binaire équilibré, tel que les noeuds ont soit 0 fils (les feuilles) soit exactement 2 fils. Un
nceud d’un arbre de Fenwick représente un intervalle ou une valeur. Un nceud non feuille représente un intervalle (d..f) et
stocke la somme des valeurs sur cet intervalle Zf: 4 Vi- Le fils gauche d’un nceud non feuille représente I'intervalle de gauche
(d..(d+ f) div 2), et son fils droit I'intervalle de droite ((d + f) div 2 + 1..f). Une feuille représente une valeur v;. S’'ily an
valeurs de référencées, I'intervalle dans la racine de ’arbre est 1..n.

On calcule la somme préfixes d’un indice j (3°7_, v;) de la maniére suivante :
— si le nceud courant n’est pas une feuille, on compare U'indice j a Uintervalle d..f courant. Trois cas apparait alors :
— j < d : dans ce cas la somme préfixes vaut 0;
— j > f : dans ce cas la somme préfixes vaut la valeur qu'il y a dans le nceud courant (la somme des valeurs contenu
dans les deux fils) ;
— j>det j < f:dans ce cas la somme préfixes vaut I'addition de la somme préfixes de j pour le sous arbre gauche et
de la somme préfixes de j pour le sous arbre droit.
— si le neceud courant est une feuille, la somme préfixe vaut v;.
Soit les 9 valeurs v; suivantes :

[2]1
1 2

|

[3]1]4]5]8[7]1

3 4 5 6 7 8 9

1. Dessinez l'arbre de Fenwick pour ces valeurs. Vous penserez a indiquer pour les nceuds non feuille les intervalles et les
sommes des valeurs sur ces intervalles. Pour les feuilles vous indiquerez i et v;.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— ANO004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

[1 —9]32

[1-5]11 [6—9]21

[1—3]6 [4—5]5 [6 — 7]13 [8 —9]8

[1-2]3 [3]3 [4]1 [5]4 [6]5 [7]8 8]7 [9]1

(1]2 (211

2. En utilisant 'arbre que vous venez de dessiner, calculez la somme préfixes pour I'indice 7. Expliquez votre démarche.
Solution proposée :

[Attendus d’apprentissages disciplinaires évalués

l — ANO004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— On part de la racine, 7 est au sein de l'intervalle 1..9, il faut donc additionner la somme préfixes pour le fils gauche et
la somme préfixes pour le fils droit :
— Pour le fils gauche, I'intervalle est de 1..5, 7 est donc supérieur a 5, cette somme vaut donc 11.
— Pour le fils droit, l'intervalle est 6..9, il faut donc additionner la somme préfixe pour le fils gauche et la somme
préfixe pour le fils droit :
— Pour le fils gauche, 'intervalle est de 6..7, 7 > 7, cette somme vaut donc 13.
— Pour le fils droit, I'intervalle est de 8..9, 7 < 8, donc la somme vaut 0

Finalement la somme préfixes calculée est 11 4 13 soit 24

2.2 Analyse (4 compétences)

On considere que les valeurs stockées sont de type entier et qu’elles sont indicées a partir de 1.

Soit le TAD ArbreFenwick pour lequel on peut :

créer un arbre de Fenwick & partir d’un nombre de valeurs, toutes nulles ;

créer un arbre a partir d’une liste de valeurs;

savoir si un arbre de Fenwick est une feuille ;

obtenir les deux arbres de Fenwick (fils gauche et droit) lorsque 1'arbre de Fenwick n’est pas une feuille;
obtenir I'indice d’une valeur lorsque I’arbre de Fenwick est une feuille;

obtenir les indices de l'intervalle lorsque ’arbre de Fenwick n’est pas une feuille;

obtenir la valeur se trouvant a la racine d’un arbre de Fenwick : v; si ¢’est une feuille, Zf: 4 Vi sinon

e I A

additionner un entier a une valeur identifiée a partir de son indice.

Décrivez ce TAD (sans les axiomes et sémantiques).

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— ANZ201 : Identifier les dépendances d’'un TAD

— AN203 : Savoir si une opération identifiée fait partie du TAD a spécifier
— AN204 : Formaliser des opérations d’'un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

Nom: ArbreFenwick

Utilise: Booleen, NaturelNonNul, Entier, Liste

Opérations: afAPartirDeNZeros: NaturelNonNul — ArbreFenwick
afAPartirDeValeurs: Liste<Entier> — ArbreFenwick
estUneFeuille: ArbreFenwick — Booleen
obtenirFilsGauche: ArbreFenwick - ArbreFenwick
obtenirFilsDroit: ArbreFenwick —» ArbreFenwick

obtenirlndice: ArbreFenwick - NaturelNonNul

obtenirlntervalle: ArbreFenwick - NaturelNonNul x NaturelNonNul
obtenirValeur: ArbreFenwick — Entier

additionner: ArbreFenwick x NaturelNonNul x Entier - ArbreFenwick

Préconditions: afAPartirDeValeurs(l): non estVide(l)
obtenirFilsGauche(af): non estUneFeuille(af)
obtenirFilsDroit(af): non estUneFeuille(af)
obtenirlndice(a): estUneFeuille(af)
obtenirlntervalle(af): non estUneFeuille(af)

additionner(af,i,v): (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f <
obtenirIntervalle(af), i € d..f)

2.3 Conception préliminaire (2 compétences)

Proposez les signatures des fonctions et procédures correspondant aux opérations du TAD ArbreFenwick.

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure
— CPO004 : Concevoir une signature (préconditions incluses)

— fonction afAPartirDeNZeros (n : NaturelNonNul) : ArbreFenwick

— fonction afAPartirDeValeurs (vs : Liste<Entier>) : ArbreFenwick
|précondition(s) non estVide(l)

— fonction estUneFeuille (af : ArbreFenwick) : Booleen

— fonction obtenirFilsGauche (af : ArbreFenwick) : ArbreFenwick

|précondition(s) non estUneFeuille(af)
— fonction obtenirFilsDroit (af : ArbreFenwick) : ArbreFenwick

|précondition(s) non estUneFeuille(af)

— fonction obtenirIndice (af : ArbreFenwick) : NaturelNonNul
|précondition(s) estUneFeuille(af)

— fonction obtenirlntervalle (af : ArbreFenwick) : NaturelNonNul x NaturelNonNul
|précondition(s) non estUneFeuille(af)

— fonction obtenirValeur (af : ArbreFenwick) : Entier
— procédure additionner (E/S af : ArbreFenwick, E i : NaturelNonNul, v : Entier)

|précondition(s) (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f < obtenirInter-
valle(af), i € d..f)

2.4 Conception détaillée (7 compétences)

On décide de représenter le type ArbreFenwick & l'aide de la SDD ArbreBinaire (cette SDD est rappelée en Annexe)
de la fagon suivante :

Type Contenu = Structure
val : Entier
iDebut : NaturelNonNul
iFin : NaturelNonNul
finstructure
Type ArbreFenwick = ArbreBinaire<Contenu>

Tel que :

— wval est la valeur si le noeud courant est une feuille, ou si ce n’est pas une feuille, val est égale a la somme des valeurs
contenu dans ses deux sous arbres;
— iDebut, iFin sont les indices de I'intervalle, ou I'indice iDebut = iF'in pour les feuilles.

On rappelle que 'arbre de Fenwick permet de mettre a jour efficacement une des valeurs v;. Cette mise a jour doit impacter
les éléments concernés de ’arbre. Donnez ’algorithme itératif de la fonction ou de la procédure qui permet d’additionner un
entier & une valeur désignée par son indice (opération numéro 8 de la question 2.2)

Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CDO002 : En tant qu’utilisateur, respecter une signature

— (D003 : Utiliser le principe d’encapsulation

— CDO005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)
— CDO006 : Choisir la bonne itération

— CD009 : Ecrire un algorithme qui résout le probleme

procédure additionnerAuNoeud (E/S af : ArbreFenwick, E v : Entier)
Déclaration contenu : Contenu

debut
contenu < obtenirElement (af)
contenu.val < contenu.val+v
fixerElement(af,contenu)
fin
procédure additionner (E/S af : ArbreFenwick, E i : NaturelNonNul, v : Entier)

|précondition(s) (estUneFeuille(af) et obtenirIndice(af)=i) ou (non estUneFeuille(af) et avec d,f < obtenirInter-
valle(af), 7 € d..f)

Déclaration afCourant : ArbreFenwick
contenu : Contenu

debut
afCourant « af
tant que non estUneFeuille(af) faire
additionnerAuNoeud (afCourant,v)
contenu < obtenirElement(af)
si i<(contenu.iDebut+contenu.iFin) div 2 alors
afCourant < obtenirFilsGauche(afCourant)
sinon
afCourant < obtenirFilsDroit(afCourant)
finsi
fintantque

additionnerAuNoeud(afCourant,v)
fin

Note : af aurait pu avoir un passage de parametre en entrée car ce n’est pas le pointeur qui est modifié mais les nceuds
pointés. Le choix du passage de parametre en entrée/sortie nous oblige & utiliser une variable locale (afCourant) pour
parcourir I'arbre.

2.5 Utilisation : somme préfixes (9 compétences)

Donnez ’algorithme récursif de la fonction ou de la procédure qui permet de calculer la somme préfixes des ¢ premieres
valeurs d’'un arbre de Fenwick. Si ¢ est plus grand que le nombre de valeurs alors la somme préfixes sera la somme de toutes
ces valeurs.

Votre algorithme récursif est-il terminal 7 Qu’est-ce que cela implique ? Justifiez
Solution proposée :

Attendus d’apprentissages disciplinaires évalués

— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO003 : Utiliser le principe d’encapsulation

— CDO005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)

— CDO009 : Ecrire un algorithme qui résout le probleme

— (CD201 : Identifier et résoudre le probleme des cas non récursifs

— (CD202 : Identifier et résoudre le probleme des cas récursifs

— (CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

\

fonction calculerSommePrefixes (af : ArbreFenwick, i : NaturelNonNul) : Entier
Déclaration d,f: NaturelNonNul

debut
si estUneFeuille(af) alors
retourner obtenirValeur(af)
finsi
d,f + obtenirlntervalle(af)
si i<d alors
retourner 0
finsi
si i>f alors
retourner obtenirSomme(af)
finsi

retourner calculerSommePrefixes(obtenirFilsGauche(af),i) + calculerSommePrefixes(obtenirFilsDroit(af),i)
fin

1l s’agit d’un algorithme non terminal (car il y a 'un des deux appels récusrifs n’est pas la derniere instruction. Il est donc
impossible de dérécursiver automatiquement cet algorithme.

Annexes

En cours nous avons congu le SDD ArbreBinaire de la fagon suivante :

Type ArbreBinaire = "~ Noeud
Type Noeud = Structure
1Element : Element
filsGauche : ArbreBinaire
filsDroit : ArbreBinaire
finstructure

Que l'on peut utiliser a ’aide des fonctions et procédure suivantes :

— fonction arbreBinaire () : ArbreBinaire

— fonction estVide (a : ArbreBinaire) : Booleen

— fonction ajouterRacine (fg,fd : ArbreBinaire,e : Element) : ArbreBinaire

— fonction obtenirElement (a : ArbreBinaire) : Element
|précondition(s) mnon estVide(a)

— fonction obtenirFilsGauche (a : ArbreBinaire) : ArbreBinaire
|précondition(s) mnon estVide(a)

— fonction obtenirFilsDroit (a : ArbreBinaire) : ArbreBinaire
|précondition(s) mnon estVide(a)

— procédure fixerElement (E a : ArbreBinaire, e : Element)

|précondition(s) non estVide(a)

procédure fixerFilsGauche (E a : ArbreBinaire, ag : ArbreBinaire)
|précondition(s) mnon estVide(a)

procédure fixerFilsDroit (E a : ArbreBinaire, ad : ArbreBinaire)
|précondition(s) non estVide(a)

procédure supprimerRacine (E/S a : ArbreBinaire, S fg,fd : ArbreBinaire)
|précondition(s) mnon estVide(a)

procédure supprimer (E/S a : ArbreBinaire)

