ARCHITECTURE

DEPARTEMENT
DES SYSTEMES

INSTITUT NATIONAL . . . D’INFORMATION
DES SCIENCES Optlmlzatlon AN year
APPLIQUEES y

o G. Gasso

INSA

Objective

* Implement gradient descent to solve unconstrained optimization.

Unconstrained problem
Let consider the minimization problem of the Rosenbrock’s function

min J(8) with J(6) = (1—61)* +100 (6, — 63)" @)
0cR

We will derive theoretically the solution and implement gradient descent and Newton methods
to compute numerically the solution.

1 Our goal ...

1. Check that the gradient of J(80) is given by

_ _ _ P2
Sorto - (20 oo =)

Determine the stationary point 8* of J(8).
Hint: solve the equation VgJ(0) = 0

2. Knowing that the Hessian matrix of .J(8) is

(24120007 — 4000 —4006,
H(6) = < —4006; 200)7

show that this stationary point 8" is a minimum of .J.
Hint: check using Python that H(6*) is positive definite.

2 ... and how we reach it

We want to compute numerically a solution of ming J(€) with the following iterative approach
e Initialize 8y, k =0
* Repeat until convergence

— Compute the descent direction hy,
— Select the step size oy

— Update the solution Oy 1 = 0y + aihy; andsetk < k + 1

p.1/3

ASI4 DM

2.1 Gradient descent method

1. How the direction of descent hy, is chosen in this case?

2. Write a function J = mycriterion(0) that computes the value of J (see Eq. 1) given a
vector 6.

import numpy as np

def mycriterion (theta) :
J=
return J

3. Write a function d = mygradient (@) that calculate the gradient of the function J (1)

def mygradient (theta) :
gradd =
return gradd

4. The contours the J can be shown as hereafter. The initial vector 8 is provided below (you
may change it)

import matplotlib.pyplot as plt

contour plot of rosenbrock function

n = 100

points_x1, points_x2 = np.meshgrid(np.linspace(-1.25, 1.5, n), np.
linspace(-1.75, 1.5, n))

f = (1l-points_x1)**x2 + 100%* ((points_x2 - points_x1%x%2)*x%x2)
f = f.reshape (points_x1.shape)
levels = np.concatenate((np.array ([0, 1]), np.arange(5, 45, 5)))

fig = plt.figure(l, figsize=(8,4))

cp = plt.contourf (points_x1, points_x2, f, levels, alpha=0.95, cmap="RdBu
Al
)

plt.colorbar ()

initial vector

theta0 = np.array([-1.0, 0.0])

plt.figure (fig.number)

plt.scatter (thetaO[0], thetaO[l], marker="o", color="k", facecolor="k", s
=150)

plt.text (-1.1, -0.5, r"${\theta}_0$", {"color": "k", "fontsize": 20})

plt.xticks (fontsize=16), plt.yticks (fontsize=16)

5. Complete your script in order to implement the gradient descent method. The convergence
criterion will be ||V.J(8)|| < 1073 or a maximum number of iterations is reached. Test your
algorithm either with a fixed step size o, = « and «a; computed using the backtracking
method (apply the Armijo’s rule, see the course).

from scipy.linalg import norm
maximal number of iteration
iter_max = 2500

threshold on the norm of the gradient
thresh = le-2

p.2/3

ASI4 DM

store ongoing results

history_J = np.empty (iter_max)

history_theta = np.empty ((thetal.shape[0], iter_max))

initialization

iter = 0

theta = thetal.copy ()

store the initial theta and related gradient and criterion

history_thetal:,iter] = thetal

history_J[iter] = mycriterion (thetal)

grad = mygradient (thetal)

while (iter <= iter_max-2) and (norm(grad) > thresh):
compute descent direction
direction =

select the step size alpha
alpha =

update the solution
theta += alphaxdirection

increase iteration number
iter += 1

store the current solution and criterion
history_theta[:,iter] = theta
history_Jliter] =

compute the new gradient
grad =
6. Plot the evolution of .J over iterations. Compare the obtained solution 0 at convergence with

the optimal one 6*.

7. Comment on the convergence speed of the algorithm and the quality of the solution.

2.2 Newton method

We want to compute the solution of problem (1) using Newton method.

1. Write a function H = myhessian(#) in order to compute the Hessian matrix

def myhessian (theta) :
Hessiand =
return Hessiand

2. Inspiring from the gradient descent method, complete your script by the implementation of
Newton method.
Hint : you will soon notice that the H(0) matrix is not always positive definite. To circum-
vent it, regularize the optimization problem by considering instead H <— H+ Al with A > 0
a fixed parameter to be chosen.

3. Compare the convergence speed with the previous case.

p.3/3

	Our goal ...
	... and how we reach it
	Gradient descent method
	 Newton method

