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1. From decision trees to decision forests
2. Random Forests
- Random forests
- Random forests in practice
- The Swiss knife of machine learning
- Some successful applications
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Random Forest INSN

A Random Forest (RF) is an ensemble of DT, each of which is "randomized”

- Collection of L decision trees {hy = h(x,6;),k =1,...,L}

- {0} are i.i.d. random vectors

Training set + {0

91 OL
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Random Forest INSN

A Random Forest (RF) is an ensemble of DT, each of which is "randomized”

- Each tree casts a unit vote for the most popular class at input x

New instance x
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Random Forest INSN

- 0 : vector of n random values in {0, 1} (coin flip)

- For each 6, build a replicate Dy, of the training set D using 0, as a mask :

o [ [ <

- Train the k" decision tree on Dy

- The L trees are different due to instability (cf. end of previous chapter)
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Random Forest

- Problem

- Solution :
- Problem :

- Solution :

- we do not control the size of Dy

randomly draw p instances from D, with p < n
diversity is inversely proportional to p

randomly draw with replacement p instances from D
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- we do not control the size of Dy

randomly draw p instances from D, with p < n
diversity is inversely proportional to p

randomly draw with replacement p instances from D
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This is called Bagging!
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Note : p set equal to n (good results in general)
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Random Forest

The Random Subspaces Method (RSM)

X1

X2

X1

X2
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Note : the number p of features to be drawn is more complex to set (here p = d/2)
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Random Feature Selection
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Note : In softwares, Random Forest stands for Bagging + Random Feature Selection
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2 main hyperparameters to set for optimum performance

L : the number of random trees
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Random forest in practice INSN

2 main hyperparameters to set for optimum performance

L : the number of random trees

- Analysis : convergence is reached for different amounts of trees from a dataset to another
- Problem : How many trees is enough for a given dataset?

- Solutions :
- Empirical : several hundreds
— no guarantee but computational times being low, the most popular solution
- Validation (or out-of-bag) error to detect convergence
— Parallelizing is not possible anymore, and sometimes over-optimistic
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Random forest in practice INSN

2 main hyperparameters to set for optimum performance

p :the number of random features at each node

p= 1 2 d—1 d
Randomness || max —~®..0— 0

Popular values : 1, v/d, [log,(d)]

sqrt=22

35
best=251
30

18/35



INSTITUT NATIONAL.
DES SCIENCES
APPLIQUEES
ROUEN NORMANDIE

Random forest in practice INSN

2 main hyperparameters to set for optimum performance

p :the number of random features at each node

- Analysis : best value depends on irrelevant features

- few irrelevant features = p low (~ Vd)
- many irrelevant features = p high, but difficult to set a priori

- Problem : How to set this value without a priori knowledge on the features

- Solutions : Know your dataset, feature analysis, feature selection, cross-validation
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In most cases, it is best to use unpruned trees

—— oob error
—— testerror
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Note : digits dataset, p = V/d, L = 100
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The Swiss knife of machine learning INSN

One of the main reasons to use Bagging is the out-of-bag mechanism

- When p = n, 36.8% of D are NOT present in Dy, in average (provable)’
- These instances are called out-of-bag (oob)

- The oob instances are different from one Dy, to another

Dy, :

1. Note : when p > n, there is less oob instances and the diversity is limited
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The out-of-bag instances can be used to estimate generalization capabilities

- Validation dataset required for :

- tuning hyperparameters

- estimating generalization performance

- estimating diversity and individual accuracies
- learning/optimizing combination operators

- etc.

- Alternative : using oob instances instead of an independant dataset

- Oob estimates are reliable estimates for generalization capabilities, although they tend to
underestimate some of them.
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Example : generalization error

score wrt number of tree, with max_depth=5

0201 = Qut-of-bag
— Test
0.18 1 — s5-fold cv

20 40 60 80 100 120
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Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :

For a given feature x() :

—
petal length (cm) < 2253

gini = 0.6667
samples = 150
value = [50, 50, 50]
class = setosa

- Consider each node N, for which x() is
used in Sy,

- Cumulate their impurity gain values

j 1 |Dy|
o (x) = — — 7 A(Dy, Sw,)
[Nl NkZE:N’, D] f

e
petal length (cm) < 4.85Y
= qini = 0.0425

—X
(Gl length (cm) < 498
qini = 0.168

samples = 54 samples = 46
value = [0, 49, 5] value = [0, 1, 45]
class = versicolor class = virginica__/J

— 1 — - ——

where N; is the set of nodes, all trees

gini = 0.0408 gini = 0.4444 gini = 0.4444 gini=0.0 Con5|dered, that uses X(') for spllttlng
samples = 48 samples - 6 samples - 3 samples = 43

value = (0,47, 1] | | value=[0,2, 4] value=[0,1,2] | | value = [0, 0,43]

class = versicdlor ) | class = virginica class = virginica ) | class = virginica
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Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :

For example, for Iris :

—
pStal length (cm) < 2353 Feature importances

gini = 0.6667 08
samples = 150
value = [50, 50, 50] 07
class = setosa )
S
0.6
(cm) <
ini=05 05
samples = 100
value = [0, 50, 50]
class = versicolor 04
 — ¥ —— 03
(pf&tal length (cm) < 495 (€Tl length (cm) < 4.854)
qini = 0.168 qini = 0.0425 02
samples = 54 samples = 46
value = [0, 49, 5] value =[0, 1, 45]
class = versicolor class = virginica_f 01
—~—~—— ~——]
0.0 +
qini = 0.0408 gini = 0.4444 qgini = 0.4444 gini = 0.0
samples = 48 -6 samples = 3 samples = 43
value = [0, 47, 1] value = [0, 2, 4] value = [0, 1, 2] value = [0, 0, 43] =01 3 3 0 T
class = versicolor ) | class = virginica class = virginica | | class = virginica
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The Swiss knife of machine learning INSN

Forests embed 2 feature importance measures

Mean Decrease Accuracy (MDA) : based on out-of-bag votes

1. For each hy, record the correct out-of-bag votes, noted Vj
2. For each feature x() :

(a) Randomly permute all the values of x() in D
(b) For all trees hy,
(1)

(i) Counts the new out-of-bag correct votes from hy, noted ka
(i) Compute Sf?') =V — V,(e')

(c) The importance measure for x() is

L
) 1 .
Iuoa(x() = T >y
P
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The Swiss knife of machine learning INSN

Random Forests embed a similarity measure on pairs of instances

- Similarity = measure the resemblance between 2 instances x; and x;.

- Takes the class membership into account, contrary to distance measure

Example : Euclidean distance (no y;, y; in the equation)

- X;, X; similar if "close” to each other but also if they belong to the same class

- Key idea : x; and x; are similar if they follow the same path down the trees
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The Swiss knife of machine learning INSN

Random Forests embed a similarity measure on pairs of instances

No .
. - Let £y bet the set of leaves in the k! tree

SN et

be a function that maps all x to the leaf from

‘ N ’ | Ne I Ly, in which it lands
- Here, [h(X,’) = Ny
/ N\
N7 Ng Ng N1o
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Random Forests embed a similarity measure on pairs of instances

No

:[NZ

- The similarity dg(x;,%;) between x; and x;,

given by the ki tree, is

T G(X) = k(X))
0 otherwise

dr(Xi, %) = {

- Here, x; and x; don’t land in the same leaf :

dr(xi, %) =0
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The Swiss knife of machine learning INSN

Random Forests embed a similarity measure on pairs of instances

N T
0 - The similarity dg(x;,%;) between x; and x;,

given by the ki tree, is

.N N | N |
1 2 dh(x/.’x/-) _ {1 lf [k(X,) = [!?(X/)

0 otherwise

‘ N ’ ‘ Ny ‘ N5 Ne - Here, x; and x; land in the same leaf:
/N —
dk(x,-,xl-) =1
‘ N7 ’ ‘ Ng ’ Ng ‘ N1o
¥ N
‘ N1 N1z
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Random Forests embed a similarity measure on pairs of instances

L
d(x, ) = ¢ k; dr(Xi, X;)
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The Swiss knife of machine learning

Some other tools (not detailed here)

- Unsupervised learning

- Generation of artificial of negative samples to simulate a second class
- Use the tree structure to perform clustering tasks

- Outliers detection
- Novelty detection
- Missing values and labels

- Prototypes selection

INSTITUT NATIONAL.
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Takeaways INSN

Random Forest methods...

- are easy to understand and easy to use
- are among the most accurate methods for "tabular” data
- are robust to many machine learning settings (e.g. high dimension, imbalanced classes, etc.)
- are very versatile with many embedded tools for interpretability
- have been successfully used for many applications, to name a few :
- Giga-pixel image segmentation (biomedical imaging)
- Real-time tracking in videos
- Real-time body part recognition (Kinect)
- Intelligent/autonomous vehicle
- Medical diagnosis/prognosis
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Fernandez-Delgado et al., "Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems?”, Journal of Machine Learning Research, 2014

- Huge comparison of many classifiers : 179 different classifiers and 121 public datasets

| Rank | Acc. ‘ K | Classifier
32.9 | 82.0 | 63.5 parRF_t (RF)
331 | 82.3 | 63.6 .t (RF)
36.8 81.8 62.2 svm_C (SVM)
38.0 81.2 | 60.1 svmPoly_t (SVM)
39.4 81.9 | 62.5 rforest R (RF)
39.6 82.0 | 62.0 elm_kernel_m (NNET)
40.3 81.4 61.1 svmRadialCost_t (SVM)
42.5 81.0 60.0 svmRadial t (SVM)
42.9 80.6 | 61.0 C5.0_t (BST)
441 | 794 | 605 avNNet_t (NNET)
45.5 79.5 61.0 nnet_t (NNET)
47.0 78.7 59.4 pcaNNet_t (NNET)
47.1 80.8 | 53.0 BG_LibSVM_w (BAG)

"The classifiers most likely to be the bests are
the random forest (RF) versions [...]. However,
the difference is not statistically significant with
the second best, the SVM with Gaussian kernel

L.
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