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1. From decision trees to decision forests
2. Random Forests

• Random forests
• Random forests in practice
• The Swiss knife of machine learning
• Some successful applications

3. Boosted Forests
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Random Forest

A Random Forest (RF) is an ensemble of DT, each of which is ”randomized”

• Collection of L decision trees {hk = h(x, θk), k = 1, ..., L}

• {θk} are i.i.d. random vectors

Training set + {θk}

· · ·

θ1

θ2

θL
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Random Forest

A Random Forest (RF) is an ensemble of DT, each of which is ”randomized”

• Each tree casts a unit vote for the most popular class at input x

New instance x

· · ·

x
x

x

ŷ = argmaxλi (
∑
I(hk(x) = λi))
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Random Forest

• θk : vector of n random values in {0, 1} (coin flip)

• For each θk , build a replicate Dk of the training set D using θk as a mask :

D : x1 x2 x3 . . . xn−1 xn

1θk : 1 0 . . . 0 1

x1Dk : x2 x3 . . . xn−1 xn

• Train the kth decision tree on Dk
• The L trees are different due to instability (cf. end of previous chapter)
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Random Forest

• Problem : we do not control the size of Dk
• Solution : randomly draw p instances from D, with p < n

• Problem : diversity is inversely proportional to p

• Solution : randomly draw with replacement p instances from D

D : x1 x2 x3 . . . xn−1 xn

x1Dk : x2 x3 . . . xp−1 xp
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Random Forest

• Problem : we do not control the size of Dk
• Solution : randomly draw p instances from D, with p < n

• Problem : diversity is inversely proportional to p

• Solution : randomly draw with replacement p instances from D

D : x1 x2 x3 . . . xn−1 xn

1θk : 2 0 . . . 3 1

x1Dk : x2 x3 . . . xn−1 xn

This is called Bagging !
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Random Forest

D

D1 D2 . . . DL

Ω(h1, . . . , hL)

x1 x2 . . . xn

x1 x2 . . . xp
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Random Forest

Note : p set equal to n (good results in general)
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Random Forest

The Random Subspaces Method (RSM)

1 2 … i … d
x1
x2
…

xn

x1
x2
…

xn

1 2 … p
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Random Forest

Note : the number p of features to be drawn is more complex to set (here p = d/2)
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Random Forest

Random Feature Selection

1 2 … i … d
x1
x2
…

xn

x1
x2
…

xn

1 2 … p
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Random Forest

Note : In softwares, Random Forest stands for Bagging + Random Feature Selection

14/35



Random forest in practice



Random forest in practice

2 main hyperparameters to set for optimum performance

L : the number of random trees
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Random forest in practice

2 main hyperparameters to set for optimum performance

L : the number of random trees

• Analysis : convergence is reached for different amounts of trees from a dataset to another

• Problem : How many trees is enough for a given dataset ?

• Solutions :
• Empirical : several hundreds
→ no guarantee but computational times being low, the most popular solution

• Validation (or out-of-bag) error to detect convergence
→ Parallelizing is not possible anymore, and sometimes over-optimistic
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Random forest in practice

2 main hyperparameters to set for optimum performance

p : the number of random features at each node

p = 1 2 ... d− 1 d
Randomness max ←⊕ ... 	→ ∅

Popular values : 1,
√
d, dlog2(d)e
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Random forest in practice

2 main hyperparameters to set for optimum performance

p : the number of random features at each node

• Analysis : best value depends on irrelevant features
• few irrelevant features⇒ p low (≈

√
d)

• many irrelevant features⇒ p high, but difficult to set a priori

• Problem : How to set this value without a priori knowledge on the features

• Solutions : Know your dataset, feature analysis, feature selection, cross-validation
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Random forest in practice

In most cases, it is best to use unpruned trees

Note : digits dataset, p =
√
d, L = 100
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The Swiss knife of machine learning

One of the main reasons to use Bagging is the out-of-bag mechanism

• When p = n, 36.8% of D are NOT present in Dk in average (provable) 1

• These instances are called out-of-bag (oob)

• The oob instances are different from one Dk to another

D : x1 x2 x3 . . . xn−1 xn

x1Dk : x2 x3 . . . xp−1 xp

1. Note : when p > n, there is less oob instances and the diversity is limited
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The Swiss knife of machine learning

The out-of-bag instances can be used to estimate generalization capabilities

• Validation dataset required for :
• tuning hyperparameters
• estimating generalization performance
• estimating diversity and individual accuracies
• learning/optimizing combination operators
• etc.

• Alternative : using oob instances instead of an independant dataset

• Oob estimates are reliable estimates for generalization capabilities, although they tend to
underestimate some of them.
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The Swiss knife of machine learning

Example : generalization error
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The Swiss knife of machine learning

Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :

For a given feature x(i) :

• Consider each node Nk for which x(i) is
used in SNk

• Cumulate their impurity gain values

IMDI(x(i)) =
1
|Ni|

∑
Nk∈Ni

|Dk|
|D|

∆(Dk, SNk )

where Ni is the set of nodes, all trees
considered, that uses x(i) for splitting
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The Swiss knife of machine learning

Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :

For example, for Iris :
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The Swiss knife of machine learning

Forests embed 2 feature importance measures

Mean Decrease Accuracy (MDA) : based on out-of-bag votes

1. For each hk , record the correct out-of-bag votes, noted Vk
2. For each feature x(i) :

(a) Randomly permute all the values of x(i) in D
(b) For all trees hk

(i) Counts the new out-of-bag correct votes from hk , noted V
(i)
k

(ii) Compute S(i)k = Vk − V
(i)
k

(c) The importance measure for x(i) is

IMDA(x(i)) =
1
L

L∑
k=1

S(i)k
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The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances

• Similarity = measure the resemblance between 2 instances xi and xj .

• Takes the class membership into account, contrary to distance measure

Example : Euclidean distance (no yi , yj in the equation)

d(xi, xj) =

√√√√ d∑
k=1

(
x(k)i − x

(k)
j

)2

• xi , xj similar if ”close” to each other but also if they belong to the same class

• Key idea : xi and xj are similar if they follow the same path down the trees
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The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances

N0

N1

N3 N4

N7 N8

N2

N5 N6

N9

N11 N12

N10

• Let Lk bet the set of leaves in the kth tree

• Let
lk : X → Lk

be a function that maps all x to the leaf from
Lk in which it lands

• Here, lk(xi) = N12
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The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances

N0

N1

N3 N4

N7 N8

N2

N5 N6

N9

N11 N12

N10

• The similarity dk(xi, xj) between xi and xj ,
given by the kth tree, is

dk(xi, xj) =
{
1 if lk(xi) = lk(xj)

0 otherwise

• Here, xi and xj don’t land in the same leaf :

dk(xi, xj) = 0
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The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances

N0

N1

N3 N4

N7 N8

N2

N5 N6

N9

N11 N12

N10

• The similarity dk(xi, xj) between xi and xj ,
given by the kth tree, is

dk(xi, xj) =
{
1 if lk(xi) = lk(xj)

0 otherwise

• Here, xi and xj land in the same leaf :

dk(xi, xj) = 1
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The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances

xi , xj

N0

N1

N3 N4

N7 N8

N2

N5 N6

N9

N11 N12

N10

N0

N1

N3 N4

N7 N8

N2

N5 N6

N0

N1

N3 N4

N7 N8

N9 N10

N2

N5 N6

d(xi, xj) = 1
L

L∑
k=1

dk(xi, xj)
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The Swiss knife of machine learning

Some other tools (not detailed here)

• Unsupervised learning
• Generation of artificial of negative samples to simulate a second class
• Use the tree structure to perform clustering tasks

• Outliers detection

• Novelty detection

• Missing values and labels

• Prototypes selection
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Takeaways

Random Forest methods...

• are easy to understand and easy to use

• are among the most accurate methods for ”tabular” data

• are robust to many machine learning settings (e.g. high dimension, imbalanced classes, etc.)

• are very versatile with many embedded tools for interpretability

• have been successfully used for many applications, to name a few :
• Giga-pixel image segmentation (biomedical imaging)
• Real-time tracking in videos
• Real-time body part recognition (Kinect)
• Intelligent/autonomous vehicle
• Medical diagnosis/prognosis
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Takeaways

Fernandez-Delgado et al., ”Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems?”, Journal of Machine Learning Research, 2014

• Huge comparison of many classifiers : 179 different classifiers and 121 public datasets

”The classifiers most likely to be the bests are
the random forest (RF) versions [...]. However,
the difference is not statistically significant with
the second best, the SVM with Gaussian kernel
[...]”
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