Institut National des Sciences Appliquées Rouen Normandie

Modélisation système masse ressorts

Rapport technique - Cours de P6

Michel YANN, Alexis ODDE

Enseignant-responsable du projet : Bernard GLEYSE

Date de remise du rapport : 16/06/2023

Référence du projet : STPI/P6/2022 - 2023

Intitulé du projet : Projet n°19 : Modélisation masses ressorts

Type de projet : Modélisation

Objectifs du projet :

- Comprendre le comportement de divers systèmes mécaniques masses-ressorts
- Créer à partir de ces comportements des modèles pour modéliser différentes situations réelles dans diférents domaines
- Appliquer ces modèles sur les liaisons interatomiques intramoléculaires
- Vérifier si la modélisation est bonne, si elle retranscrit bien le comportement réel des molécules

Mots-clefs du projet : Modélisation, molécules, mécanique, théorique

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE ROUEN DÉPARTEMENT SCIENCES ET TECHNIQUES POUR L'INGÉNIEUR 685 Avenue de l'Université BP 08- 76801 Saint-Etienne-du-Rouvray Tél : 33 2 32 95 66 21 - Fax : 33 2 32 95 66 31

Table des matières

Re	emer	ciemer	nts	4			
Int	trodu	iction		5			
1	Méthodologie, organisation du travail						
2	Travail réalisé et résultats						
	2.1	Modél	isation unidimensionnelle	7			
		2.1.1	Système 2 masses, 1 ressorts	7			
		2.1.2	Système 3 masses, 2 ressorts	12			
	2.2	Passag	ge en 2 dimensions	27			
		2.2.1	Le triangle	27			
		2.2.2	Le carré	28			
		2.2.3	L'hexagone	29			
		2.2.4	Formes cycliques	29			
	2.3	Modél	isation en 2 dimensions	31			
		2.3.1	Molécule "classiques" type H2O	31			
		2.3.2	Molécules cycliques	31			
Сс	onclu	sion		32			
Ar	nnexe	es		33			

Remerciements

En préambule de ce rapport, nous tenons à remercier l'INSA de nous permettre de mener des projets comme celui-ci pendant notre formation.

Introduction

Dans le cadre de notre formation d'ingénieur, nous devons conduire un projet portant sur un sujet de physique. C'est dans ce contexte que nous avons été amené à rédiger le ci-présent rapport.

Le thème de notre projet est la modélisation à l'aide de systèmes masse-ressorts. La première question que nous nous sommes posés a été : qu'est-ce qu'un système masse-ressorts ?

Un système masse-ressort est un système mécanique constitué d'une ou plusieurs masses, liées entre elles ou avec un support fixe par des ressorts.

La seconde question naturelle qui nous ait venue a été : que peut-on modéliser avec de tels systèmes ?

La réponse à cette question est multiple : biomécanique, automobile,... mais notre réponse a été : les liaisons inter-atomiques intra-moléculaires.

Notre rapport se penchera donc sur la modélisation des liaisons atomiques par des systèmes masses-ressorts, en étudiant dans un premier temps ces systèmes, puis en appliquant le modèle trouvé à différentes molécules.

Chapitre 1

Méthodologie, organisation du travail

Description de l'organisation adoptée pour le déroulement du travail

Pour mener à bien ce projet, nous nous sommes fixés des créneaux de travail chaque semaine, en plus du créneau donné par l'INSA. Lors de ces créneaux, nous travaillions soit sur une tâche commune, soit en paralèlle sur deux diférentes tâches afin de multiplier notre productivité.

Tout au long du semestre, au fur et à mesure de l'avance du projet, nous nous mettions d'accord sur les tâches desquels nous nous occupions et communiquions nos avancées respectives.

Tâches réalisées et personnes concernés

- Systèmes 2 masses 1 ressorts :
 - Calcul des positions : Michel et Alexis
 - Modélisation HCl: Michel et Alexis
 - Potentiel de Morse : Alexis
- Système 3 masses 2 ressorts
 - Première approche : Alexis
 - Phénomène de résonnance : Michel
 - Deuxième approche : Michel
 - Modélisation CO_2 : Michel
- Formes cycliques : Michel et Alexis

Chapitre 2

Travail réalisé et résultats

2.1 Modélisation unidimensionnelle

2.1.1 Système 2 masses, 1 ressorts

Calcul des positions des masses avec la force de rappel

Soit deux masses m_1 et m_2 modélisées par deux points M_1 et M_2 reliées par un ressort de constante de raideur k. Nous négligeons les frottements. Par le PFD, nous avons :

$$m_1 x_1'' = k(x_2 - x_1)$$
$$m_2 x_2'' = k(x_1 - x_2)$$

Supposons le centre d'inertie du système mécanique $\{M_1; M_2; m_1; m_2; k\}$ fixe.

$$m_1 x_1 + m_2 x_2 = 0 \Rightarrow x_2 = \frac{m_1}{m_2} x_1$$
$$\Rightarrow m_1 x_1'' = -k x_1 \cdot \left(1 + \frac{m_1}{m_2}\right)$$

En prenant $\mu = \frac{m_1 m_2}{m_1 + m_2}$, la masse relative entre les deux corps, on obtient :

$$\mu x_1'' = -kx_1$$

En résolvant l'équation diférentielle et en posant $\omega = \sqrt{\frac{k}{\mu}}$, on obtient :

$$x_1 = a\sin(\omega t + \phi)$$

 M_1 aura alors un mouvement vibratoire de fréquence d'oscillation $N_{\nu} = \frac{\omega}{2\pi}$.

De même, M_2 aura aussi un mouvement vibratoire de même fréquence d'oscillation N_{ν} tel que :

$$x_2 = -\frac{m_1}{m_2}a\sin(\omega t + \phi)$$

En considérant l'énergie mécanique totale de l'oscillateur au point d'équilibre, on pose : $x_1 = 0$ et $E_p = 0$.

On peut ainsi ne considérer que l'énergie cinétique de l'oscillateur E_c . Soit $v_1 = x'_1 = a\omega \cos(\omega t + \phi)$, or, $x_1 = 0$.

$$\Rightarrow a \sin(\omega t + \phi) = 0$$
$$\Rightarrow \omega t + \phi = P\pi, P \in \mathbb{Z}$$
$$\Rightarrow \cos(\omega t + \phi) = (-1)^{P}$$
$$\Rightarrow v_{1} = a\omega(-1)^{P}$$

On sait de plus que l'énergie de vibration E_v est égale à E_c , donc :

$$E_v = E_c = \frac{1}{2}\mu v_1^2 = \frac{1}{2}\mu a^2 \omega^2, \omega = 2\pi N_\nu$$
$$\Rightarrow E_v = 2\mu a^2 \pi^2 N_\nu^2$$

Modélisation de la liaison HCl avec un ressort

Supposons que l'on peut modéliser la molécule HCl par ce système mécanique de centre d'inertie fixe. L'énergie de vibration E_v est fournie à la molécule par des radiations de fréquence $\nu_r = N_{\nu}$. Or, on sait que $E_v = h\nu_r$ avec h la constante de Planck.

$$h = \frac{E_v}{\nu_r} = \frac{2\mu a^2 \pi^2 N_{\nu}^2}{N_{\nu}} = 2\mu a^2 \pi^2 N_{\nu}$$
$$\Rightarrow a = \sqrt{\frac{h}{2\mu\pi^2 N_{\nu}}} = \frac{1}{\pi} \sqrt{\frac{h}{2\mu N_{\nu}}}$$

Dans le cas de HCl, on peut remplacer les masses m_1 et m_2 par les masses respectives de H et Cl. Cherchons à présent a, on a:

$$N_{\nu} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

On trouve ainsi l'expression :

$$a = \sqrt{\frac{h\sqrt{m_1 + m_2}}{\pi\sqrt{km_1m_2}}}$$

Passons à l'application numérique, on trouve ainsi les valeurs [1][5]:

- masse de H : $m_1 = m_H \simeq 1,67 \times 10^{-27}$ kg.
- masse de Cl : $m_2 = m_{Cl} \simeq 35 \times 1,67 \times 10^{-27}$ kg.
- constante de Planck : $h = 6,626 \times 10^{-34} \text{m}^2 \text{.kg.s}^{-1}$.
- fréquence d'oscillation : $N_{\nu} = 8,5 \times 10^{-13}$ Hz.

On trouve ainsi la valeur : $a = 1,559 \times 10^{-1}$ Å.

Potentiel de Morse

Le potentiel de Morse est une fonction empirique qui décrit le potentiel d'une liaison covalente dans une molécule diatomique et permet de modéliser efficacement le mouvement de particules soumise à la force F(x) qui dérive d'un potentiel de Morse $E_p(x)$ [7]

$$E_p(x) = H[(1 - e^{-kx})^2 - 1]$$

Le potentiel admet un minimum en $E_p(0) = -H$ qui correspond à l'état d'équilibrede la particule.

L'expression de la force est donc

$$F(x) = \frac{dE_p(x)}{dx} = -2kH(1 - e^{-kx})^2 e^{-kx}$$

Comme on néglige toute forme d'amortissement, l'équation du mouvement devient :

$$m\frac{d^2E_p(t)}{d^2t} + F(x) = 0$$

Comme il y a conservation de l'énergie totale, on peut poser E l'énergie totale de la particule définit par :

$$E = E_p + E_c = E_p(x) + \frac{1}{2}mv^2$$
$$\Rightarrow \frac{1}{2}m\left(\frac{dx}{dt}\right)^2 + H(1 - e^{-kx})^2 = E + H$$

En posant $\tau = \frac{E+H}{H}$, on aura :

$$\left(\frac{dx}{dt}\right)^2 = (\tau - (1 - e^{-kx})^2)\frac{2H}{m}$$

16 juin 2023

On pourra distinguer trois cas :

— Cas $\tau < 1$ c'est-à-dire $H < E_p < 0$ On fait un changement de variable :

$$e^{kx} = \frac{1 - \sqrt{\tau}u}{1 - \tau} \Rightarrow \frac{dx}{dt} = \frac{-\sqrt{\tau}}{k(1 - \sqrt{\tau}u)}\frac{du}{dt}$$
$$\Rightarrow \left(\frac{du}{dt}\right)^2 = \frac{2k^2H(1 - \tau)}{m}(1 - u^2)$$

On pose donc :

$$\eta = \sqrt{\frac{2k^2H(1-\tau)}{m}}$$

Selon toutes ses données, on aura donc :

$$\int \frac{du}{\sqrt{1-u^2}} = \eta \int dt$$

La solution est : $\arccos(u = \eta(t - t_i) \Rightarrow u = \cos(\eta(t - t_i))$ avec t_i une constante choisie telle que $t = 0 \Rightarrow x = 0$ On aura donc

$$x = \frac{1}{k} \ln \left(\frac{1 - \sqrt{\tau} \cos(\eta(t - t_i))}{1 - \tau} \right)$$

avec $t_i = \frac{1}{\eta} \arccos(\sqrt{\tau})$ — Cas $\tau > 1$ c'est-à-dire $0 < E_p$

On fait un changement de variable :

$$e^{kx} = \frac{\sqrt{\tau}u}{1-\tau} \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\tau}}{k(\sqrt{\tau}u-1)}\frac{du}{dt}$$
$$\Rightarrow \left(\frac{du}{dt}\right)^2 = \frac{2k^2H(\tau-1)}{m}(u^2-1)$$

On pose

$$\eta = \sqrt{\frac{2k^2H(\tau - 1)}{m}}$$

Donc

$$\int \frac{du}{\sqrt{u^2 - 1}} = \eta \int dt$$

Dont la solution est $arccosh(u) = \eta(t - t_i) \Rightarrow u = \cosh(\eta(t - t_i))$ Soit finalement :

$$x = \frac{1}{k} \ln \left(\frac{\sqrt{\tau} \cosh(\eta(t - t_i)) - 1}{\tau - 1} \right)$$

16 juin 2023

Avec $t_i = \frac{1}{\eta} \operatorname{arccosh}(\sqrt{\tau})$ — Cas $\tau = 1$ c'est-à-dire $E_p = 0$ On fait le changement de variable

$$e^{kx} = u \Rightarrow \frac{dx}{dt} = \frac{1}{ku}\frac{du}{dt}$$
$$\left(\frac{du}{dt}\right)^2 = \frac{2kH}{m}(2u-1)$$
$$\int \frac{du}{\sqrt{2u-1}} = \eta \int dt \text{ avec} : \eta = \sqrt{\frac{2k^2H}{m}}$$
$$2u-1 = (\eta t - \eta t_i)^2$$
$$x = \frac{1}{k}\ln\left(\frac{1 + (\eta t - \eta t_i)^2}{2}\right) \text{ avec} : t_i = \frac{1}{\eta}$$

Les cas $E_p = 0$ et $E_p > 0$ correspondent à un état non lié et donc à x croissant et tendant vers l'infini. Pour avoir un aperçu de l'action du potentiel de Morse en fonction des paramètres k et E_p , voir le site [2] dans la bibliographie.

2.1.2 Système 3 masses, 2 ressorts

Soient 3 masses m_1, m_2 et m_3 modélisées par trois points M_1, M_2 et M_3 , reliées par deux ressorts de constantes de raideur k et k'. Nous négligeons les frottements. Nous allons prendre le cas particulier $m_1 = m_3$ et k = k'. Par le PFD, nous retrouvons :

$$m_1 x_1'' = k(x_2 - x_1)$$
$$m_2 x_2'' = k(x_1 + x_3 - 2x_2)$$
$$m_3 x_3'' = k(x_2 - x_3)$$

En supposant le centre de gravité fixe, on peut écrire :

$$\sum_{i=1}^{3} m_i x_i = 0$$

Grâce à cette expression, on peut exprimer x_3 en fonction de x_1 et x_2 tel que :

$$m_1 x_1 + m_2 x_2 + m_3 x_3 = 0$$

$$\Rightarrow m_1 x_3 = -(m_1 x_1 + m_2 x_2)$$

$$\Rightarrow x_3 = -x_1 - \frac{m_2 x_2}{m_1}$$

On peut ensuite injecter cette expression de x_3 dans le PFD au point M_2 pour retrouver :

$$m_2 x_2'' = k(x_1 + x_3 - 2x_2)$$

$$\Rightarrow m_2 x_2'' = k x_2 \left(-2 - \frac{m_2}{m_1} \right)$$

$$\Rightarrow x_2'' = -k x_2 \left(\frac{2}{m_2} + \frac{1}{m_1} \right)$$

$$\Rightarrow \mu_2 x_2'' = -k x_2, \quad \text{avec} \quad \mu_2 = \frac{m_1 m_2}{2m_1 + m_2}$$

Cette expression n'est pas sans rappeler l'expression vu dans le système précédent. Ainsi, en posant $\omega_2 = \sqrt{\frac{k}{\mu_2}}$, on peut écrire : $x_2(t) = a_2 \sin(\omega_2 t + \phi_2)$ En injectant cette expression dans celle du PFD au point M_1 , on peut écrire :

$$m_1 x_1'' = k(x_2(t) - x_1)$$

$$\Rightarrow x_1'' + \frac{k}{m_1} x_1 = \frac{a_2 k}{m_1} \sin(\omega_2 t + \phi_2)$$

16 juin 2023

Pour résoudre cette équation, on résout dans un premier temps l'équation homogène puis on trouve une solution particulière :

— Pour l'équation homogène, on doit résoudre :

$$x_1'' = -\frac{k}{m_1} x_1$$
$$\Rightarrow x_1^H(t) = a_1 \sin(\omega_1 t + \phi_1)$$

Soit $x_1^H(t)$ la solution de l'équation homogène, avec $\omega_1 = \sqrt{\frac{k}{m_1}}$.

— Pour la solution particulière, comme le deuxième membre est une fonction trigonométrique, on peut en déduire que $x_1^P(t)$ sera de la forme $A \times P(t)$ un deuxième membre, c'est-à-dire :

$$x_1^P(t) = A \times \frac{a_2 k}{m_1} \sin(\omega_2 t + \phi_2)$$
$$\Rightarrow x_1^{P''}(t) = -Aa_2 \frac{k}{m_1} \omega_2^2 \sin(\omega_2 t + \phi_2)$$

Or,

$$x_1^{P''}(t) + \frac{k}{m_1} x_1^P(t) = \frac{ka_2}{m_1} \sin(\omega_2 t + \phi_2)$$

Donc :

$$A\frac{k}{m_1}a_2\sin(\omega_2 t + \phi_2)(\omega_1^2 - \omega_2^2) = \frac{a_2k}{m_1}\sin(\omega_2 t + \phi_2)$$
$$\Rightarrow A(\omega_1^2 - \omega_2^2) = 1$$
$$\Rightarrow A = \frac{1}{\omega_1^2 - \omega_2^2}$$

Remarque : ce résultat n'est valable que si $\omega_1 \neq \omega_2$. On retrouve enfin :

$$x_1^P = \frac{a_2k}{m_1(\omega_1^2 - \omega_2^2)}\sin(\omega_2 t + \phi_2)$$

— Prenons à présent le cas où $\omega_1 = \omega_2$ (résonance) : Prenons $x_1^P(t) = A \times t \cos(\omega_2 t + \phi_2)$ avec A une constante que l'on se proposera de déterminer plus tard, voyons à présent s'il vérifie l'équation différentielle, on a :

$$x_1^P(t) = A \times t \cos(\omega_2 t + \phi_2)$$

$$\Rightarrow \dot{x}_1^P(t) = -A\omega_2 t \sin(\omega_2 t + \phi_2) + A \cos(\omega_2 t + \phi_2)$$

16 juin 2023

$$\Rightarrow \ddot{x}_1^P(t) = -A\omega_2^2 t\cos(\omega_2 t + \phi_2) - 2A\omega_2 \sin(\omega_2 t + \phi_2)$$
$$\Rightarrow \ddot{x}_1^P(t) + \omega_2^2 x_1^P(t) = -2A\omega_2 \sin(\omega_2 t + \phi_2) = a_2 \omega_2^2 sin(\omega_2 t + \phi_2)$$
$$\Rightarrow A = -\frac{a_2 \omega_2}{2}$$

Ainsi, en prenant comme constante $A = -\frac{a_2\omega_2}{2}$, on voit bien que $x_1^P(t)$ est solution particulière de l'équation différentielle. Enfin, on retrouve pour lexpression de $x_1(t)$:

$$x_1(t) = x_1^H(t) + x_1^P(t)$$
$$\Rightarrow x_1(t) = a_1 \sin(\omega_1 t + \phi_1) - \frac{a_2 \omega_2}{2} t \cos(\omega_2 t + \phi_2)$$

On remarque alors que dans le cas de la résonance, $x_1(t)$ n'est pas bornée.

En revenant au cas où $\omega_1 \neq \omega_2$, peut donc en déduire l'expression de $x_1(t)$ tel que $x_1(t) = (x_1^H + x_1^P)(t)$:

$$x_1(t) = a_1 \sin(\omega_1 t + \phi_1) + \frac{a_2 k}{m_1(\omega_1^2 - \omega_2^2)} \sin(\omega_2 t + \phi_2)$$

Pour finir, on peut reprendre l'expression de $x_3(t)$ en fonction de $x_1(t)$ et $x_2(t)$:

$$x_3(t) = -\left(x_1(t) + \frac{m_2}{m_1}x_2(t)\right)$$

On trouve ainsi les 3 equations cartésiennes suivantes :

— Pour M_1 :

$$x_1(t) = a_1 \sin(\omega_1 t + \phi_1) + \frac{a_2 k}{m_1(\omega_1^2 - \omega_2^2)} \sin(\omega_2 t + \phi_2)$$

— Pour M_2 :

$$x_2(t) = a_2 \sin(\omega_2 t + \phi_2)$$

— Pour M_3 :

$$x_3(t) = -(a_1\sin(\omega_1 t + \phi_1) + \frac{a_2k}{m_1(\omega_1^2 - \omega_2^2)}\sin(\omega_2 t + \phi_2) + \frac{m_2}{m_1}a_2\sin(\omega_2 t + \phi_2))$$

Nous pouvons utiliser ce système de 3 masses et 2 ressorts pour modéliser une molécule linéaire telle que le CO_2

En effet, cette molécule est composé d'un carbone en son centre et de deux atomes d'oxygène reliés entre eux avec des doubles liaisons.

Cependant, nous n'avons pas réussi à retrouver les pulsations et amplitudes grâce à ces équations. Nous avons remarquer que l'on peut voir apparaître un phénomène de résonnance sans pour autant réussir à conclure sur les implications de celui-ci. Nous allons donc résoudre ce système à l'aide d'une autre méthode, grâce aux matrices et aux distances $d_{2\rightarrow 1}$ et $d_{2\rightarrow 3}$

Autre approche

Afin de modéliser le comportement dans l'espace de ces atomes, on peut aussi adopter une approche vectorielle, ainsi, en considérant le même système (2 masses identiques et une masse M telles que les deux constantes de raideur soient identiques et que les masses sont negligeables devant la raideur du ressort notée k). Les masses sont positionnées initialement respectivement en O_1 , O_2 et O_3 . En appliquant le PFD, on obtient :

- Pour
$$M_1 : m_1 \overrightarrow{a_1} = \overrightarrow{T_1}$$

- Pour $M_2 : m_2 \overrightarrow{a_2} = -\overrightarrow{T_1} + \overrightarrow{T_3}$

— Pour
$$M_1: m_3 \overrightarrow{a_3} = -T'_3$$
.

De plus, la loi de Hooke donne le système suivant :

$$\begin{cases} \overrightarrow{T_1} = k(\overrightarrow{M_1M_2} - \overrightarrow{O_1O_2}) \\ \overrightarrow{T_3} = k(\overrightarrow{M_2M_3} - \overrightarrow{O_2O_3}) \end{cases}$$

En considérant le déplacement de chaque masse $(\overrightarrow{O_1 M_1} \text{ pour } M_1, \overrightarrow{O_2 M_2} \text{ pour } M_2$ et $\overrightarrow{O_3 M_3}$ pour M_3), on peut exprimer les deux forces de tension $\overrightarrow{T_1}$ et $\overrightarrow{T_3}$ en fonction du déplacement tels que :

$$\left\{ \begin{array}{l} \overrightarrow{T_1} = k(\overrightarrow{M_1M_2} - \overrightarrow{O_1O_2}) = k(\overrightarrow{O_2M_2} - \overrightarrow{O_1M_1}) \\ \overrightarrow{T_3} = k(\overrightarrow{M_2M_3} - \overrightarrow{O_2O_3}) = k(\overrightarrow{O_3M_3} - \overrightarrow{O_2M_2}) \end{array} \right.$$

Mécaniquement, on peut aussi exprimer l'accélération de chaque corps tels que :

$$\begin{cases} \overrightarrow{a_1} = \frac{d^2 \overrightarrow{O_1 M_1}}{\frac{dt}{a_2}} \\ \overrightarrow{a_2} = \frac{d^2 \overrightarrow{O_2 M_2}}{\frac{dt}{O_3 M_3}} \\ \overrightarrow{a_3} = \frac{d^2 \overrightarrow{O_3 M_3}}{dt}. \end{cases}$$

En injectant dans le PFD, on a pour chaque masse les expressions suivantes :

- Pour $M_1 : m_1 \frac{d^2 \overline{O_1 M_1}}{dt} = k(\overline{O_2 M_2} - \overline{O_1 M_1}).$ - Pour $M_2 : m_2 \frac{d^2 \overline{O_2 M_2}}{dt} = -k(\overline{O_2 M_2} - \overline{O_1 M_1}) + k(\overline{O_3 M_3} - \overline{O_2 M_2}).$ - Pour $M_1 : m_1 \frac{d^2 \overline{O_3 M_3}}{dt} = -k(\overline{O_3 M_3} - \overline{O_2 M_2}).$ En posant x_1, x_2 et x_3 les déplacements par rapport à leur position initiale de

chaque atome dans le plan, on se retrouve avec :

$$\begin{cases} m_1 \ddot{x_1} = k(x_2 - x_1) \\ m_2 \ddot{x_2} = -k(x_2 - x_1) + k(x_3 - x_2) \\ m_1 \ddot{x_3} = -k(x_3 - x_2). \end{cases}$$

En indroduisant cette fois-ci les déplacements relatifs des atomes entre eux, on pose :

$$\begin{cases} u(t) = x_1(t) - x_2(t) \\ v(t) = x_3(t) - x_2(t). \end{cases}$$

En dérivant, on obtient ainsi :

$$\begin{cases} \ddot{u}(t) = \ddot{x}_1(t) - \ddot{x}_2(t) \\ \ddot{v}(t) = \ddot{x}_3(t) - \ddot{x}_2(t). \end{cases}$$

On en déduit :

$$\begin{cases} \ddot{x}_1 = -\frac{k}{m_1}u\\ \ddot{x}_2 = \frac{k}{m_2}(u+v)\\ \ddot{x}_3 = -\frac{k}{m_1}v \end{cases}$$

En soustrayant les equations, on arrive à :

$$\begin{cases} \ddot{u}(t) = \ddot{x}_1(t) - \ddot{x}_2(t) = -\frac{k}{m_2}(1 + \frac{m_2}{m_1})u - \frac{k}{m_2}v\\ \ddot{v}(t) = \ddot{x}_3(t) - \ddot{x}_2(t) = -\frac{k}{m_2}(1 + \frac{m_2}{m_1})v - \frac{k}{m_2}u. \end{cases}$$

En posant $\omega_0^2 = \frac{k}{m_2}$ et $r = 1 + \frac{m_2}{m_1}$ on obtient :

$$\left\{ \begin{array}{l} \ddot{u}=-r\omega_0^2u-\omega_0^2v\\ \ddot{v}=-\omega_0^2u-r\omega_0^2v \end{array} \right.$$

En posant le vecteur $\overrightarrow{X} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$, on peut écrire ce système sous forme vectorielle tel que $\frac{d^2 \vec{X}}{d^2 t} = A \vec{X}$ avec A une matrice carrée telle que $A \in M_2[\mathbb{R}]$. On trouve alors :

$$A = \begin{pmatrix} -r\omega_0^2 & -\omega_0^2 \\ -\omega_0^2 & -r\omega_0^2 \end{pmatrix}$$

On cherche alors une solution réelle telle que :

$$\overrightarrow{X} = \overrightarrow{X}_0 e^{\omega \overline{x}}$$

En dérivant deux fois cette solution par rapport au temps et en remplaçant dans l'équation vectorielle, il vient, si on pose $\lambda = \omega^2$:

$$\lambda \overrightarrow{X}_0 e^{\omega t} = A \overrightarrow{X}_0 e^{\omega t}$$
$$\Rightarrow \lambda \overrightarrow{X}_0 = A \overrightarrow{X}_0$$

. Ainsi, pour déterminer les valeurs propres, on doit résoudre $det(A - \lambda I_2) = 0$:

$$\begin{vmatrix} -r\omega_0^2 - \lambda & -\omega_0^2 \\ -\omega_0^2 & -r\omega_0^2 - \lambda \end{vmatrix} = 0$$
$$\Rightarrow (r\omega_0^2 + \lambda)^2 - \omega_0^4 = 0$$
$$\Rightarrow r\omega_0^2 + \lambda = \pm \omega_0^2$$

On obtient alors 2 solutions possibles pour les valeurs propres de A:

$$\begin{cases} \lambda_1 = -\omega_0^2 (1+r) \\ \lambda_2 = \omega_0^2 (1-r) \end{cases}$$

Déterminons à présent les vecteurs propes de A: — Pour $\overrightarrow{X}_1 \in E_{\lambda_1}$, on a $A\overrightarrow{X}_1 = \lambda_1 \overrightarrow{X}_1$, c'est à dire :

$$\begin{pmatrix} -r\omega_0^2 & -\omega_0^2 \\ -\omega_0^2 & -r\omega_0^2 \end{pmatrix} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} = -\omega_0^2 (1+r) \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}$$
$$\Rightarrow -r\omega_0^2 X_1 - \omega_0^2 Y_1 = -\omega_0^2 (1+r) X_1$$
$$\Rightarrow X_1 = Y_1$$
$$\Rightarrow E_{\lambda_1} = Vect \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Ainsi, $\overrightarrow{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est un vecteur propre de *A* associée à la valeur propre λ_1 .

16 juin 2023

- Pour
$$\overrightarrow{X}_2 \in E_{\lambda_2}$$
, on a $A\overrightarrow{X}_2 = \lambda_2 \overrightarrow{X}_2$, c'est à dire :

$$\begin{pmatrix} -r\omega_0^2 & -\omega_0^2 \\ -\omega_0^2 & -r\omega_0^2 \end{pmatrix} \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} = \omega_0^2 (1-r) \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix}$$

$$\Rightarrow -r\omega_0^2 X_2 - \omega_0^2 Y_2 = \omega_0^2 (1-r) X_2$$

$$\Rightarrow X_2 = -Y_2$$

$$\Rightarrow E_{\lambda_2} = Vect \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Ainsi, $\overrightarrow{X}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est un vecteur propre de A associée à la valeur propre λ_2 .

On peut alors écrire la solution générale de l'équation sous forme d'une combinaison linéaire des solutions aux valeurs propres telle que :

$$\overrightarrow{X} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = ae^{i\sqrt{|\lambda_1|t}}\overrightarrow{X}_1 + be^{-i\sqrt{|\lambda_1|t}}\overrightarrow{X}_1 + ce^{i\sqrt{|\lambda_2|t}}\overrightarrow{X}_2 + de^{-i\sqrt{|\lambda_2|t}}\overrightarrow{X}_2$$

Avec a, b, c et d des constantes, ce qui donne :

$$\overrightarrow{X} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = ae^{i\omega_0\sqrt{r+1}t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + be^{-i\omega_0\sqrt{r+1}t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + ce^{i\omega_0\sqrt{r-1}t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + de^{-i\omega_0\sqrt{r-1}t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

En cherchant les solutions réelles, on se retrouver avec le système suivant :

$$\begin{cases} u(t) = A_1 \cos(\omega_0 \sqrt{r+1}t + \phi_1) + A_2 \cos(\omega_0 \sqrt{r-1}t + \phi_2) \\ v(t) = A_1 \cos(\omega_0 \sqrt{r+1}t + \phi_1) - A_2 \cos(\omega_0 \sqrt{r-1}t + \phi_2) \end{cases}$$

Avec A_1 , A_2 , ϕ_1 et ϕ_2 des constantes d'intégration.

On peut alors simplifier ces expressions comme superposition de mouvements harmoniques (modes propres), en posant $\omega_1 = \omega_0 \sqrt{r+1}$ et $\omega_2 = \omega_0 \sqrt{r-1}$ on a alors pour expression des deux modes propres q_1 et q_2 tels que :

$$\begin{cases} q_1(t) = A_1 \cos(\omega_1 t + \phi_1) \\ q_2(t) = A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Ce qui donne pour u et $v : u(t) = q_1(t) + q_2(t)$ et $v(t) = q_1(t) - q_2(t)$.

Cas du CO_2

Présentation

Passons à présent au cas de la molécule linéaire de CO_2 le long d'un axe. La force de lisaison interatomique est donnée par $F(r) = -\frac{dE_p(r)}{dr}$ où r représente la distance entre deux atomes A et B et $E_p(r)$ l'énergie potentielle d'interaction entre les atomes. On peut par ailleurs représenter l'allure de la fonction $E_p(r)$ et on obtient :

FIGURE 2.2 – Courbe de l'énergie potentielle d'interaction [8]

On remarque alors que la courbe, aussi appelée "Courbe de Morse" peut être approximée au voisinage d'un point r_e appelée distance distance interatomique d'équilibre de la liaison AB. Cependant la courbe possède aussi une asymptote pour de très grandes distance, ainsi, l'énergie tends vers une valeur D appélée énergie de dissociation de liaison. Ainsi, on peut voir que si l'énergie totale de la molécule AB est supérieure à D, la molécule se dissocie , et sinon, les atomes A et B oscillent autour de leur distance d'équilibre. Supposons alors qu'on se trouve dans le cas où $r \approx r_e$ et $E \ll D$, on peut approcher l'énergie par son développement limité au voisinage de r_e :

$$E_p(r) \approx E_p(r_e) + (r - r_e)(\frac{dE}{dr})_{r_e} + \frac{(r - r_e)^2}{2}(\frac{d^2E}{d^2r})_{r_e}$$

Avec $E_p(r_e) = 0$ et $(\frac{dE}{dr})_{r_e} = 0$, on obtient :

$$E_p(r) \approx \frac{(r-r_e)^2}{2} \left(\frac{d^2 E}{d^2 r}\right)_{r_e}$$

16 juin 2023

Résolution

On posera alors k la constante de raideur des liaisons C = O, M la masse de l'atome de carbone et m celle d'un atome d'oxygène. On posera par ailleurs r_1 l'écart à la position d'équilibre du premier atome d'oxygène, r_2 l'écart à la position d'équilibre de l'atome de carbone et enfin r_3 l'écart à la position d'équilibre du dernier atome d'oxygène. En appliquant la deuxième loi de Newton à chaque atome, on obtient le système d'équation suivant :

$$\begin{cases} m\ddot{r}_{1} = -k(r_{1} - r_{2}) \\ M\ddot{r}_{2} = k(r_{1} - r_{2}) - k(r_{2} - r_{3}) \\ m\ddot{r}_{3} = k(r_{2} - r_{3}) \end{cases}$$
$$\Rightarrow \begin{cases} \sqrt{m}\ddot{r}_{1} = -\frac{k}{m}\sqrt{m}r_{1} + \frac{k}{\sqrt{m\times M}}\sqrt{M}r_{2} \\ \sqrt{M}\ddot{r}_{2} = \frac{k}{\sqrt{m\times M}}\sqrt{m}r_{1} - 2\frac{k}{M}\sqrt{M}r_{2} + \frac{k}{\sqrt{m\times M}}\sqrt{m}r_{3} \\ \sqrt{m}\ddot{r}_{3} = \frac{k}{\sqrt{m\times M}}\sqrt{M}r_{2} - \frac{k}{m}\sqrt{m}r_{3} \end{cases}$$

Ce système se simplifie alors en posant $\omega_0^2 = \frac{k}{m}$, $\Omega_0^2 = \frac{k}{M}$, $q_1 = \sqrt{m}r_1$, $q_2 = \sqrt{M}r_2$ et enfin $q_3 = \sqrt{m}r_3$, ce qui donne :

$$\Rightarrow \begin{cases} \ddot{q}_1 = -\omega_0^2 q_1 + \omega_0 \Omega_0 q_2 \\ \ddot{q}_2 = \omega_0 \Omega_0 q_1 - 2\Omega_0^2 q_2 + \omega_0 \Omega_0 q_3 \\ \ddot{q}_3 = \omega_0 \Omega_0 q_2 - \omega_0^2 q_3 \end{cases}$$

En posant $Q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix}$, on peut alors poser ce système sous forme matricielle tel que $\ddot{Q} = AQ$ où :

$$A = \begin{pmatrix} -\omega_0^2 & \omega_0 \Omega_0 & 0\\ \omega_0 \Omega_0 & -2\Omega_0^2 & \omega_0 \Omega_0\\ 0 & \omega_0 \Omega_0 & -\omega_0^2 \end{pmatrix}$$

Sa résolution passe alors par la diagonalisation de la matrice A. Il vient alors pour le polynôme caractéristique :

$$\chi(\lambda) = \lambda(\omega_0^2 + \lambda)(\lambda + \omega_0^2 + 2\Omega_0^2) = 0$$

Les valeurs propres sont alors : 0, $-\omega_0^2$ et $-\omega_0^2 - 2\Omega_0^2$. En posant $\omega_2^2 = \omega_0^2 + 2\Omega_0^2$, ces dernières ont pour vecteur propre associé :

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES

$$- \begin{pmatrix} \frac{\Omega_0}{\omega_2} \\ \frac{\omega_0}{\omega_2} \\ \frac{\Omega_0}{\omega_2} \end{pmatrix} \text{ pour la valeur propre 0.}$$

$$- \frac{\omega_0}{\sqrt{2}\omega_2} \begin{pmatrix} -1 \\ 2\frac{\Omega_0}{\omega_2} \\ -1 \end{pmatrix} \text{ pour la valeur propre } -\omega_2^2.$$

$$- \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \text{ pour la valeur propre } \omega_0^2.$$

Ces trois vecteurs forment ainsi une b.o.n et on a alors $D = P^{-1}AP$ avec :

$$P = \begin{pmatrix} \frac{\Omega_0}{\omega_2} & -\frac{\omega_0}{\sqrt{2}\omega_2} & -\frac{1}{\sqrt{2}} \\ \frac{\omega_0}{\omega_2} & \frac{2\Omega_0}{\sqrt{2}\omega_2} & 0 \\ \frac{\Omega_0}{\omega_2} & -\frac{\omega_0}{\sqrt{2}\omega_2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Avec $P^{-1} = P^T$. En posant $Q^N = \begin{pmatrix} q_1^N \\ q_2^N \\ q_3^N \end{pmatrix}$, correspondant au vecteur des coordonnées normales, on obtient ce système d'équations différentielles :

$$\begin{cases} \ddot{q}_1^N = 0\\ \ddot{q}_2^N = -(2\Omega_0^2 + \omega_0^2)q_2^N\\ \ddot{q}_3^N = -\omega_0^2 q_3^N \end{cases}$$

Ce dernier traduit l'existence de 3 modes propres :

— Le premier correspond à la translation d'ensemble de la molécule de CO_2 , en effet, on a bien $q_1^N = at + b$ fonction affine du temps.

— Le deuxième correspond au mouvement de vibration d'élongation antisymétrique de la molécule de CO_2 avec $q_2^N = A_2 \cos(\omega_2 t + \phi_2)$.

FIGURE 2.4 – Mouvement antisymétrique du $CO_2[4]$

— Le dernier correspond au mouvement de vibration d'élongation symétrique de la molécule de CO_2 avec $q_3^N = A_3 \cos(\omega_3 t + \phi_2)$ avec $\omega_3 = \omega_0$.

FIGURE 2.5 – Mouvement symétrique du $CO_2[4]$

Application Numérique

La structure de Lewis du CO_2 est la suivante O = C = O. Pour la liaison C \longrightarrow O, on retrouve la constante de raideur $k = 1420N.m^{-1}$. Les masses sont $m = \frac{M_O}{N_A}$ et $M = \frac{M_C}{N_A}$ avec $M_O = 16g.mol^{-1}$, $M_C = 12g.mol^{-1}$ et $N_A = 6,022mol^{-1}.$

Grâce à ces données, on peut calculer les pulsations et nombres d'ondes associés :

$$- \omega_2 = \sqrt{2\Omega_0^2 + \omega_0^2} = \sqrt{\frac{2k}{M} + \frac{k}{m}} = 4,43.10^{14} rad.s^{-1}.$$

$$- \sigma_2 = \frac{\omega_2}{2\pi c} = 2350 cm^{-1}.$$

$$- \omega_3 = \sqrt{\frac{k}{m}} = 2,31.10^{14} rad.s^{-1}.$$

— $\sigma_3 = \frac{\omega_3}{2\pi c} = 1230 cm^{-1}$. D'après certains résultats trouvés par de précédentes études spectoscopiques[3], ces résultats correspondent bien aux bandes d'absorption du CO_2 .

On peut aussi noter que dans le cas du CO_2 on retrouve finalement comme valeur propres : 0, $\omega_2^2 = \frac{11}{3}\omega_0^2$ et ω_0^2 .

Diagonalisation de Jacobi et résolution numérique

A étant symétrique réelle d'ordre 3, la martice est diagonalisable dans une base orthonormée, ainsi, il existe une matrice P orthogonale telle que $D = P^{-1}AP$ est diagonale et composée des valeurs propres de A.

Pour déterminer numériquement ces valeurs propres, on utilisera la méthode de Jacobi qui consiste à construire numériquement une suite de matrices $(A^{(k)})$ orthogonales et "semblables" à la matrice de départ A. Cette dernière sera construite de manière à converger vers la matrice D contenant les valeurs propres de A. Pour ce faire, on utilisera les transformations de Givens (utilisation d'une matrice orthogonale de rotation ou de Givens pour annuler les coefficients non diagonaux de A).

Posons $A^{(0)} = A$, et pour $k \in \mathbb{N}^{\times}$ on associe deux indices $(p,q) \in (\mathbb{N}^{\times})^2$ tels que $1 \leq p \leq q \leq n$ (notons ici que n = 3).

La matrice de Givens notée $G(p, q, \theta)$ est donc la suivante :

$$G(p,q,\theta) = \begin{pmatrix} 1 & 0 & \cdots & & & \cdots & 0 & 0 \\ 0 & 1 & & & & & 0 \\ \vdots & \ddots & & & & & & & \\ & & 1 & & & & & & \\ & & \cos(\theta) & 0 & \cdots & 0 & \sin(\theta) & 0 & \cdots & 0 \\ & & & \cos(\theta) & 0 & \cdots & 0 & \sin(\theta) & 0 & \cdots & 0 \\ & & & 0 & 1 & 0 & & & \\ & & & 0 & 1 & 0 & & & \\ & & & 0 & & 1 & 0 & & \\ & & & & -\sin(\theta) & 0 & \cdots & 0 & \cos(\theta) & 0 & \cdots & 0 \\ & & & & & 0 & 1 & & \\ \vdots & & \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & & & & & & 1 & 0 \\ 0 & 0 & \cdots & 0 & & 0 & & \cdots & 0 & 1 \end{pmatrix}$$

Avec $\sin(\theta)$ à la ligne p et $-\sin(\theta)$ à la ligne q. Ainsi, cette dernière permet, pour un vecteur donné $X = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ de calculer le produit $Y = G(p, q, \theta)^T X$ tel qu'il est la rotation d'angle θ dans le plan de coordonnées (x_p, x_q) .

Ainsi, on pose, pour la construction de la suite $(A^{(n)})$ la formule héréditaire suivante :

$$\forall k \in \mathbb{N}^{\times}, A^{(k)} = G(p,q,\theta)^T A^{(k-1)} G(p,q,\theta)$$

Avec cette formule, on retrouve $A_{pq}^{(k)} = 0$ mais aussi les $\cos(\theta)$ et $\sin(\theta)$ successifs grâce au calcul des coefficients de $A^{(k)}$:

$$\begin{pmatrix} a_{pp}^{(k)} & a_{pq}^{(k)} \\ a_{pq}^{(k)} & a_{qq}^{(k)} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} a_{pp}^{(k-1)} & a_{pq}^{(k-1)} \\ a_{pq}^{(k-1)} & a_{qq}^{(k-1)} \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} a_{pp}^{(k-1)} & a_{pq}^{(k-1)} \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & \sin(\theta) \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \sin(\theta) & \sin(\theta) \\ -\sin(\theta) & (\sin(\theta) & (\sin(\theta)$$

Après identification il vient :

$$\sin^2(\theta)a_{pq}^{(k-1)} + \sin(\theta)\cos(\theta)(a_{qq}^{(k-1)} - a_{pp}^{(k-1)}) - \cos^2(\theta)a_{pq}^{(k-1)} = -a_{pq}^{(k)} = 0$$

Si $a_{pq}^{(k-1)} = 0$, on a alors $\cos(\theta) = 1$ et $\sin(\theta) = 0$. Si $a_{pq}^{(k-1)} \neq 0$, en factorisant la formule trouvée par $\cos^2(\theta)a_{pq}^{(k-1)}$, on obtient :

$$\tan^{2}(\theta) + \tan(\theta)\left(\frac{a_{qq}^{(k-1)} - a_{pp}^{(k-1)}}{a_{pq}^{(k-1)}}\right) - 1 = 0$$

$$\Rightarrow \tan^2(\theta) + 2\eta \tan(\theta)$$

Il s'agit alors de résoudre un trinôme en $\tan(\theta)$ dont les racines sont $\tan(\theta) = -\eta \pm \sqrt{1 + \eta^2}$. La racine $\tan(\theta) = -\eta + \sqrt{1 + \eta^2}$ étant positive, on peut finalement poser $\cos(\theta) = \frac{1}{\sqrt{1 + \tan(\theta)^2}} > 0$ et $\sin(\theta) = \frac{\tan(\theta)}{\sqrt{1 + \tan(\theta)^2}} > 0$.

Pour la suite, on considèrera la suite $(G^{(n)})$ telle que $\forall n \in \mathbb{N}, G^{(n)} = G(p_n, q_n, \theta_n)$. Enfin, après N itérations, on a par téléscopage :

$$\lim_{N \to \infty} A^{(N)} = \lim_{N \to \infty} G^{(N-1)T} \cdots G^{(0)T} A^{(0)} G^{(0)} \cdots G^{(N-1)} = D$$

Par identification, on a :

$$\lim_{N \to \infty} G^{(0)} \cdots G^{(N-1)} = P$$

Résultats numériques

Pour rendre le problème adimensionné, on divisera la matrice A par ω_0^2 , il vient :

$$\tilde{A} = \frac{A}{\omega_0^2} = \begin{pmatrix} -1 & \frac{\Omega_0}{\omega_0} & 0\\ \frac{\Omega_0}{\omega_0} & -2\frac{\Omega_0^2}{\omega_0^2} & \frac{\Omega_0}{\omega_0}\\ 0 & \frac{\Omega_0}{\omega_0} & -1 \end{pmatrix}$$
$$\Rightarrow \tilde{A} = \begin{pmatrix} -1 & a & 0\\ a & -2a^2 & a\\ 0 & a & -1 \end{pmatrix}$$

Avec $a = \frac{\Omega_0}{\omega_0} = \sqrt{\frac{m}{M}} = \sqrt{\frac{4}{3}}$ dans le cas du CO_2 . Pour déterminer numériquement les valeures propres ainsi que la matrice de pas-

Pour déterminer numériquement les valeures propres ainsi que la matrice de passage, on peut implémenter un code en python reprenant l'algorithme de la méthode de Jacobi Givens. Avec le bon script (déclaration des valeurs de la matrice \tilde{A}), et éxecution de programme sur l'ordinateur de l'enseignant responsable du projet, on obtient les résultats suivants.

— Pour la matrice de passage, on a une approximation telle que :

$$P = \begin{pmatrix} 0,7071 & 0,6030 & -0,3693 \\ 0,0000 & 0,5222 & 0,8528 \\ -0,7071 & 0,6030 & -0,3693 \end{pmatrix}$$

- Pour les valeurs propres, on a : - -0,999999999999922

---3,66666666666666647

 $--6,1964640410353613\times10^{-17}$

En prenant en compte la précision finie de la machine due au nombre d'opérations réalisées, on peut approximer les résultats trouvés.

On prendra ainsi les valeur propres suivantes :

$$- -1$$

 $- -\frac{11}{3}$
 $- 0$

On remarque alors que les valeurs trouvées correspondent (pas parfaitement à cause de la précision machine) à l'étude théorique des modes propres dans le cas du CO_2 . On pourra conclure cette partie en disant que la résolution de systèmes

différentiels peut servir à trouver les modes propres de vibration d'un système moléculaire. Cependant, à noter ici que l'étude a été faite sur un axe, et qu'en réalité la molécule de CO_2 est mouvante dans le plan ce qui explique la présence d'une autre bande d'absorption qui correspond aux vibrations de déformation dans le plan.

2.2Passage en 2 dimensions

Dans cette section, nous travaillerons dans le plan sur des exemples plus complexes. Par souci de simplicité, nous allons représenter les points (x, y) par leurs affixes $z \in \mathbb{C}$.

2.2.1Le triangle

Le triangle est un système de 3 masses et 3 ressorts où chacune des masses est reliée aux 2 autres par un ressort.

Nous supposerons les ressorts identiques.

En posant le PFD, on obtient un système de 3 équations :

$$\begin{cases} \ddot{z}_1 = \frac{k}{m_1}(z_2 + z_3 - 2z_1) \\ \ddot{z}_2 = \frac{k}{m_2}(z_1 + z_3 - 2z_2) \\ \ddot{z}_3 = \frac{k}{m_3}(z_1 + z_2 - 2z_3) \end{cases}$$

Comme nous posons le centre d'inertie fixe, nous disposons d'une quatrième équa-

tion : $m_1 z_1 + m_2 z_2 + m_3 z_3 = 0$. On peut en déduire que $z_3 = \frac{-(m_1 z_1 + m_2 z_2)}{m_3}$ donc nous pouvons réécrire notre système de la manière suivante :

$$\begin{cases} \ddot{z}_1 = k \left(z_1 \left(\frac{2}{m_1} + \frac{1}{m_3} \right) + z_2 \left(\frac{m_2}{m_1 m_3} - \frac{1}{m_1} \right) \right) \\ \ddot{z}_2 = k \left(z_2 \left(\frac{2}{m_2} + \frac{1}{m_3} \right) + z_1 \left(\frac{m_1}{m_2 m_3} - \frac{1}{m_2} \right) \right) \end{cases}$$

Notre système est un système oscillant, nous pouvons donc supposer qu'il existe au moins une valeur propre particulière ω

$$\begin{cases} z_1 = A\cos(\omega t) + B\sin(\omega t) \\ z_2 = C\cos(\omega t) + D\sin(\omega t) \end{cases} \text{ et } \begin{cases} \ddot{z}_1 = -\omega^2 (A\cos(\omega t) + B\sin(\omega t), \text{avec } A, B \in \mathbb{C}^2 \\ \ddot{z}_2 = -\omega^2 (C\cos(\omega t) + D\sin(\omega t), \text{avec } C, D \in \mathbb{C}^2 \end{cases}$$

En plus, nous savons que $\omega^2 = \frac{k}{M}$ avec M est une constante homogène à une masse, par homogénéité. En effet, ω^2 est homogène à une constante de raideur divisé par une masse, nous pouvons donc déduire cette relation et l'existence de M. . Nous pouvons à présent écrire ce système sous forme matricielle :

$$-\omega^{2} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = -k \begin{pmatrix} \frac{2}{m_{1}} + \frac{1}{m_{3}} & \frac{m_{2}}{m_{1}m_{3}} - \frac{1}{m_{1}} \\ \frac{m_{1}}{m_{2}m_{3}} - \frac{1}{m_{2}} & \frac{2}{m_{2}} + \frac{1}{m_{3}} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix}$$
$$\Rightarrow -\frac{k}{M} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = -k \begin{pmatrix} \frac{2}{m_{1}} + \frac{1}{m_{3}} & \frac{m_{2}}{m_{1}m_{3}} - \frac{1}{m_{1}} \\ \frac{m_{1}}{m_{2}m_{3}} - \frac{1}{m_{2}} & \frac{2}{m_{2}} + \frac{1}{m_{3}} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix}$$

$$\Rightarrow I_2 = M \begin{pmatrix} \frac{2}{m_1} + \frac{1}{m_3} & \frac{m_2}{m_1 m_3} - \frac{1}{m_1} \\ \frac{m_1}{m_2 m_3} - \frac{1}{m_2} & \frac{2}{m_2} + \frac{1}{m_3} \end{pmatrix}$$

En passant au déterminant, nous pouvons écrire :

$$1 = M^{2} \times \begin{vmatrix} \frac{2}{m_{1}} + \frac{1}{m_{3}} & \frac{m_{2}}{m_{1}m_{3}} - \frac{1}{m_{1}} \\ \frac{m_{1}}{m_{2}m_{3}} - \frac{1}{m_{2}} & \frac{2}{m_{2}} + \frac{1}{m_{3}} \end{vmatrix}$$
$$\Rightarrow 1 = M^{2} \left(\left(\frac{2}{m_{1}} + \frac{1}{m_{3}} \right) \left(\frac{2}{m_{1}} + \frac{1}{m_{3}} \right) - \left(\frac{m_{1}}{m_{2}m_{3}} - \frac{1}{m_{2}} \right) \left(\frac{m_{2}}{m_{1}m_{3}} - \frac{1}{m_{1}} \right) \right)$$
$$\Rightarrow 1 = 3M^{2} \underbrace{\frac{m_{1} + m_{2} + m_{3}}{m_{1}m_{2}m_{3}}}_{\frac{1}{m_{1}}}$$

On en déduit donc l'expression de la constante M par $M^2 = \frac{\mu}{3}$ et donc nous avons $M = \pm \sqrt{\frac{\mu}{3}}$ or M est homogène à une masse et donc ne peut pas être négative, ainsi $\omega^2 = \frac{k}{M} = k \sqrt{\frac{3}{\mu}}$ En posant les conditions initiales à t = 0, on a $z_1 = z_{10}$, $z_2 = z_{20}$, $\dot{z}_1 = \dot{z}_{10}$ et $\dot{z}_2 = \dot{z}_{20}$; nous pouvons calculer les constantes A, B, C et D:

$$z_1(0) = A\cos(\omega \times 0) + B\sin(\omega \times 0) \Rightarrow z_1(0) = A = z_{1_0}$$
$$\dot{z}_1(0) = \omega(-A\sin(\omega \times 0) + B\cos(\omega \times 0))) \Rightarrow \dot{z}_1(0) = B\omega = \dot{z}_{1_0}$$

De la même manière, on trouve C et D et en intégrant les expressions de ces constantes dans nos équations de mouvement, nous avons :

$$\begin{cases} z_1 = z_{1_0} \cos(\omega t) + \frac{\dot{z}_{1_0}}{\omega} \sin(\omega t) \\ z_2 = z_{2_0} \cos(\omega t) + \frac{\dot{z}_{2_0}}{\omega} \sin(\omega t) \\ z_3 = \frac{-m_1 z_{1_0} \cos(\omega t) - m_1 \frac{\dot{z}_{1_0}}{\omega} \sin(\omega t) - m_2 z_{2_0} \cos(\omega t) - m_2 \frac{\dot{z}_{2_0}}{\omega} \sin(\omega t)}{m_3} \end{cases}$$

2.2.2 Le carré

Le carré est un système mécanique de 4 masses et 4 ressorts où chacune des masses sont reliées deux à deux entre elles.

Nous supposerons les ressorts identiques et en posant le PFD, nous obtenons ce système :

$$\begin{cases} \ddot{z}_1 = \frac{k}{m_1}(z_2 + z_4 - 2z_1) \\ \ddot{z}_2 = \frac{k}{m_2}(z_1 + z_3 - 2z_2) \\ \ddot{z}_3 = \frac{k}{m_3}(z_4 + z_2 - 2z_3) \\ \ddot{z}_4 = \frac{k}{m_4}(z_1 + z_3 - 2z_4) \end{cases}$$

4

FIGURE 2.6 – Modèle du carré

Comme nous posons le centre d'inertie fixe, nous disposons d'une quatrième équation : $m_1z_1 + m_2z_2 + m_3z_3 + m_4z_4 = 0$.

A l'aide de ces équations et de la même manière que pour le triangle, nous trouvons une solution particulière :

$$\det(I_3) = 4M^3 \underbrace{\frac{m_1 + m_2 + m_3 + m_4}{m_1 m_2 m_3 m_4}}_{\frac{1}{\mu}}$$

2.2.3 L'hexagone

De la même manière que pour les deux formes cycliques précédentes, nous trouvons une solution particulière de la forme :

$$\det(I_5) = 6M^5 \underbrace{\frac{m_1 + m_2 + m_3 + m_4 + m_5 + m_6}{m_1 m_2 m_3 m_4 m_5 m_6}}_{\frac{1}{\mu}}$$

2.2.4 Formes cycliques

Nous pouvons remarquer une formule générale se dessiner au fil de nos calculs pour les formes cycliques, élément très commun dans les molécules; notamment en chimie organique avec les aromatiques par exemple.

Pour un système de n masses à n ressorts, nous avons besoin d'un système à n-1équations pour résoudre ce système car nous supposons toujours le centre d'inertie fixe. Nous pouvons modéliser ces n-1 équations par la matrice $A \in \mathbb{M}_{n-1}(\mathbb{R})$. Ces systèmes étant compliqué à résoudre, nous allons faire l'hypothèse que la formule qui se dessine avec les cycles de 3, 4 et 6 masses s'applique pour n masses, ce qui nous donne donc :

$$\det(I_{n-1}) = nM^{n-1} \times \underbrace{\underbrace{\sum_{i=1}^{n} m_i}_{\substack{i=1\\ i=1}}}^{n} \underbrace{\prod_{i=1}^{n} m_i}_{\frac{1}{u}}$$

En utilisant toutes les équations données par le PFD, nous pouvons mettre sous forme matricielle et obtenir ceci :

$$A = \frac{1}{m} \begin{pmatrix} 3 & 0 & 1 & \cdots & 1 \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 1 & \cdots & 1 & 0 & 3 \end{pmatrix} \Rightarrow Det(A) = \frac{1}{m^{n-1}}n^2$$

La formule du déterminant est trouvé par le fait que nous savons A diagonalisable, c'est-à-dire $\exists D \in \mathbb{M}_n(\mathbb{R})$ une matrice diagonale et $\exists P \in \mathbb{M}_n(\mathbb{R})$ inversible tel que : $A = P^{-1}DP$ et donc par conséquent $\det(A) = \det(P^{-1}DP) \Rightarrow \det(A) = \det(D)$.

Grâce à cette écriture et aux propriétés des matrices circulantes, nous obtenons alors

$$\det(A) = \frac{1}{m^{n-1}} \prod_{k=1}^{n-1} v_k \text{ avec } v_k = 2 - 2\cos\left(\frac{2k\pi}{n}\right)$$

Et finalement, nous obtenons $\det(A) = \frac{1}{m^{n-1}}n^2$

2.3 Modélisation en 2 dimensions

2.3.1 Molécule "classiques" type H2O

La modélisation des molécules que nous référont en tant que "classiques", c'est-àdire sans cycle, se fera de la même mannière que celle du CO_2 par exemple, que nous avons déjà traité dans la partie 2.2.2 mais nous remplacerions la coordonée unique r par le complexe z qui représente l'affixe des points.

2.3.2 Molécules cycliques

Triangle

Dans la nature, il est très difficile d'avoir des molécules triangulaires, en raison de leur instabilité : en effet, il faudrait que l'angle entre chaque liaison soit de 60°, or cette agencement est extrêmement instable.

Cependant, une telle molécule existe, il s'agit de l'ozone O_3 cyclique.

Bien que cette molécule existe et peut être trouvé en très petite quantité dans la nature, son énergie d'activation permettant l'ouverture du cycle étant inférieure à son enthalpie standard de formation ne permet pas d'en produire en quantité suffisante pour vérifier les modèles théoriques.

Ainsi nous ne pouvons qu'émmettre l'hypothèse que l'ozone cyclique se comporte comme un triangle de ressorts.

Hexagone

Les cycles hexagonaux sont assez courants dans la nature, le plus courant étant le benzène C_6H_6 .

En utilisant notre relation trouvé en 3.3 et les vibrations d'élongation des doubles liaisons C = C trouvées grâce à la spectrophotométrie, la vérification de notre modèle est possible mais très longue.

Conclusions et perspectives

Pour conclure ce rapport, nous pouvons souligner l'importance du travail de modélisation, qui nous permet de mieux comprendre tout phénomènes, physiques ou chimiques.

En effet, la modélisation à l'aide de système masses-ressorts sert en chimie moléculaire, pour comprendre le comportement des liaisons covalentes, mais elle peut aussi avoir énormément d'applications en biomécanique : par exemple les sauts sont modélisés de cette manière, en modélisant les jambes du sauteur par un ressort et le haut du corps par une masse.

Ce projet nous a permis de se pencher sur des domaines scientifiques sur lesquels nous ne serions sûrement jamais pencher, étant donné notre future orientation dans le département de Génie Mathématique.

En plus, nous avons pu lier des connaissances acquises au cours de tout notre cycle de STPI, notamment celles de chimie, de mécanique du point et nos travaux sur les résolutions de systèmes d'équations différentielles et systèmes linéaires.

Cependant, ce projet a été grandement compliqué par le fait que nous n'étions que 2 pour faire nos recherches, nos calculs et rédiger ce rapport. Nous aimerions souligner que la quantité de travail demandé par le projet a été conséquente, bien qu'intéressante.

En conclusion, l'initiative de la part de l'INSA de nous faire faire ce projet est une très bonne manière pour nous de mettre en application les connaissances théoriques dont nous avons été instruits au cours de ses deux dernières années.

Annexes

On se propose de visualiser les mouvements de systèmes de ressorts triangulaires, avec différentes conditions initiales

FIGURE 2.7 – Evolution du système triangulaire avec des masses proportionelles dans le temps

Conditions initiales	Mobile A	Mobile B	Mobile C
Position de x	-0.2	0.2	$\left -\left(\frac{m_a}{m_c}\right)*x_a-\left(\frac{m_b}{m_c}\right)*x_b\right $
Position de y	-0.2	-0.2	$\left -\left(rac{m_a}{m_c} ight) * y_a - \left(rac{m_b}{m_c} ight) * y_b ight $
vitesse x	0	0	0
vitesse y	0	0	0
masse	1	1	1

On remarque qu'avec des masses proportionelles, la coordonnée en y de A et B est égal à tout instant, et la coordonnée x de A et B est symétrique à tout instant.

En revanche, la coordonnée x de C est invariable en fonction du temps et la coordonée y de C a 2 fois plus d'amplitude que celles de A et B

FIGURE 2.8 – Evolution du système triangulaire avec deux masses égales et une masse différente, $m_B=2m_A=2m_C$

Conditions initiales	Mobile A	Mobile B	Mobile C
Position de x	-0.2	0.2	$\left -\left(\frac{m_a}{m_c}\right) * x_a - \left(\frac{m_b}{m_c}\right) * x_b \right $
Position de y	-0.2	-0.2	$-\left(\frac{m_a}{m_c}\right) * y_a - \left(\frac{m_b}{m_c}\right) * y_b$
vitesse x	0	0	0
vitesse y	0	0	0
masse	1	2	1

On remarque qu'en augmentant l'une des trois masses, seule la masse supérieure (m_B) conserve sa trajectoire linéaire alors que les deux autres auront des trajectoires qui semble tendre vers des trajectoire circulaires ou elliptiques. Il faudrait faire une analyse sur une période de temps plus longue pour en avoir la certitude

Nous remarquons que la vitesse en y, v_y effectue une sorte de "spirale" en fonction de y ce qui rend l'analyse du mouvement compliquée.

FIGURE 2.9 – Evolution du système triangulaire avec trois masses égales et une vitesse initiale sur $A, v_x = 0.5$ et $v_y = 0$

Conditions initiales	Mobile A	Mobile B	Mobile C
Position de x	-0.2	0.2	$\left -\left(\frac{m_a}{m_c} ight)*x_a-\left(\frac{m_b}{m_c} ight)*x_b ight $
Position de y	-0.2	-0.2	$\left -\left(\frac{m_a}{m_c} ight)*y_a-\left(\frac{m_b}{m_c} ight)*y_b ight $
vitesse x	0.5	0	0
vitesse y	0	0	0
masse	1	1	1

On peut remarquer que l'apparition d'une vitesse initiale suivant x sur le mobile A implique un déplacement du système entier suivant l'axe x dans le temps.

Cependant, l'apparition de cette vitesse initiale sur l'axe des x n'a aucune incidence sur la coordonnée y de chaque mobile, car y et v_y sont identiques à tout instant à ceux dans le cas où il n'y a pas de vitesse initiale et les masses sont identiques alors que sur la coordonnée x, il semble que les mobiles perdent en amplitude.

Nous pouvons remarquer les premières limites de notre modèle, car les mobiles A et B sont censés se percuter, car à certains instants t, on a $x_a = x_b$ et à tout instant, $y_a = y_b$. Ces limites seront discutés après le cas suivant.

FIGURE 2.10 – Evolution du système triangulaire avec trois masses égales et une vitesse initiale sur $A, v_x = v_y = 0.5$

Conditions initiales	Mobile A	Mobile B	Mobile C
Position de x	-0.2	0.2	$\left -\left(\frac{m_a}{m_c} ight)*x_a-\left(\frac{m_b}{m_c} ight)*x_b ight $
Position de y	-0.2	-0.2	$\left -\left(\frac{m_a}{m_c} ight)*y_a-\left(\frac{m_b}{m_c} ight)*y_b ight $
vitesse x	0.5	0	0
vitesse y	0.5	0	0
masse	1	1	1

Nous pouvons remarquer que donner une vitesse initiale sur les deux coordonnées x et y à l'un des mobiles va déplacer le système entier en fonction du temps sur les deux coordonées.

Cependant, les amplitudes de mouvement n'ont pas l'air d'avoir changées en x alors que celles en y de A et B ont considérablement réduits

FIGURE 2.11 – Evolution du système triangulaire avec trois masses égales et une vitesse initiale sur A et sur B opposées l'une à l'autre

Conditions initiales	Mobile A	Mobile B	Mobile C
Position de x	-0.2	0.2	$-\left(\frac{m_a}{m_c} ight) * x_a - \left(\frac{m_b}{m_c} ight) * x_b$
Position de y	-0.2	-0.2	$-\left(\frac{m_a}{m_c}\right) * y_a - \left(\frac{m_b}{m_c}\right) * y_b$
vitesse x	0.5	-0.5	0
vitesse y	0	0	0
masse	1	1	1

On peut remarquer que l'apparition de ces vitesses initiales sur x, les trajectoires linéaires de A et B dans le cas sans vitesses initiales sont devenus des trajectoires elliptiques.

La position d'équilibre se rapproche de 0 et l'amplitude des mouvements est plus grande.

Cependant, nous remarquons ici l'une des limites de notre modèle et programme car les masses A et B sont censés se percuter à t = 5 par exemple, et donc les trajectoires seraient complètement changées.

Etant donné que ces conditions initiales montrent des limites physiques, nous avons comparer les résultats analytiques précédemment montrés avec les résultats obtenus avec les solutions obtenus avec la méthode RK4, tels que montrés sur la figure 2.12.

Nous pouvons remarqué que nos solutions analytiques sont justes étant donné qu'elles se superposent quasiment à l'identique avec les solutions RK4.

FIGURE 2.12 – Evolution du système triangulaire avec trois masses égales et une vitesse initiale sur A et sur B opposées l'une à l'autre, couplé aux solutions RK4

Par conséquent, les limites du modèle sont bien vérifiées et ne proviennent pas de nos solutions analytiques.

Détermination du déterminant dans le cas de formes cycliques

On détaille ici le calcul du déterminant pour les formes cycliques. En reprenant la matrice plus haut :

$$A = \frac{1}{m} \begin{pmatrix} 3 & 0 & 1 & \cdots & 1 \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 1 & \cdots & 1 & 0 & 3 \end{pmatrix}$$

Lorsque nous écrivons les équations du PFD et que nous passons à la forme matricielle nous enlevons une ligne et une colonne associée à une des masses. Cependant, si nous gardons le système originel sans tenir compte de l'équation relative au centre de masse fixe, nous obtenons la matrice $B \in M_n(\mathbb{R})$ de la forme :

$$B = \frac{1}{m} \begin{pmatrix} 2 & -1 & -1 & \cdots & -1 \\ -1 & 2 & -1 & & \vdots \\ & \ddots & \ddots & \ddots & \\ \vdots & & -1 & 2 & -1 \\ -1 & \cdots & -1 & -1 & 2 \end{pmatrix}$$

On remarque que cette dernière est de type circulante et diagonalisable alors :

$$det(A) = det(PDP^{-1})$$
$$\Rightarrow det(A) = det(D)$$

On remarque que toutes les valeurs propres de A sont valeurs propres de B, cependant, B possède une valeur propre de plus à cause de sa dimansion qui, du fait de sa géométrie est égale à 0. Pour le calcul des valeur propres de A, on utilisera celui des valeurs propres de la matrice circulante B qui sont définies comme étant égales aux racines de l'unité telles que $\forall k \in \{0, \ldots, n-1\}, v_k = 2 - 2\cos(\frac{2k\pi}{n})$ avec n la taille de la matrice, on retrouve ainsi :

$$D = \begin{pmatrix} v_1 & & & \\ & v_2 & & \\ & \ddots & & \\ & & v_{n-1} & \end{pmatrix}$$
$$\Rightarrow det(A) = \frac{1}{m^{n-1}} \prod_{k=1}^{n-1} v_k$$

16 juin 2023

Avec :

$$\prod_{k=1}^{n-1} v_k = \prod_{k=1}^{n-1} 2\left(1 - \cos\left(\frac{2k\pi}{n}\right)\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} v_k = 2^{n-1} \prod_{k=1}^{n-1} \left(1 - \cos\left(\frac{2k\pi}{n}\right)\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} v_k = 2^{n-1} \prod_{k=1}^{n-1} Re\left(e^{0i} - e^{\frac{2ik\pi}{n}}\right)$$

Avec les formules d'Euler, on obtient :

$$\Rightarrow \prod_{k=1}^{n-1} v_k = 2^{n-1} \prod_{k=1}^{n-1} Re(e^{\frac{ik\pi}{n}} 2i\sin(\frac{-k\pi}{n}))$$
$$\Rightarrow \prod_{k=1}^{n-1} v_k = 2^{n-1} \prod_{k=1}^{n-1} Re(-2i(\cos(\frac{k\pi}{n}) + i\sin(\frac{k\pi}{n}))\sin(\frac{k\pi}{n}))$$
$$\Rightarrow \prod_{k=1}^{n-1} v_k = 2^{2n-2} \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})^2$$

Déterminons à présent la valeur de $\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})$:

$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \prod_{k=1}^{n-1} \left(\frac{e^{\frac{ik\pi}{n}} - e^{-\frac{ik\pi}{n}}}{2i}\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{(2i)^{n-1}} \prod_{k=1}^{n-1} \left(e^{\frac{ik\pi}{n}} - e^{-\frac{ik\pi}{n}}\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{(2i)^{n-1}} \prod_{k=1}^{n-1} e^{-\frac{ik\pi}{n}} \left(e^{\frac{2ik\pi}{n}} - 1\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{(2i)^{n-1}} e^{\frac{i\pi(n-1)}{2}} \prod_{k=1}^{n-1} \left(e^{\frac{2ik\pi}{n}} - 1\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{(2i)^{n-1}} (-1)^{n-1} \prod_{k=1}^{n-1} \left(e^{\frac{2ik\pi}{n}} - 1\right)$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{(2i)^{n-1}} (-1)^{n-1} \prod_{k=1}^{n-1} \left(1 - e^{\frac{2ik\pi}{n}}\right)$$

16juin2023

$$\Rightarrow \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n}) = \frac{1}{2^{n-1}} \prod_{k=1}^{n-1} (1 - e^{\frac{2ik\pi}{n}})$$
$$\Rightarrow \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n}) = \frac{n}{2^{n-1}}$$

$$\Rightarrow det(A) = \frac{1}{m^{n-1}} 2^{2n-2} \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})^2$$
$$\Rightarrow det(A) = \frac{1}{m^{n-1}} 2^{2n-2} \frac{n^2}{2^{2n-2}}$$
$$\Rightarrow \boxed{det(A) = \frac{1}{m^{n-1}} n^2}$$

Code Pascal pour le triangle

```
1 program troismasseslibre;
2
3 uses math;
4
5
6 type complexe = record
7
           re : Double;
8
           im : Double;
9
           end;
10
  type vecteur6 = record
11
           za : complexe;
12
           zb : complexe;
13
           zc : complexe;
14
15
           vza : complexe;
           vzb : complexe;
16
           vzc : complexe;
17
           end;
18
19
20 var ma , mb , mc , 112x , 113x , 112y , 113y : double;
           k,wa_sqr,wb_sqr,wc_sqr : Single;
21
22
           Yn , Yanalytique : vecteur6;
           i : word;
23
           t , mu , M , W: Double;
24
           F : Text;
25
           za_0 , zb_0, zc_0, vza_0 , vzb_0, vzc_0 ,A,B,C,D
26
               : complexe;
  const dt = 0.5;
27
28
29 function addcomplexe(z1,z2 : complexe) : complexe;
30 begin
31 addcomplexe.re := z1.re + z2.re;
32 addcomplexe.im := z1.im + z2.im;
33 end;
34
35 function multcomplexe(z : complexe ; a : double) :
      complexe;
36 begin
```



```
37 multcomplexe.re := a * z.re;
38 multcomplexe.im := a * z.im;
39 end;
40
41 function addvecteur(v1,v2 : vecteur6) : vecteur6;
42 begin
43 addvecteur.za := addcomplexe(v1.za,v2.za);
44 addvecteur.zb := addcomplexe(v1.zb,v2.zb);
45 addvecteur.zc := addcomplexe(v1.zc,v2.zc);
46 addvecteur.vza := addcomplexe(v1.vza,v2.vza);
47 addvecteur.vzb := addcomplexe(v1.vzb,v2.vzb);
48 addvecteur.vzc := addcomplexe(v1.vzc,v2.vzc);
49 end;
50
51 function multvecteur(v : vecteur6 ; a : double) :
     vecteur6;
52 begin
53 multvecteur.za := multcomplexe(v.za,a);
54 multvecteur.zb := multcomplexe(v.zb,a);
55 multvecteur.zc := multcomplexe(v.zc,a);
56 multvecteur.vza := multcomplexe(v.vza,a);
57 multvecteur.vzb := multcomplexe(v.vzb,a);
58 multvecteur.vzc := multcomplexe(v.vzc,a);
59 end;
60
61 function applyf( A : Vecteur6) : Vecteur6; // equation
     differentiel
62 begin
63 applyf.za := A.vza;
64 applyf.zb := A.vzb;
65 applyf.zc := A.vzc;
 applyf.vza := multcomplexe(addcomplexe(A.zc,addcomplexe(
66
     A.zb,multcomplexe(A.za,-2.0))),wa_sqr);
  applyf.vzb := multcomplexe(addcomplexe(A.zc,addcomplexe(
67
     A.za, multcomplexe(A.zb, -2.0))), wb_sqr);
  applyf.vzc := multcomplexe(addcomplexe(A.zb,addcomplexe(
68
     A.za,multcomplexe(A.zc,-2.0))),wc_sqr);
69
  end;
70
 procedure rk4(var Y : Vecteur6 );
71
```



```
var Yb , Yc , Yd : Vecteur6;
72
            K1 , K2 , K3 , K4 , K : Vecteur6;
73
74 begin
75 Yb := Y;
76 Yc := Y;
77 Yd := Y;
78
79 K1 := applyf(Y);
80
81 Yb := addvecteur(multvecteur(multvecteur(K1,dt),0.5),Y);
82 K2 := applyf(Yb);
83
84 Yc := addvecteur(multvecteur(multvecteur(K2,dt),0.5),Y);
85 K3 := applyf(Yc);
86
87 Yd := addvecteur(multvecteur(K3,dt),Y);
88 K4 := applyf(Yd);
89
90
91 K := addvecteur(K1, multvecteur(K2,2.0));
92 K := addvecteur(K,multvecteur(K3,2.0));
93 K := addvecteur(K,K4);
94 K := multvecteur(K, dt/6.0);
95
96
97 Y := addvecteur(Y,K);
98 end;
99
100 procedure resultat(Y,Yan : vecteur6 ; t : Double);
101 begin
102 write(F,t:0:2);
103 write(F, 'uu');
104
105 write(F,Y.za.re:0:5);
106 write(F, 'uu');
                                               //rk4
107 write(F,112x + Y.zb.re:0:5);
      position x
108 write(F, 'uu');
109 write(F,113x + Y.zc.re:0:5);
110 write(F, 'uu');
```



```
111
112 write(F,Y.za.im:0:5);
113 write(F, 'uu');
114 write(F, 112y + Y.zb.im:0:5);
                                                  //rk4
      position y
115 write(F, 'uu');
116 write(F, 113y + Y.zc.im:0:5);
117 write(F, 'uu');
118
119 write(F,Y.vza.re:0:5);
120 write(F,'<sub>⊔⊔</sub>');
121 write(F,Y.vzb.re:0:5);
                                                  //rk4
      vitesse x
122 write(F, 'uu');
123 write(F,Y.vzc.re:0:5);
124 write(F, 'uu');
125
126 write(F,Y.vza.im:0:5);
127 write(F, 'uu');
128 write(F,Y.vzb.im:0:5);
                                                  //rk4
      vitesse y
129 write(F,'___');
130 write(F,Y.vzc.im:0:5);
131 write(F, 'uu');
132
133 write(F,Y.za.re:0:5);
134 write(F,'<sub>⊔⊔</sub>');
135 write(F,l12x + Y.zb.re:0:5);
                                                  //analytique
           position y
136 write(F, '<sub>⊔⊔</sub>');
137 write(F, 113x + Y.zc.re:0:5);
138 write(F, 'uu');
139
140 write(F,Y.za.im:0:5);
141 write(F,'uu');
142 write(F,112y + Y.zb.im:0:5);
                                                  //analytique
           position y
143 write(F, 'uu');
144 writeln(F,113y + Y.zc.im:0:5);
145 end;
```



```
146
147
148 function analytique(t : Double) : vecteur6;
149 begin
150 analytique.za.re := A.re * cos(W * t) + B.re * sin(W * t
      );
151 analytique.za.im := A.im * cos(W * t) + B.im * sin(W * t
      );
152 analytique.zb.re := C.re * cos(W * t) + D.re * sin(W * t
      );
153 analytique.zb.im := C.im * \cos(W * t) + D.im * \sin(W * t)
      );
154 analytique.zc.re := - (ma / mc) * analytique.za.re - (mb
        / mc) * analytique.zb.re;
   analytique.zc.im := - (ma / mc) * analytique.za.im - (mb
155
        / mc) * analytique.zb.im;
156
   end;
157
158 procedure initialisation();
159 begin
160 ma := 1;
161 mb := 1;
162 mc := 1;
163
164 k := 0.1;
165
166 \quad 112x := 1.0;
167 l12y := 0;
168 \quad 113x := 0.5;
169 113y := 0.75;
170
171 za_0.re := -0.2;
172 \text{ za}_0.\text{im} := -0.2;
173 zb_0.re := 0.2;
174 \text{ zb}_0.\text{im} := -0.2;
175 zc_0.re := - (ma / mc) * za_0.re - (mb / mc) * zb_0.re;
176 zc_0.im := - (ma / mc) * za_0.im - (mb / mc) * zb_0.im;;
177 vza_0.re := 0.5;
178 vza_0.im := 0;
179 vzb_0.re := -0.5;
```



```
180 \text{ vzb}_0.\text{im} := 0;
181 vzc_0.re := 0;
182 \text{ vzc_0.im} := 0;
183
184 wa_sqr := k/ma;
185 \text{ wb\_sqr} := \text{k/mb};
186 \text{ wc_sqr} := \text{k/mc};
187
188
189 mu := (ma * mb * mc) / (ma + mb + mc);
190 M := sqrt(mu / 3);
191 W := sqrt(k / M);
192
193 A := za_0;
194 B := multcomplexe(vza_0 , 1/W);
195 C := zb_0;
196 D := multcomplexe(vzb_0 , 1/W);
197
198 Yn.za := za_0;
199 Yn.zb := zb_0;
200 \text{ Yn.zc} := zc_0;
201 Yn.vza := vza_0;
202 \text{ Yn.vzb} := \text{vzb}_0;
203 Yn.vzc := vzc_0;
204
205 Yanalytique.za := za_0;
206 Yanalytique.zb := zb_0;
207 Yanalytique.zc := zc_0;
208 Yanalytique.vza := vza_0;
209 Yanalytique.vzb := vzb_0;
210 Yanalytique.vzc := vzc_0;
211 end;
212
213 begin
214 initialisation();
215
216 t := 0;
217 Assign(F, 'resultat.txt');
218 Rewrite(F);
219 \text{ for i} := 1 \text{ to } 50 \text{ do}
```


Modélisation système masse ressorts

Pour détermier les valeurs propres de la matice, on uilise un progamme qui reprend la méthode de Jacobi Givens codé en python.

Après execution du programme sur l'ordinateur de l'enseignant responsable, le terminal retourne le résultat suivant :

[macbook-pro-de-BG:masse-ressort bg\$!py
python JacobiGivens.py
[-0.99999999999999922, -3.666666666666666647, 6.1964640410353613e-17] [[7.07106781e-01 -3.69274473e-01 6.03022689e-01]
[1.99898308e-16 8.52802865e-01 5.22232968e-01]
[-7.07186781e-01 -3.69274473e-01 6.03022689e-01]]
macbook-pro-de-BG:masse-ressort bg\$

FIGURE 2.13 – Résultats numériques de la diagonalisation

INSA INSTITUT NATIONAL DES SCIENCES APPLIQUÉES POLIQUÉES

Bibliographie

- Raoul Follereau. Td oscillateurs harmoniques. http://www.mmelzani. fr/documents/2019-2020/part4_systemes_lineaires/chap2_TD_ oscillateur_harmonique.pdf, 2019. [En ligne; Page disponible le 25avril-2023].
- [2] Gilbert Gastebois. Potentiel de morse. http://gilbert.gastebois. pagesperso-orange.fr/java/morse/theorie_Morse.pdf. [En ligne; Page disponible le 11-juin-2023].
- [3] Christelle LANGRAND. Spectre ir co2. http://acces.ens-lyon.fr/acces/ thematiques/CCCIC/ressources/irspco2, 2017. [En ligne; Page disponible le 02-juin-2023].
- [4] Robert Olbrycht. Gas identification and estimation of its concentration in a tube using hyperspectral thermography approach. https://www. researchgate.net/publication/305635011_Gas_identification_and_ estimation_of_its_concentration_in_a_tube_using_hyperspectral_ thermography_approach, 2016. [En ligne; Page disponible le 17-avril-2023].
- [5] Dmitrií Sadovskií. Physique numérique analyse et présentation des données, programmation. http://pca3.univ-littoral.fr/~dima/cours/CalNum/ L3phys-calnum.pdf, 2015. [En ligne; Page disponible le 11-juin-2023].
- [6] univ lemans. Oscillateurs linéaires-oscillateurs couplés. http://res-nlp. univ-lemans.fr/NLP_E_M01_G04/co/NLP_E_M01_G04_16.html. [En ligne; Page disponible le 26-mai-2023].
- [7] univ lemans. Potentiel de morse. http://ressources.univ-lemans.fr/ AccesLibre/UM/Pedago/physique/02/divers/morse.html. [En ligne; Page disponible le 11-juin-2023].
- [8] Wikipédia. Potentiel de morse wikipédia, l'encyclopédie libre. http://fr.wikipedia.org/w/index.php?title=Potentiel_de_Morse& oldid=191496099, 2022. [En ligne; Page disponible le 28-février-2022].