Correction de l'IS de P1-1 du 7 avril 2022

Partie A - Questions indépendantes

- II) Par identification, les variables indépendantes choisies pour exprimer la fonction G sont P et T.
- 12) Par identification avec l'expression de la différentielle d'une fonction de deux variables, on a

$$dG = \left. \frac{\partial G}{\partial P} \right|_T dP + \left. \frac{\partial G}{\partial T} \right|_P dT \text{ Ainsi } \left. \frac{\partial G}{\partial P} \right|_T = V \text{ et } \left. \frac{\partial G}{\partial T} \right|_P = -S$$

I3) Pour un gaz parfait, on a
$$V = \frac{nRT}{P}$$
 et on a $\frac{\partial G}{\partial P}\Big|_{T} = V$. Ainsi, $\frac{\partial^2 G}{\partial P^2}\Big|_{T} = \frac{\partial}{\partial P}\left(\frac{nRT}{P}\right)$ et donc

$$\left. \frac{\partial^2 G}{\partial P^2} \right|_T = -\frac{nRT}{P^2}$$

II 1) On a la relation de Mayer : $C_p - C_V = nR$ et d'autre part la définition du rapport isentropique $\gamma = \frac{C_P}{C_V}$, ce qui donne $C_P = \gamma C_V$ en remplaçant dans la relation de Mayer $\gamma C_V - C_V = nR \Leftrightarrow C_V(\gamma - 1) = nR$ donc au final $C_V = \frac{nR}{\gamma - 1}$ ainsi que $C_P = \frac{nR\gamma}{\gamma - 1}$

2) La capacité thermique massique à volume constant est définie comme $c_P = C_P/m$ et puisque $m = n \cdot M$, on obtient $c_V = \frac{R}{M(\gamma - 1)}$ ainsi que $c_P = \frac{R\gamma}{M(\gamma - 1)}$

III Le mélange se comporte comme un gaz parfait, on a donc $PV = n_{tot}RT$ pour le mélange.

On a $n_{tot} = n_{O2} + n_{CO2}$ En divisant par n_{tot} , on obtient la relation entre les fractions molaires $x_{O2} + x_{CO2} = 1$ Cherchons x_{CO2} .

Exprimons la masse volumique du mélange.
$$\mu = \frac{m}{V} = \frac{m_{O2} + m_{CO2}}{V} = \frac{n_{O2}M_{O2} + m_{CO2}M_{CO2}}{V}$$

En divisant par la quantité de matière, on obtient : $\frac{\mu}{n_{tot}} = \frac{x_{O2}M_{O2} + x_{CO2}M_{CO2}}{V}$ ou encore

$$\frac{\mu V}{n_{tot}} = (1 - x_{CO2})M_{O2} + x_{CO2}M_{CO2}$$

En utilisant la loi des gaz parfaits écrite plus haut, on obtient : $\frac{\mu RT}{P} = (1 - x_{CO2})M_{O2} + x_{CO2}M_{CO2}$

On isole l'inconnue x_{CO2} , on trouve $x_{CO2} = \frac{\frac{\mu RT}{P} - M_{O2}}{M_{CO2} - M_{O2}}$

$$x_{CO2} = \frac{\frac{\mu RT}{P} - M_{O2}}{M_{CO2} - M_{O2}}$$

AN:
$$x_{CO2} = 0,23$$
 et $x_{O2} = 0,77$

IV 1) voir diagramme ci-contre

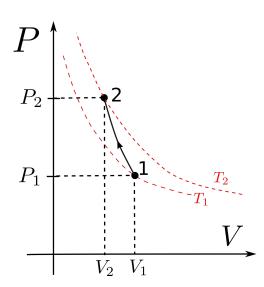
Note: Dans un diagramme (P; V) l'adiabatique réversible est plus pentue que l'isotherme.

IV 2) La transformation $(1) \rightarrow (2)$ est adiabatique réversible pour un gaz parfait, on peut donc utiliser la loi de Laplace :

 $PV^{\gamma} = \text{constante ou encore } P^{1-\gamma}T^{\gamma} = \text{constante ce qui donne}$:

$$P_1^{1-\gamma}T_1^{\gamma} = P_2^{1-\gamma}T_2^{\gamma}$$
, c'est à dire : $P_2 = P_1 \left(\frac{T_1}{T_2}\right)^{\gamma/1-\gamma}$
 $AN: P_2 = 300 \times \left(\frac{290}{300}\right)^{1,38/1-0,38}$ $P_2 = 1,13.10^5 \text{ Pa}$

AN:
$$P_2 = 300 \times \left(\frac{290}{300}\right)^{1,38/1-0,38}$$
 $P_2 = 1,13.10^5 \text{ Pa}$



Partie B - Transformations d'un gaz parfait

Partie I 1) Il s'agit d'une compression (ou contraction) adiabatique rapide. On accepte également brutale, monobare ou irréversible.

2) L'équilibre mécanique du piston
$$(\Sigma \vec{F} = \vec{0})$$
 donne $P_1 = P_0 + \frac{Mg}{S}$

AN:
$$P_1 = 10^5 + \frac{20 \times 9,81}{100 \times 10^{-4}}$$
 $P_1 = 1,20 \cdot 10^5$ Pa

3) La transformation étant adiabatique, on a Q = 0.

D'après le premier principe de la thermodynamique, on a $U_1 - U_i = W$. Ce gaz parfait suit la première loi de Joule, on a donc $U_1 - U_i = C_V(T_1 - T_0)$

Ainsi
$$U_1 - U_i = W = C_V(T_1 - T_0)$$
 et $Q = 0$

4) Exprimons le travail des forces de pression :

 $W = -\int P_{ext}dV$ or la pression extérieure est constante au cours de la transformation et égale à P_1 , on a

donc
$$W = -P_1 \int_{V_0}^{V_1} dV = -P_1(V_1 - V_0)$$

d'après ce qui précède, on obtient donc la relation suivante :

$$-P_1(V_1-V_0)=C_V(T_1-T_0)$$
 avec les deux inconnues T_1 et V_1 .

On peut relier ces deux inconnues grâce à l'équation d'état des gaz parfaits : $V_1 = \frac{nRT_1}{P_1}$ et $V_0 = \frac{nRT_0}{P_0}$

Ainsi on obtient :
$$-P_1\left(\frac{nRT_1}{P_1} - \frac{nRT_0}{P_0}\right) = C_V(T_1 - T_0)$$

En développant, puis en factorisant par T_1 et T_0 , on obtient $T_1(C_V + nR) = T_0\left(C_V + nR\frac{P_1}{P_0}\right)$ ce qui donne

$$T_1 = \frac{(C_V + \frac{P_1}{P_0} nR)}{C_V + nR}$$
 AN: $T_1 = 317 \text{ K}$

$$V_1 = \frac{nRT_1}{P_1}$$
 donne $V_1 = 2, 2 \text{ L} = 2, 2 \cdot 10^{-3} \text{ m}^3$

- 5) Il s'agit d'une contraction lente isobare. On accepte également irréversible.
- 6) La contraction est isobare, donc $P_2 = P_1 = 1,20 \cdot 10^5 \text{ Pa}$.

Il y a des échanges thermiques entre le système et l'atmosphère (thermostat). Donc, à l'équilibre, la température du système est égale à celle de l'atmosphère, $T_2 = T_0 = 300 \text{ K}$

$$V_2 = \frac{nRT_2}{P_2}$$
 donne $V_2 = 2, 1 \text{ L} = 2, 1 \cdot 10^{-3} \text{ m}^3$

7) L'énergie interne du système ne dépend que de l'état initial et l'état final. Comme un gaz parfait suit la première loi de Joule, $U_2 - U_i = C_v(T_0 - T_0) = 0$

On a $W_{i\to 2} = W_{i\to 1} + W_{1\to 2}$. On a vu à la question 3) que $W_{i\to 1} = C_V(T_1 - T_0)$ et comme la transformation $1 \to 2$ est isobare $(P \text{ constante au cours de la transformation et } P = P_1), <math>W_{1\to 2} = -P_1(V_2 - V_1)$.

Finalement, $W_{i\to 2} = C_V(T_1 - T_0) - P_1(V_2 - V_1)$. L'application numérique donne $W_{i\to 2} = 49$ J.

Le premier principe donne $U_2 - U_i = W_{i\to 2} + Q_{i\to 2} = 0$, ce qui implique $Q_{i\to 2} = -W_{i\to 2}$. Finalement, $Q_{i\to 2} = -49$ J.

On aurait pu aussi commencer par calculer le transfert thermique: $Q_{i\to 2} = Q_{i\to 1} + Q_{1\to 2} = 0 + C_p(T_2 - T_1)$ (car pour les transformation isobare, le premier principe s'écrit $\Delta H = Q$ et pour un gaz parfait $\Delta H = C_p \Delta T$ avec la deuxième loi de Joule).

Finalement $Q_{i\to 2} = \gamma C_v(T_0 - T_1)$, ce qui donne le même résultat que précédemment.

Partie II

- 8) Il s'agit d'une compression (ou contraction) lente isotherme. On accepte également réversible.
- 9) On ajoute la même masse sur le piston donc $P'_2 = P_2 = 1,20.10^5 \text{ Pa}$.

La transformation est isotherme, donc $T_2' = T_0 = T_2 = 300 \text{ K}$.

La loi des gaz parfait donne donc aussi $V_2' = V_2 = 2, 1 \text{ L}$.

10) La transformation est isotherme. Comme un gaz parfait suit la première loi de Joule, $U_2' - U_i = C_v(T_0 - T_0) = 0$. Exprimons le travail échangé au cours de la transformation:

$$W_{i\to 2'} = -\int P_{ext}dV$$

Comme la transformation est lente, $P_{ext} = P$ et la loi des gaz parfait donne $P = \frac{nRT_0}{V}$.

$$W_{i\to 2'} = -\int \frac{nRT_0}{V} dV$$

 $W_{i\to 2'} = -nRT_0 \int_{V_-}^{V_2'} \frac{dV}{V}$ car la transformation est isotherme.

$$W_{i\to 2'} = -nRT_0 \ln\left(\frac{V_2'}{V_0}\right)$$

$$\begin{split} W_{i\to 2'} &= -nRT_0 \ln \left(\frac{V_2'}{V_0}\right) \\ W_{i\to 2'} &= -nRT_0 \ln \left(\frac{P_0}{P_2'}\right) \text{ avec la loi des gaz parfait et en simplifiant } T_2' = T_0. \end{split}$$

L'application numérique donne $W_{i\to 2'}=45~\mathrm{J}$.

Le premier principe donne $U_2' - U_i = W_{i \to 2'} + Q_{i \to 2'} = 0$, ce qui implique $Q_{i \to 2'} = -W_{i \to 2'}$.

Finalement, $Q_{i\rightarrow 2'} = -45 \text{ J}$.

Partie III

11) On fournit moins de travail avec la transformation lente tout en arrivant au même état final. Le travail n'est pas une fonction d'état.