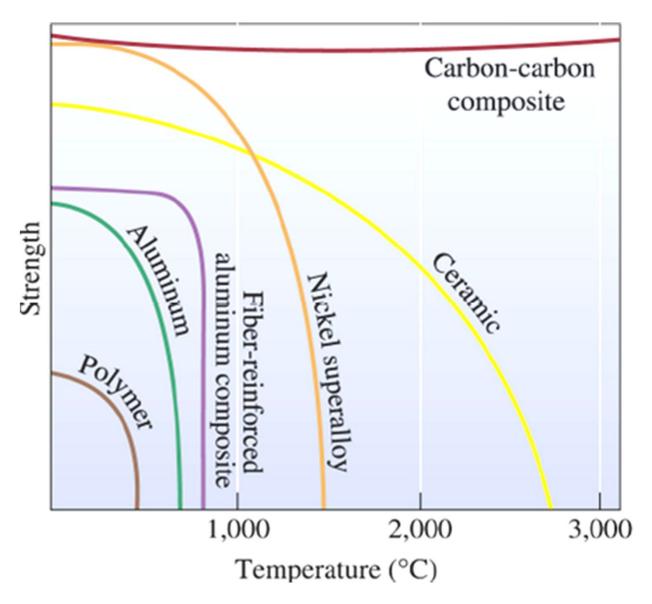


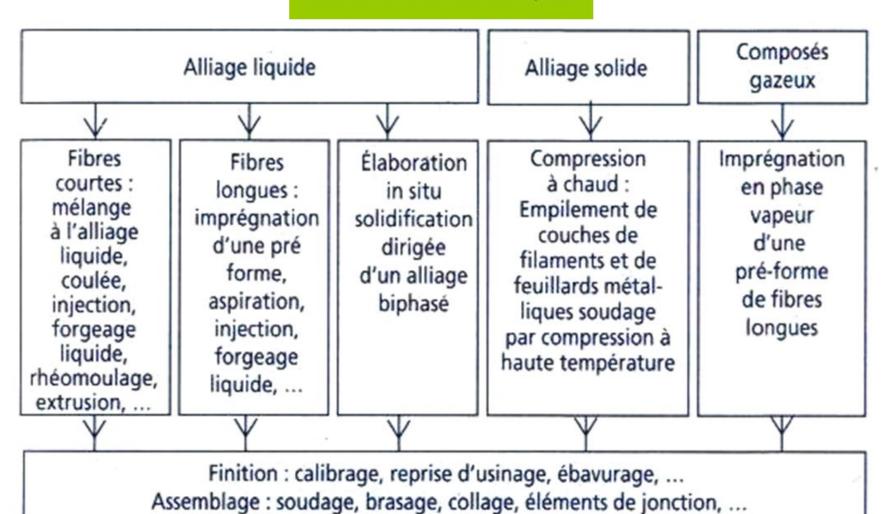
Représentation schématique d'un matériau composite [CAR04]



FONCTION	PRODUIT	CARACTERISTIQUES
Renfort	Microbulles (creuses)	☑ densité
mécanique	(verre, organique)	
	Microbilles (pleines)	✓ densité, résistance à l'abrasion
	Ecailles de mica	7 propriétés diélectriques, isolation thermique

Abaissement du	CaCO ₃ (craie)	Stabilité thermique et dimensionnelle
coût		Meilleur aspect de surface
		Meilleure résistance à l'eau
	Talc	Epaississant, anti-poissant
	Kaolin, Silice	
Conduction	Poudres et paillettes	conduction thermique
électrique	métalliques	□ densité, résistance aux chocs
	Noir de carbone	anti-UV
	Microbulles creuses	☑ densité
	métalliques	

Comparaison du module d'Young (a) et de la résistance (b) en fonction de la densité des composites avec les principaux matériaux



Tenue mécanique à hautes températures pour différents matériaux

Com	posites	Examples of Application
Polymer Matrix	Thermoplastic	Mechanical components, protection
	Matrix	screens
	Thermoset Matrix	Aerospace, spoting equipment
	∃astomer Matrix	Tires
Metal Matrix	Aluminum Matrix	Aerospace, sporting equipment, electronic packaging
	Titanium Matrix	Aerospace turbines
	Copper Matrix	High strength electrical conductors
Ceramic Matrix	Alumina Matrix	High temperature mechanical applications
	Cermets	Cutting tools, polishing materials

Classification des matériaux composites selon la nature de la matrice – Applications courantes

MATRICE METALLIQUE

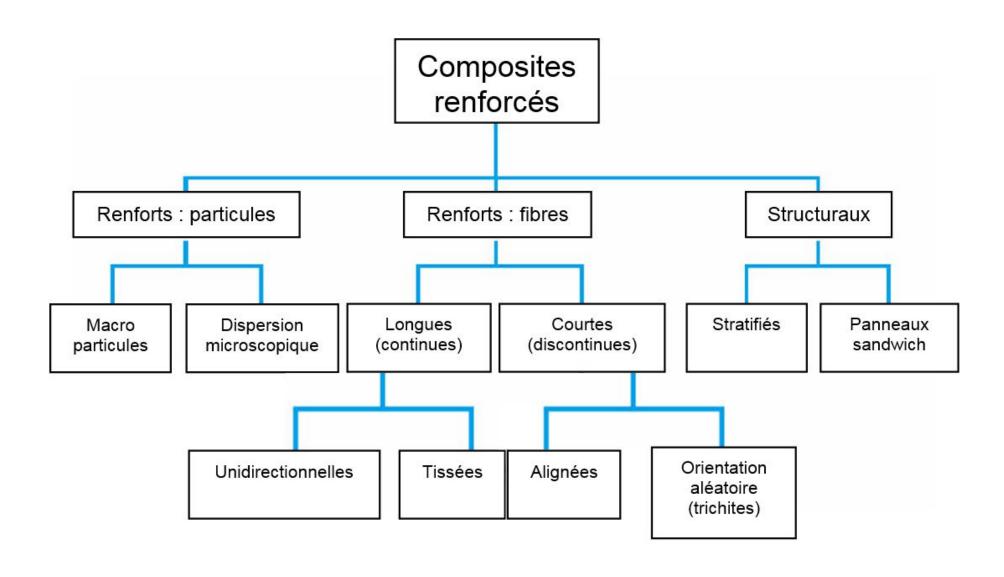
MATRICE CERAMIQUE

MATRICE ORGANIQUE Thermodurcissables et élastomères

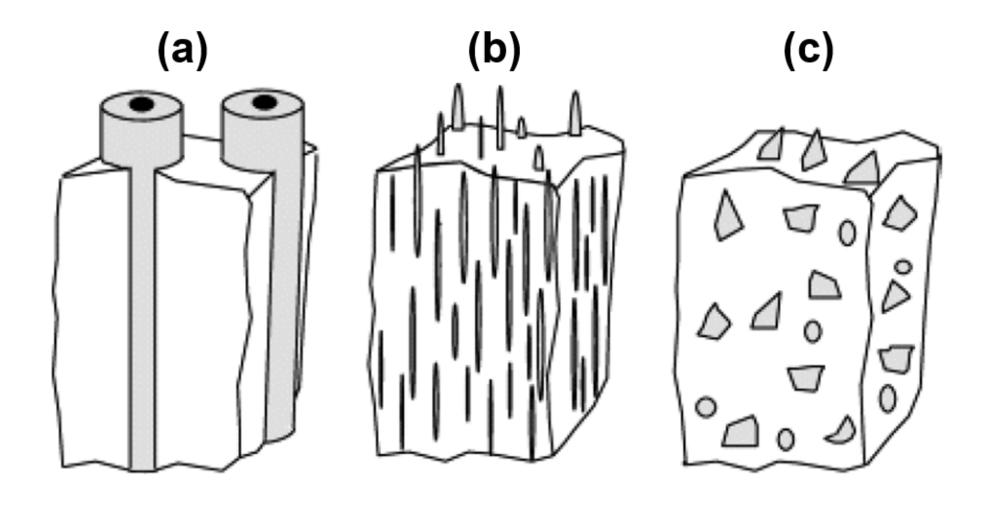
MATRICE ORGANIQUE Thermoplastiques

Composés gazeux

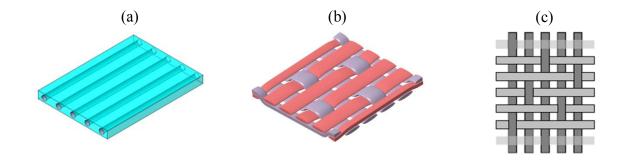
Imprégnation en phase vapeur d'une pré-forme de fibres longues

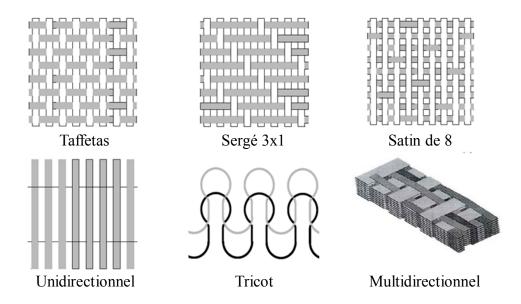

Finition rectification, polissage, ... Assemblage colles, ciments, ... VOIE HUMIDE : Imprégnation de fibres courtes, mat ou tissu par une résine liquide

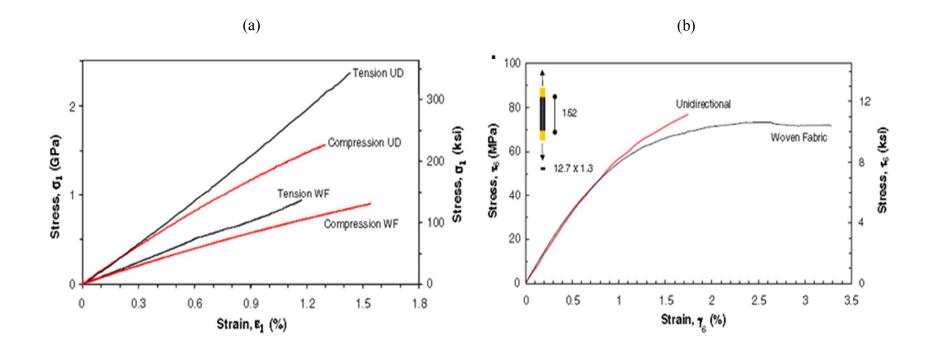
Moulage au contact, projection simultanée, stratification sous vide, sous pression, à chaud, drapage en autoclave, injection RMT, injection et réaction RRIM ou SRIM, moulage à la presse, enroulement filamentaire, stratification en continu, pultrusion, centrifugation, ...

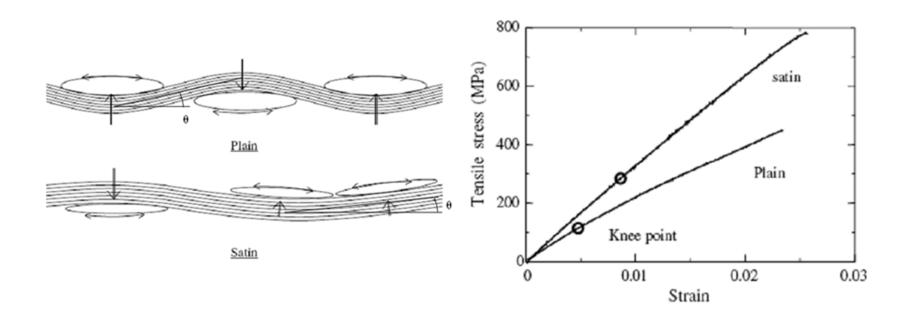

VOIE SÈCHE: Mat ou fibres courtes préimprégnées de résine thermodurciss. catalysée et inhibée; SMC, BMC, ... Mélange à chaud de fibres courtes ou de particules et de granulés de polymère

Injection, pressage à chaud, thermoformage, ...


Finition: reprise d'usinage, ébavurage, ... Assemblage: emboîtement, collage, vissage, ...

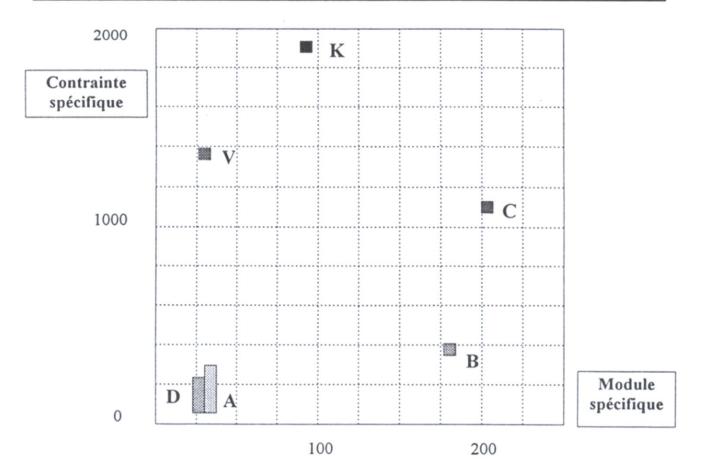

Architecture du renfort dans les composites renforcés


Composites renforcés : (a) fibres longues unidirectionnelles – (b) fibres courtes ou trichites – (c) particules


(a) Stratifié à plis UD – (b) Architecture d'un pli tissé (Warp : sens chaîne et Fill ou Weft : sens trame) – (c) Tissu satin de 5

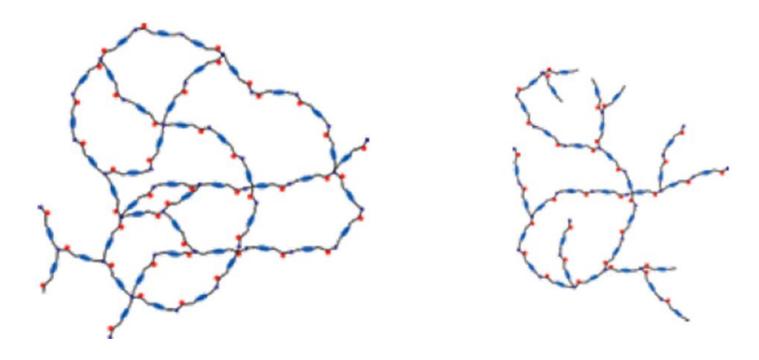
Différents assemblages de mèches [AIM07]

Courbes contrainte-déformation de stratifiés carbone/époxy à plis UD ou à plis tissés [DAN08] : (a) Traction/compression – (b) Cisaillement plan



Influence du type d'armure sur l'endommagement dans les tissus sollicités en traction sens fibres [OSA03]

PROPRIETES MECANIQUES


			D ITE OILL	~ C _ C		
FIBRES	Aspect	Propriété principale	φ (μ) du filament élémentaire	Densité	Charge de rupture en traction (MPa)	Module d'élasticité (MPa)
Verre E	soyeux blanc	Prix / performance	3 à 30	2.54	3400	73000
Verre R S	"	Résistance en traction	"	2.48	4400	86000
Verre C	11	Résistance aux acides	**	2.5	2800	70000
Silice	"	Tenue thermique	9	2.2	3500	68000
Aramide bas module	soyeux jaune	Résistance en traction	12	1,45	3100	70000
Aramide haut module	"	Résistance et module en traction	12	1,45	3100	130000
Carbone Haute Ténacité	soyeux noir	tenue en traction et compression	8	1,78	2800	200000
Carbone Haut Module	"	Haut module	8	1,80	2200	400000
Carbone GY 70	H	Très haut module	8	1,95	1800	530000
Carbure de Bore	métal gris	Tenue mécanique	100 à 200	2,6	3900	400000
Carbure de Silicium	11	Haute Température	11	3,45	3300	450000

		Module E (MPa)	Contrainte à Rupture σ_u (Mpa)	Masse volumique ρ (kg/m³)	Module spécifique (kNm/kg)	Contrainte spécifique (kNm/kg)
Acier	A	210 000	340-2100	7 800	26,9	43-270
Alliage alu	D	70 000	140-620	2700	25,9	52-230
Béryllium	В	300 000	700	1830	164	380
Verre	V	73 000	3 500	2 540	28,5	1 380
Carbone HM	С	390 000	2 100	1 900	205	1 100
Kevlar	K	130 000	2 800	1 500	87	1 870

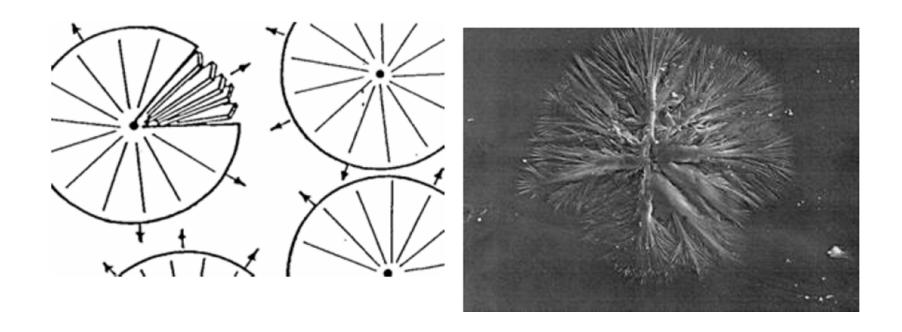
(a) Thermodurcissable

(b) Thermoplastique

Polymères à structure : (a) réticulée – (b) ramifiée

Matrices	TD	TP
Etat de base	Liquide visqueux à polymériser	Solide prêt à l'emploi
Stockage	Réduit	Illimité
Mouillabilité des renforts	Aisée	Difficile
Moulage	Chauffage continu	Chauffage + refroidissement
Cycle	Long (polymérisation)	Court
Tenue au choc	Limitée	Assez bonne
Tenue thermique	Bonne	Réduite (sauf nouveau TP)
Chutes et déchets	Perdus ou utilisés en charges	Recyclables
Conditions de travail	Emanations de solvants	Propreté

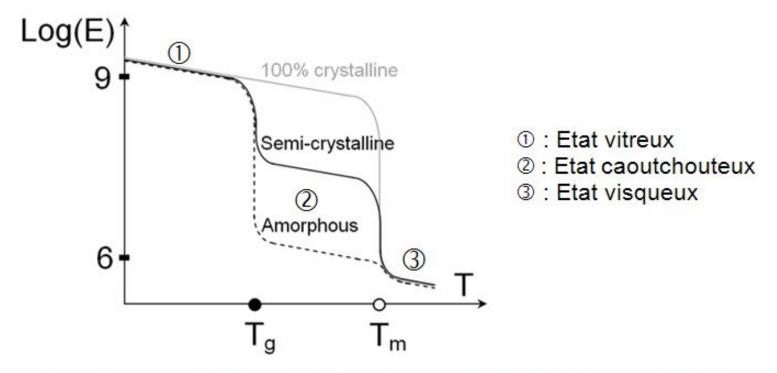
Principales différences entre les thermodurcissables et les thermoplastiques [REY]

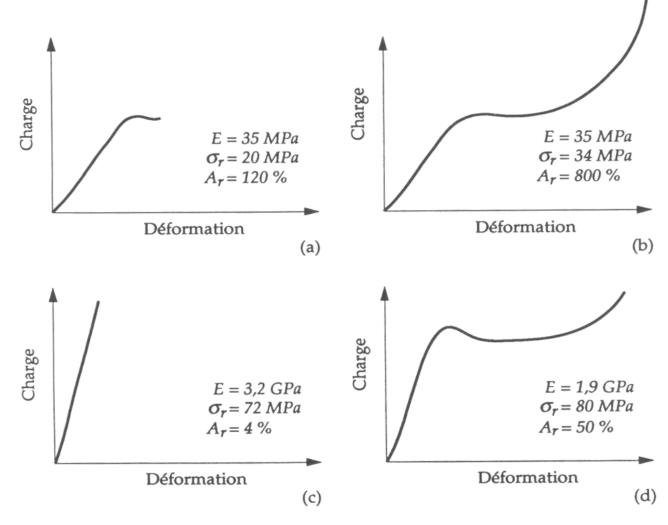

Type de polymère	Masse vol. (Mg/m³)	Temp. de trans. vitreuse (°C)	Temp. de fusion (°C)	Condu. therm. (W/m · K)	Permit. relative
		Polyoléfi	nes		
PEbd	0,92 à 0,95	– 110 à –100	115	0,35	2,25 à 2,35
PEhd	0,95 à 0,98	− 110 à −100	130	0,52	2,3 à 2,4
PP	0,90	− 30 à −10	170	0,2	2,2 à 2,6
		Polyvinyli	ques		
PVC	1,4	75 à 105	160	0,15	2,7 à 3,3
		Polystyrén	niques	A COLOMBICATION	
PS	1,1	90	_	0,1 à 0,15	2,4 à 3,
ABS	1,03 à 1,08	110	-	0,14 à 0,22	2,4 à 2,9
		Polyacryli	iques		
PMMA	1,2	120	225	0,2	2,6 à 3,2
4.7		Polymères	fluorés		
PTFE	2,2	125	330	0,25	2,0 à 2,
		Polyoxymét	hylènes		
POM	1,41	- 50	170	0,22 à 0,35	3,6 à 4
		Polyami	des	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	
PA6-6	1,14	70	250	0,2 à 0,25	3,3 à 3,6
		Polyesters :	saturés		
PETP	1,32 à 1,38	70	255	0,15 à 0,34	3 à 3,6
		Polycarbo	nates		
PC	1,24	150	230	0,18 à 0,22	2,9 à 3,
		Polysulfo	ones		
PSU	1,24	190	-	0,19 à 0,27	3,1 à 3,2
		Cellulosi	ques		
CA	1,26	120	_	0,17 à 0,32	5 à 5,

Coeff. de dilat. linéaire (10 ⁻⁶ /K)	Module de Young à 20°C, 100s (GPa)	Résist. à la traction à 20 °C (MPa)	Allong. à la rupture à 20 °C (%)	Ténacité à 20 °C (MPa · m ^{1/2})
		Polyoléfines		
160 à 190	0,15 à 0,24	7 à 17	400 à 800	1 à 2
150 à 300	0,55 à 1	20 à 37	700 à 1 000	2 à 5
100 à 300	1,2 à 1,7	20 à 70	200 à 1 000	3,5
		Polyvinyliques		
50 à 70	2,4 à 3	40 à 60	10 à 50	2,4
		Polystyréniques		
70 à 100	3,0 à 3,3	35 à 68	4 à 5	2
70 à 95	1,8 à 2,7	30 à 60	20 à 60	3 à 4
		Polyacryliques		
54 à 72	3,3	65 à 90	4 à 5	1,0 à 1,6
a Fragality	, and the second	Polymères fluorés		
70 à 100	0,35 à 0,75	15 à 40	250 à 500	2,5 à 3
	Po	olyoxyméthylènes		
75 à 200	3,5	70	65	2 à 4
		Polyamides		
80 à 95	2 à 3,5	60 à 110	60	0,5
	Po	lyesters saturés		
50 à 80	2,0 à 3,5	50 à 80	65 à 300	1,2 à 2
		Polycarbonates		
60 à 75	2,3 à 2,8	55 à 75	90 à 130	2,6 à 3,2
		Polysulfones		
56 à 58	2,4 à 2,7	65 à 100	25 à 80	1,4 à 1,9
		Cellulosiques		
80 à 170	1 à 2,9	25 à 50	3 à 70	1,2 à 2

Type de polymère	Masse vol. (Mg/m³)	Temp. maximale d'utilisa- tion (°C)	Condu. therm. (W/m · K)	Permit. relative
	Phénoplas	tes	Reference of	
Résine formolphénolique (PF)	1,2 à 1,3	80	0,16 à 0,36	7 à 9
	Aminoplas	tes	1 - 1 - 1 - 1 - 1	
Urée formaldéhyde (UF)	1,4 à 1,5	80	0,08 à 0,4	6,7 à 6,9
Mélamine formaldéhyde (MF)	1,5 à 2	110 à 140	0,17 à 0,55	5,2 à 7,9
	Polyesters ins	aturés		
Polyester rigide (UP)	1,28 à 1,35	75 à 200	0,2 à 0,7	4,0 à 4,1
Polyester souple (UP)	1 à 1,2	120 à 125	0,15 à 0,2	5,5 à 5,6
	Polyépoxy	des		
Résine époxyde (EP)	1,17 à 1,33	125 à 170	0,18 à 0,22	3,3 à 3,6
	Polyimid	es		
Polyimide (PI)	1,33 à 1,43	250	0,19 à 0,42	3,4 à 3,7
	Silicone	S		
Silicone rigide (SIL)	1,4 à 1,9	240 à 270	0,15 à 0,3	2,8 à 4

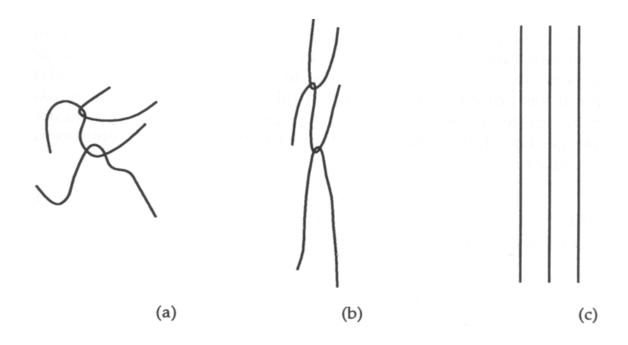
Coeff. de dilat. linéaire (10 ⁻⁶ /K)	Module de Young à 20°C, 100s (GPa)	Résist. à la traction à 20 °C (MPa)	Allong. à la rupture à 20 °C (%)	Ténacité à 20 °C (MPa · m ^{1/2})
		Phénoplastes	Hara dan kananan dan da	
30 à 44	3 à 9	35 à 60	1,5 à 2	0,8 à 1,3
		Aminoplastes		
39 à 65	7 à 10	40 à 90	0,5 à 1	1,5 à 2
40 à 60	6 à 10	40 à 60	0,6 à 1	0,3 à 0,5
	Po	olyesters insaturé	s	
100 à 180	2 à 4,5	30 à 70	1 à 2	0,5 à 1
115 à 125	0,1 à 0,8	5 à 20	20 à 200	0,7 à 1,1
		Polyépoxydes		
35 à 60	2,5 à 4	25 à 80	3 à 10	0,7 à 1,4
		Polyimides		
32 à 65	2,5 à 4,8	70 à 100	3 à 8	1,5 à 2,5
		Silicones		
55 à 70	3 à 8	25 à 45	1 à 3	0,6 à 1,3


Propriétés de quelques résines thermodurcissables [DUP01]

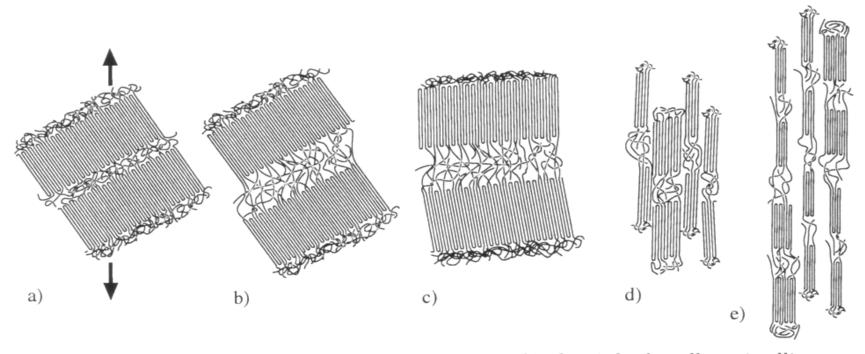

Formations des sphérolites dans les polymères semi-cristallins [CHE08]

Pourcentage hautement cristallin	Pourcentage hautement amorphe
Grande résistance à la chaleur	Faible résistance à la chaleur
Point de fusion précis	Point de fusion graduel
Plus opaque	Plus transparent
Plus de contraction au refroidissement	Moins de contraction au refroidissement
Endurance réduite à basse température	Endurance accrue à basse température
Stabilité dimensionnelle supérieure	Stabilité dimensionnelle inférieure
Moins de déformation	Plus de déformation

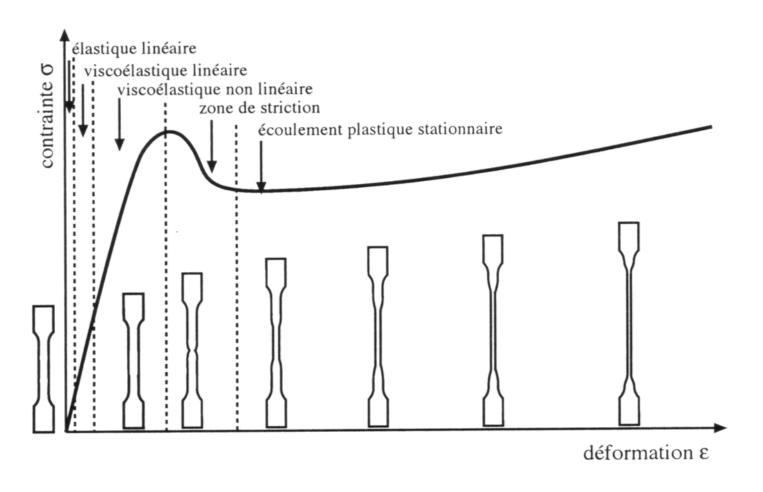
Principales différences entre les polymères cristallins et amorphes [REY]



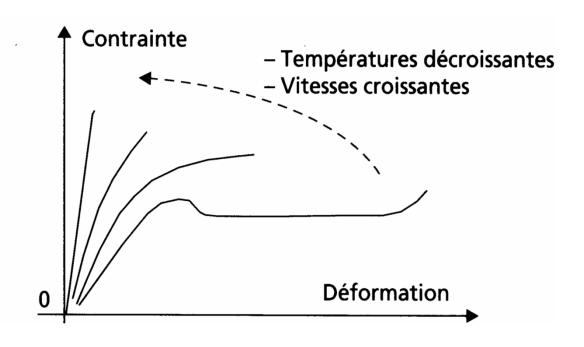
Evolution du module d'Young des polymères en fonction de la température et de leur taux de cristallinité


Courbes charge -déformation pour différents polymères [EHR00] :

- (a) souple et peu résistant
- (b) souple et ductile
- (c) rigide et fragile
- (d) rigide et ductile


Mécanisme de déformation des polymères amorphes lors d'une sollicitation unidirectionnelle [EHR00] :

- (a) état libre de contraintes
- (b) déformation limitée par l'enchevêtrement
- (c) structure paracristalline parfaitement alignée



- a) état initialb) étirage des zones amorphes
- c) rotation (décalage) des lamelles cristallines
- d) séparation en différents domaines cristallins
- e) formation de microfibrilles individuelles

Mécanisme de déformation des polymères semi-cristallins lors d'une sollicitation unidirectionnelle [OUD94]

Réponse caractéristique en traction d'un polymère thermoplastique semi-cristallin et évolution de la forme de l'éprouvette [OUD94]

Mise en évidence du comportement viscoplastique des polymères [DUP02]

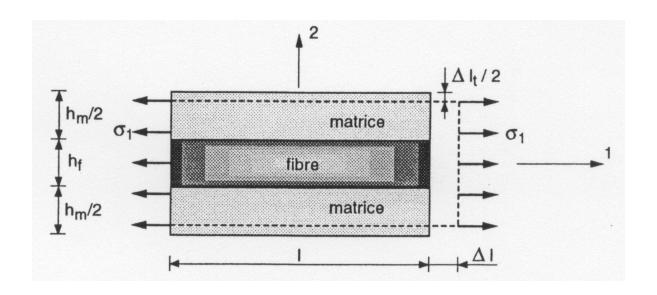


Schéma par couches d'une traction longitudinale [BER02]

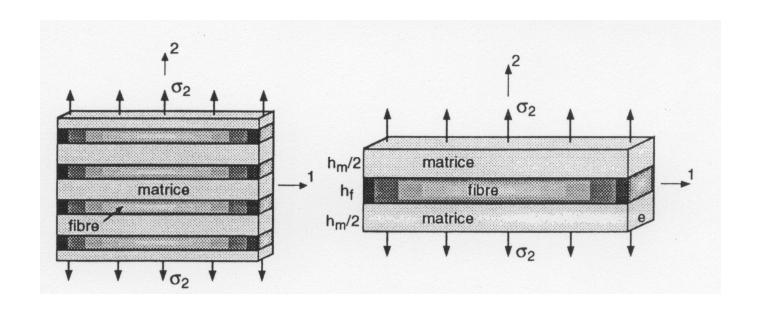


Schéma par couches d'une traction transversale [BER02]

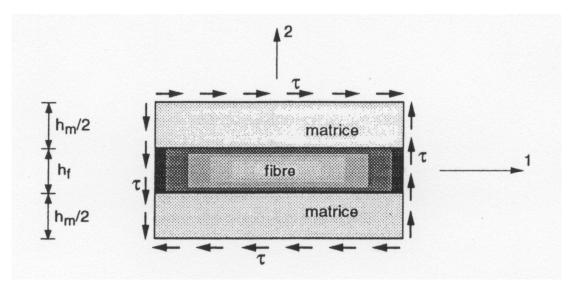
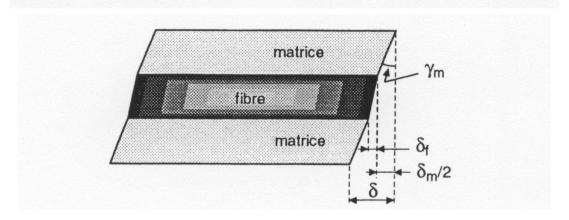
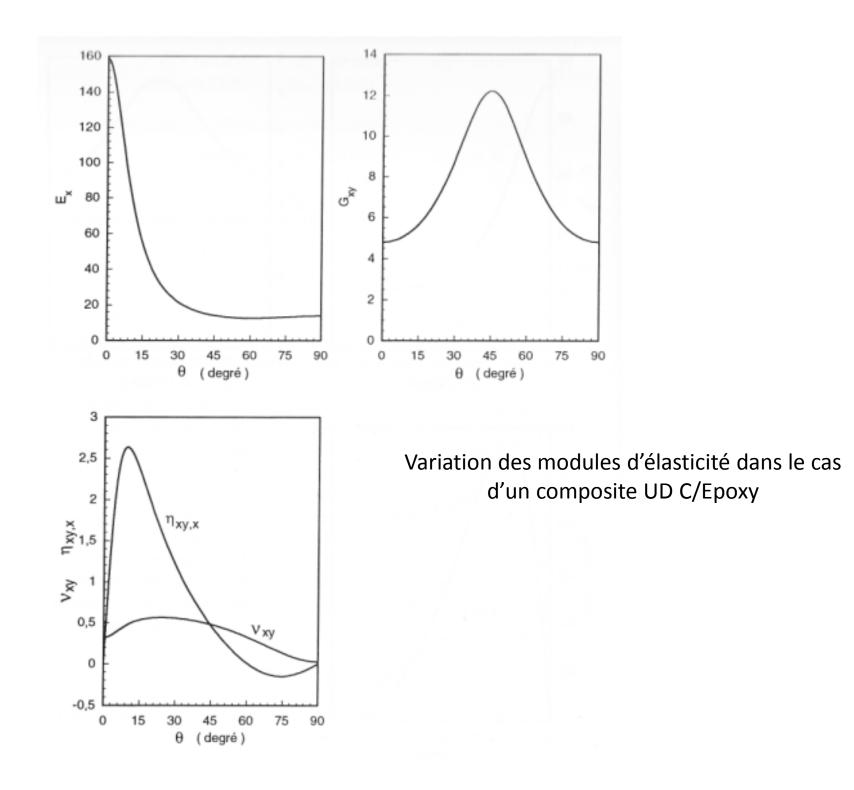



Schéma par couches d'un essai de cisaillement [BER02]

Déformations en cisaillement de la matrice et de la fibre [BER02]


Type de composite	Masse vol. (Mg/m³)	Temp. maximale d'utilisa- tion (°C)	Coeff. de dilat. linéaire (10 ⁻⁶ /K)
Composites	à matrice polym	ère	
EP ou UP + fibres de carbone unidirec. (fib. longues)	1,48 à 1,55	110 à 230	0,1 à 1
EP ou UP + fibres de carbone stratifié multidirec. (fib. longues)	1,5 à 1,6	110 à 230	5 à 20
EP ou UP + fibres de verre unidirec. (fib. longues)	1,6 à 1,95	110 à 230	8,5 à 25
EP ou UP + fibres de verre stratifié multidirec. (fib. longues)	1,5 à 2	110 à 230	12 à 25
EP ou UP + fibres de verre (fib. courtes)	1,1 à 2,2	110 à 230	15 à 40
Composites	à matrice miné	rale	
Al ₂ O ₃ + particules ou fibres courtes minérales	3,2 à 4,3	1 440 à 1 850	5,2 à 7,8
Carbone + fibres de carbone	1,4 à 1,7	200 à 2 050	0,2 à 8,4
Composites a	à matrice métall	ique	
Al + particules de SiC	2,9 à 3,1	230 à 370	6 à 22
Compo	osites naturels		
Bois, parallèlement aux fibres	0,09 à 1,4	120 à 140	2 à 11
Bois, perpendiculairement aux fibres	0,09 à 1,4	120 à 140	20 à 60
Contreplaqué	0,4 à 1,3	120 à 140	10 à 15
Os	1,8 à 2,1	110 à 130	10 à 30
Matériaux ho	mogènes de réfe	érence	
Acier au carbone	7,8	170 à 360	10 à 14
Alliage d'aluminium corroyé	2,5 à 2,8	80 à 180	22 à 24
Alumine	3 à 4	1 100 à 1 900	4,5 à 11
Polyéthylène	0,93	60 à 70	160 à 180

Module de Young (GPa)	Résist. à la traction (MPa)	Allong. à la rupture (%)	Ténacité (MPa· m ^{1/2})	Résistance spécifique R_m/ρ	Module spécif. E/p	
	Co	omposites à ma	atrice polymèr	e na mana		
200 à 240	500 à 1 600	1 à 2	30 à 35	330 à 1 060	130 à 170 40 à 110	
60 à 160	300 à 800	2 à 3	30 à 45	190 à 510		
35 à 45	300 à 1 100	2 à 3	35 à 40	170 à 590	20 à 30	
15 à 45	150 à 750	2 à 4	20 à 40	85 à 440	8 à 30	
15 à 40	50 à 200	2 à 5	2 à 12	30 à 140	4 à 14	
	Co	omposites à ma	atrice minérale	e		
345 à 415	280 à 660	0,1	3 à 5	70 à 180	85 à 125	
8,3 à 100	7 à 35	0,1	5 à 6	4 à 20	5 à 65	
	Coi	mposites à ma	trice métalliqu	ie		
80 à 110	300 à 525	0,5 à 7	10 à 22	100 à 175	25 à 40	
		Composites	naturels			
3,7 à 34	25 à 300	0,3 à 1,5	1,4 à 20	70 à 310	8 à 50	
0,1 à 18	1 à 12	0,3 à 1,5	0,1 à 1,6	2,3 à 17	0,3 à 18	
0,6 à 3	5 à 25	0,2 à 2	1 à 2	46 à 108	5 à 15	
17 à 22	120 à 160	3 à 7	3,5 à 7	60 à 83	8 à 12	
	Mate	ériaux homogè	nes de référe	nce		
200 à 210	400 à 2 000	4 à 40	12 à 90	50 à 270	24 à 28	
68 à 82	60 à 600	1 à 45	30 à 40	20 à 225	25 à 30	
215 à 413	70 à 660	0,1 à 0,2	3 à 5	20 à 190	60 à 130	
0,45 à 0,5	12 à 15	100 à 150	2 à 2,2	12 à 17	0,5	

Propriétés de quelques matériaux composites [DUP01]

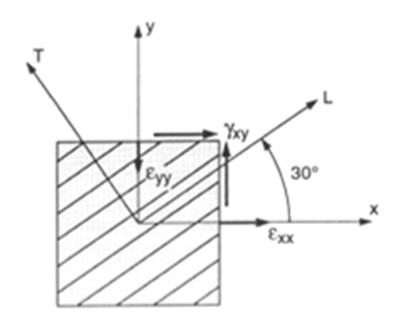
Matériau	verre-époxy				carbone-époxy				
Ef (GPa)	70				$E_L = 234 E_T = 15$				
vf	0,17				0,2				
E _m (GPa)	2,85				3,8				
$v_{\rm m}$		0,33			0,33				
V_f	0,66				0,6				
Méthode	E _L	E _T	G_{LT}	VLT	E _L	E_{T}	G_{LT}	$\nu_{ m LT}$	
Loi des mélanges	47	7.7	2.95	0.22	141	9.2/6.8	3.5	0.25	
LM modifiée		13	5			12.6 /7.2	4.7		
Pabiot		15.5	6.4			19	7.3		
Halpin-Tsai η=0,52		11.6	4.5			14	5.4		
Halpin-Tsai η=0,28		17.6	6.85			23	8.8		
Expérience	49.4	18	7.8	0.22	151	9,3/12.6	6.2	0.32	

Calcul de la rigidité des matériaux composites à partir des propriétés des éléments constitutifs par différentes méthodes

<u>Différentes réponses contrainte-déformation d'un</u> <u>composite UD C/Epoxy sollicité selon différents angles</u>

Exemple d'application d'un composite UD sollicité hors-axes

Une couche unidirectionnelle est soumise dans l'un de ses plans (x, y) (figure 11.5) à l'état de déformations suivant :


$$\varepsilon_{xx} = 1 \% = 10^{-2},$$

$$\varepsilon_{yy} = -0.5 \% = -5 \times 10^{-3},$$

$$\gamma_{xy} = 2 \% = 2 \times 10^{-2}.$$

La direction des fibres fait un angle de 30° avec la direction x. Les constantes élastiques du matériau composite sont :

$$E_L = 40 \text{ GPa}, \quad E_T = 10 \text{ GPa}, \quad v_{LT} = 0.32, \quad G_{LT} = 4.5 \text{ GPa}.$$

En considérant que la couche est dans un état de contraintes planes, déterminer :

- 1. les contraintes σ_{xx} , σ_{yy} , σ_{xy} dans le système d'axes (x, y);
- 2. les contraintes dans les axes principaux (L, T) de la couche.

1. Détermination des contraintes σ_{xx} , σ_{yy} et σ_{xy}

Il faut déterminer au préalable la matrice de rigidité réduite rapportée aux axes principaux :

$$Q_{11} = \frac{E_L}{1 - v_{LT}^2 \frac{E_T}{E_L}} = 41,051 \text{ GPa},$$

$$Q_{22} = \frac{E_T}{E_L} Q_{11} = 10,263 \text{ GPa},$$

$$Q_{12} = v_{LT} Q_{22} = 3,284 \text{ GPa},$$

$$Q_{66} = G_{LT} = 4,5 \text{ GPa}.$$

D'où la matrice de rigidité réduite exprimée dans les axes principaux :

$$\mathbf{Q} = \begin{bmatrix} 41,051 & 3,284 & 0 \\ 3,284 & 10,263 & 0 \\ 0 & 0 & 4,5 \end{bmatrix}$$
 GPa.

La matrice de rigidité réduite, rapportée aux axes (x, y), est ensuite calculée à partir des expressions du tableau 11.6 :

$$Q'_{11} = 41,051 \times \frac{9}{16} + 10,263 \times \frac{1}{16} + 2(3,284 + 2 \times 4,5) \frac{3}{4} \frac{1}{4} = 28,339 \text{ GPa},$$

$$Q'_{12} = (41,051 + 10,263 - 4 \times 4,5) \frac{3}{4} \frac{1}{4} + 3,284 \times \left(\frac{9}{16} + \frac{1}{16}\right) = 8,299 \text{ GPa},$$

$$Q'_{16} = (41,051 - 3,284 - 2 \times 4,5) \frac{1}{2} \frac{3\sqrt{3}}{8} + (3,284 - 10,263 + 2 \times 4,5) \frac{1}{8} \frac{\sqrt{3}}{2}$$

$$= 9,561 \text{ GPa},$$

$$Q'_{22} = 41,051 \times \frac{1}{16} + 10,263 \times \frac{9}{16} + 2(3,284 + 2 \times 4,5) \frac{3}{4} \frac{1}{4} = 12,945 \text{ GPa},$$

$$Q'_{26} = (41,051 - 3,284 - 2 \times 4,5) \frac{1}{8} \frac{\sqrt{3}}{2} + (3,284 - 10,263 + 2 \times 4,5) \frac{3\sqrt{3}}{8} \frac{1}{2}$$

$$= 3,770 \text{ GPa},$$

$$Q'_{66} = \left[41,051 + 10,263 - 2(3,284 + 4,5)\right] \frac{1}{4} \frac{3}{4} + 4,5 \left(\frac{9}{16} + \frac{1}{16}\right)$$

$$= 9,515 \text{ GPa}.$$

D'où la matrice de rigidité réduite dans les axes (x, y):

$$\mathbf{Q}' = \begin{bmatrix} 28,339 & 8,299 & 9,561 \\ 8,299 & 12,945 & 3,770 \\ 9,561 & 3,770 & 9,515 \end{bmatrix} \text{ GPa}.$$

Les contraintes dans les axes (x, y) sont ensuite calculées à partir de (11.43):

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} 28,339 & 8,299 & 9,561 \\ 8,299 & 12,945 & 3,770 \\ 9,561 & 3,770 & 9,515 \end{bmatrix} \times 10^{-9} \begin{bmatrix} 10 \\ -5 \\ 20 \end{bmatrix} \times 10^{-3}.$$

Soit:

$$\sigma_{xx} = 433 \text{ MPa},$$
 $\sigma_{yy} = 94 \text{ MPa},$
 $\sigma_{xy} = 267 \text{ MPa}.$

2. Détermination des contraintes dans les axes principaux

Les contraintes dans les axes principaux s'obtiennent à partir de la relation générale (5.44). Dans le cas de contraintes planes, cette relation est limitée aux trois contraintes dans le plan et s'écrit :

$$\begin{bmatrix} \sigma_L \\ \sigma_T \\ \sigma_{LT} \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin\theta\cos\theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin\theta\cos\theta \\ -\sin\theta\cos\theta & \sin\theta\cos\theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix}, \quad (11.53)$$

où θ est l'angle de la direction des fibres avec la direction x de référence. Dans le cas présent, cette expression s'écrit :

$$\begin{bmatrix} \sigma_L \\ \sigma_T \\ \sigma_{LT} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{2}\sqrt{3} \\ \frac{1}{4} & \frac{3}{4} & -\frac{1}{2}\sqrt{3} \\ -\frac{1}{4}\sqrt{3} & \frac{1}{4}\sqrt{3} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 433 \\ 94 \\ 267 \end{bmatrix} \text{ MPa} .$$

Soit:

$$\sigma_L = 580$$
 MPa,
 $\sigma_T = -53$ MPa,
 $\sigma_{LT} = -13,5$ MPa.

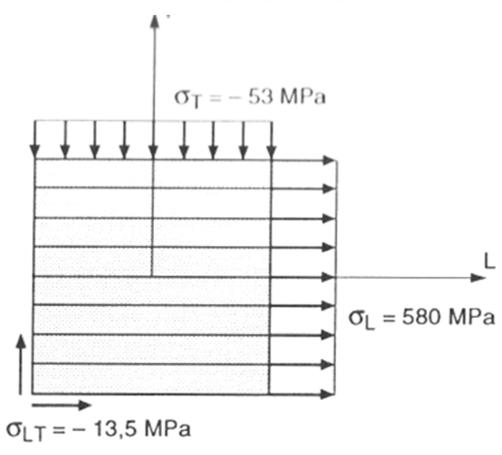
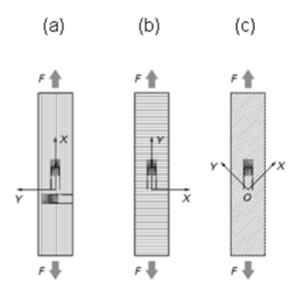
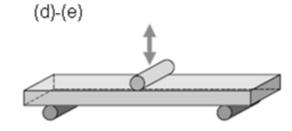




Figure 11.6. Contraintes dans les axes principaux.

Détermination expérimentale des modules d'élasticité

- (a) essai de traction sens longitudinal→ E_{XX} et ν_{XY} σ_X
- (b) essai de traction sens transversal→ E_{YY} σ_Y
- (c) essai de traction hors axes→ G_{XY} σ_{XY}

- (d) essai de flexion sens longitudinal→ G_{xz} σ_{xz}
- (e) essai de flexion sens transversal→ G_{YZ} σ_{YZ}

Détermination expérimentale des modules d'élasticité

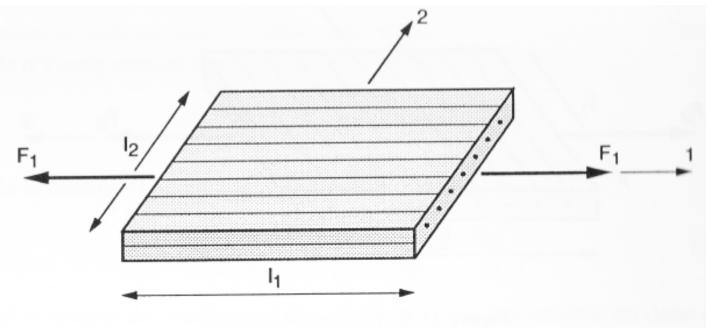


Figure 11.7. Traction longitudinale.

Le module longitudinal E_L et le coefficient de Poisson v_{LT} sont partir des expressions :

$$E_L = \frac{\sigma_{11}}{\varepsilon_{11}}$$
 et $v_{LT} = -\frac{\varepsilon_{22}}{\varepsilon_{11}}$.

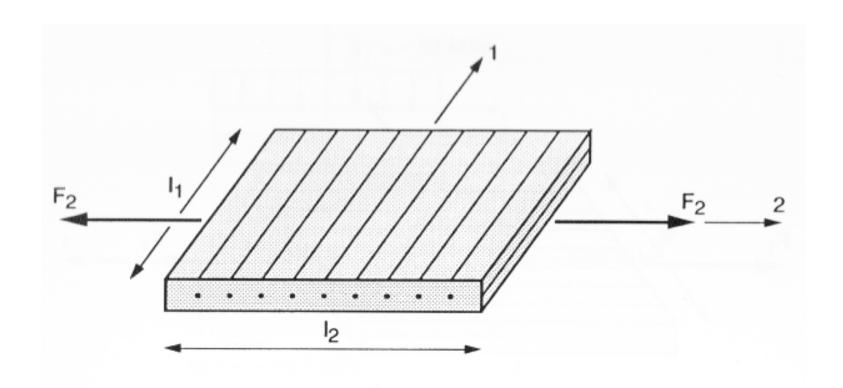
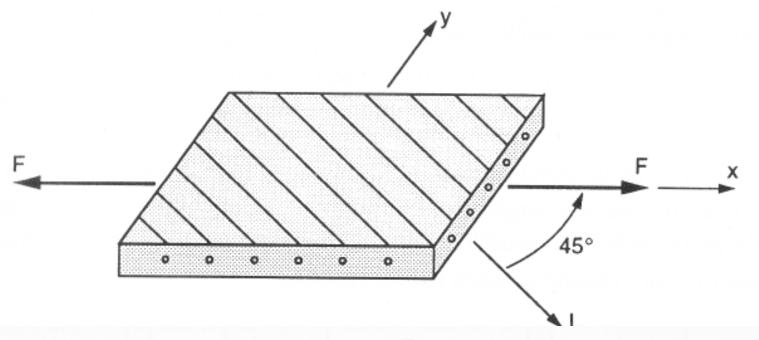
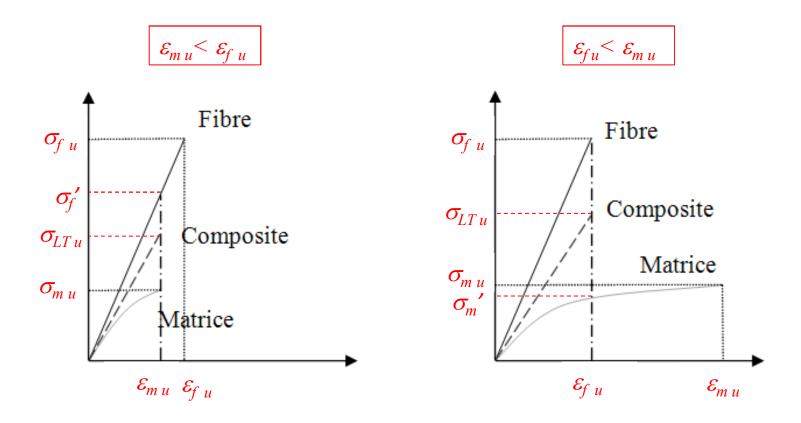



Figure 11.8. Traction transverse.

$$E_T = \frac{\sigma_{22}}{\varepsilon_{22}}$$
 et $v_{TL} = -\frac{\varepsilon_{11}}{\varepsilon_{22}}$

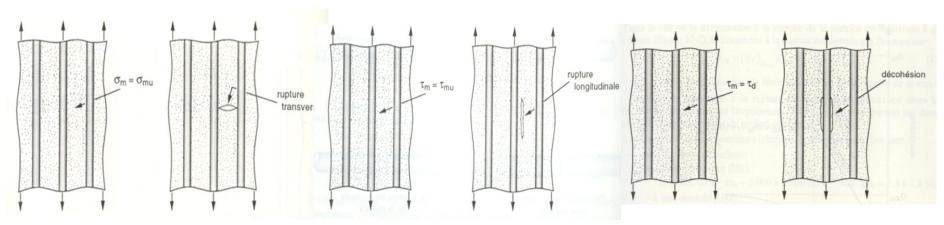

$$E_{45} = \frac{\sigma_{45}}{\varepsilon_{45}} \,. \tag{11.60}$$

D'après la relation (11.9), ce module s'exprime par :


$$\frac{1}{E_{45}} = \frac{1}{4} \left(\frac{1}{E_L} + \frac{1}{E_T} + \frac{1}{G_{LT}} - 2\frac{\nu_{LT}}{E_L} \right),\tag{11.61}$$

où seul le module de cisaillement G_{LT} n'est pas connu. Ce module est donc déduit de la relation :

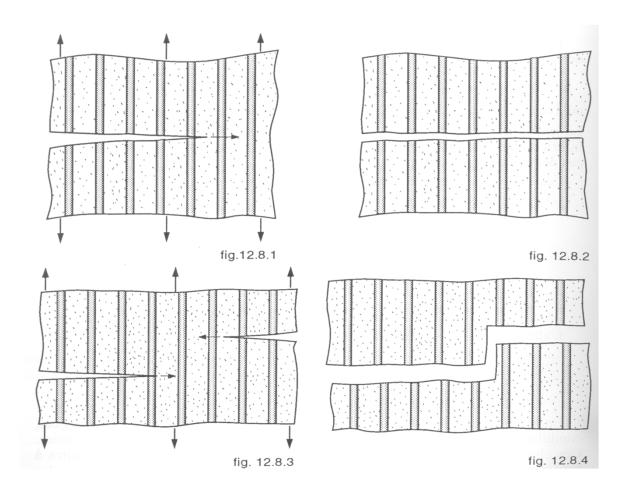
$$\frac{1}{G_{LT}} = \frac{4}{E_{45}} - \frac{1}{E_L} - \frac{1}{E_T} + 2\frac{\nu_{LT}}{E_L}.$$
 (11.62)



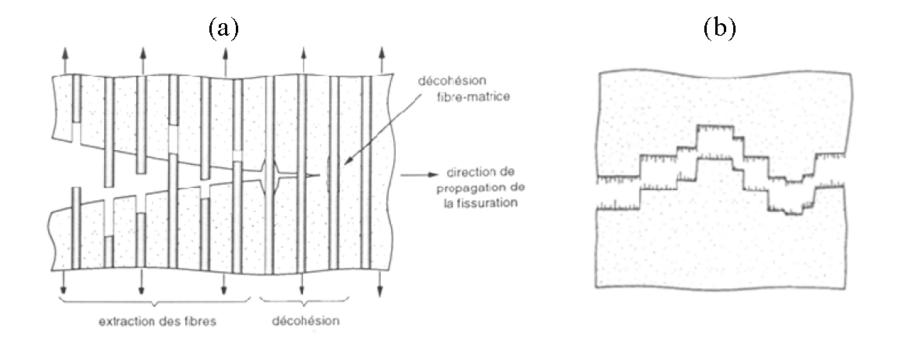
Contrainte à rupture σ_{LTu} d'un composite renforcé de fibres UD sollicité dans le sens des fibres

Rupture de fibres [BER05]

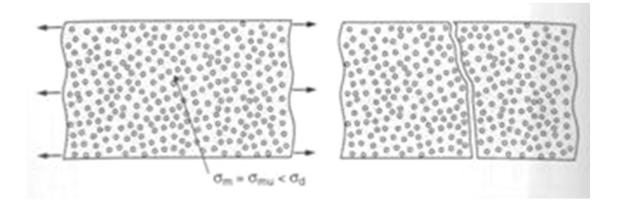
Différents modes de rupture de la matrice associés à la rupture des fibres [BER05]

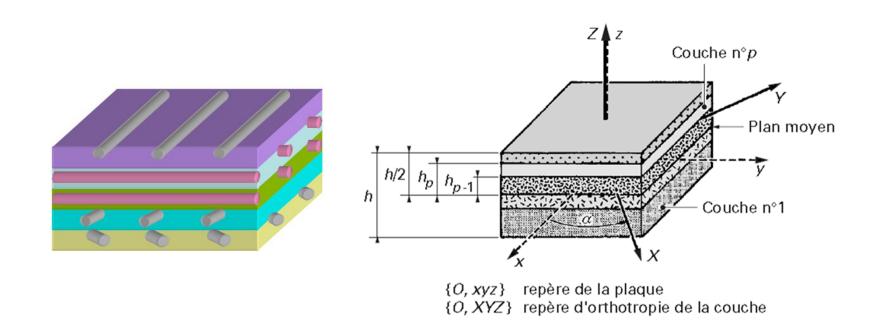


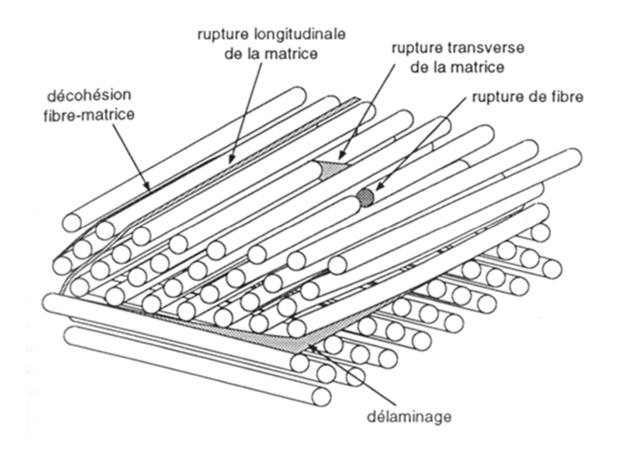
Rupture transverse

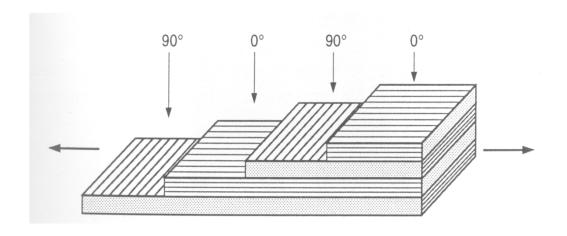

Rupture longitudinale

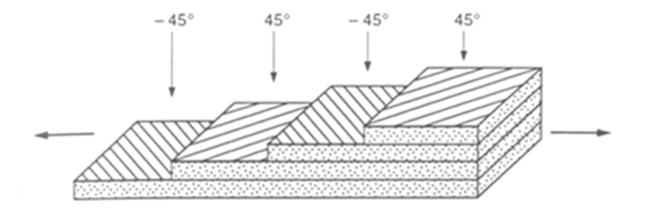
<u>Décohésion fibre/matrice</u>

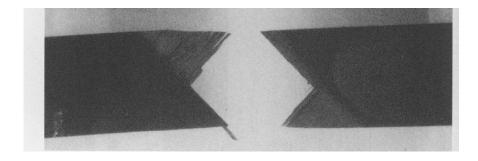

Différents mécanismes d'endommagement de la matrice [BER05]


Mécanismes d'endommagement dans le cas d'une forte adhésion fibre-matrice [BER05]

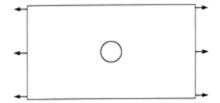

Faible adhésion fibre-matrice [BER05] : (a) Mécanismes d'endommagement – (b) Surface de rupture


Rupture d'un composite UD soumis à une traction transverse [BER05]

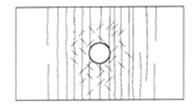

Plaque composite stratifiée multi-couches [BAR]


Représentation schématique des principaux mécanismes d'endommagement dans les stratifiés UD [BER05]

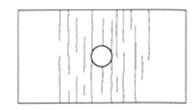
Stratifié orthotrope [0/90°] soumis à une traction longitudinale[BER05]

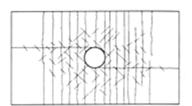


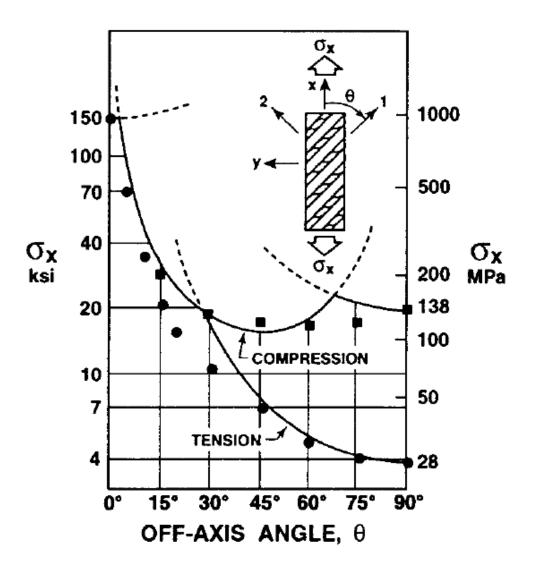
Stratifié à plis croisés [+/-45°] soumis à une traction longitudinale[BER05]

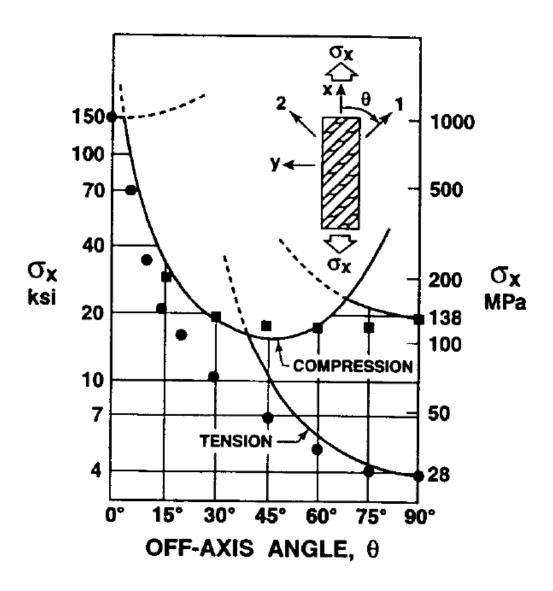


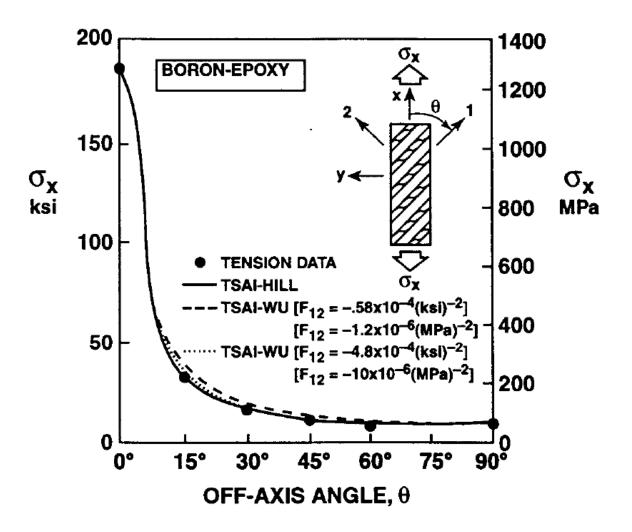
Faciès de rupture correspondant

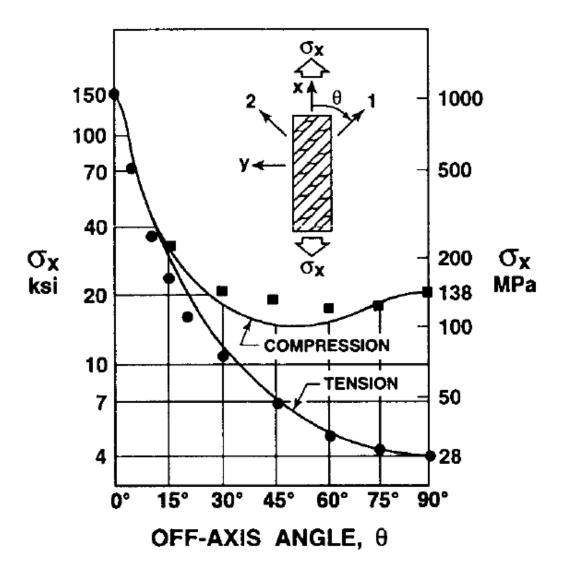

Plaque trouée sollicitée en traction


Fissuration des plis à ±45°


Fissuration des plis à 90°


Fissuration des plis à 0° et délaminage


Représentation schématique des différentes phases d'endommagement dans un stratifié troué quasi-isotrope à plis UD [0°/±45°/90°]_s [BER05]


Critère de rupture de contrainte maximale (cas du verre/epoxy) [MEC99]

Critère de rupture de déformation maximale [MEC99]

Critère de rupture de Tsai-Wu [MEC99]

Critère de rupture de Tsai-Hill [MEC99]