Chapitre II.

Fondements théoriques de la chromatographie par élution

- I. Grandeurs de rétention
 - A. Temps de rétention et volume de rétention
 - B. Facteur de capacité
- II. Efficacité d'une colonne
 - A. Nombre de plateaux théoriques
 - B. Hauteur Equivalente à un Plateau Théorique
 - C. Asymétrie d'un pic
- III. Séparation entre deux pics
 - A. La sélectivité
 - B. La résolution
 - C. Facteurs influençant la résolution
- IV. Mécanisme de dispersion d'un pic d'élution
 - A. Cas des colonnes remplies : Courbe de Van Deemter
 - B. Cas des colonnes capillaires : Courbe de Golay

Exercice

On désire analyser un beurre en caractérisant sa teneur en acide stéarique (C18:0) et acide oléïque (C18:1). A des fins d'analyse, les acides gras présents sont transformés en ester méthylique d'acides gras puis le mélange obtenu est analysé en chromatographie en phase gaz.

On cherche à comparer deux colonnes à 180°C:

- a) Colonne remplie: 100% polydimethylsiloxane sur Chromosorb WAW 80/100 mesh; L = 1.8m
- b) Colonne capillaire avec phase stationnaire en polydiméthylsiloxane ; L=45~m ; diamètre interne $D_i=0.2~\text{mm}$, épaisseur du film de phase stationnaire $d_f=0.5~\text{\mu m}$

Résultats:

 $t_0 = temps mort$

t_R = temps de rétention (s)

 ω = largeur du pic à mi hauteur (s)

	t_0	t _R stéa.	t _R oléa.	ω stéa.	ω oléa.
a) col.remp.	29	211	229	10,1	11,2
b) col.cap.	13	192	210	2,3	2,4

Questions:

- 1) Pourquoi les acides gras séparés sont-ils au préalable estérifiés ?
- 2) Calculer le facteur de sélectivité α pour les 2 colonnes. Conclusion?
- 3) Calculer la résolution dans les deux cas. Conclusion ?
- 4) Calculer le nombre de plateaux théoriques de l'oléate de méthyle pour chaque colonne. En déduire les valeurs de HEPT pour l'oléate de méthyle pour chaque colonne.
- 5) Calculer la résolution que l'on obtiendrait sur une colonne capillaire de 10 m, quelles seraient alors les temps de rétention des produits ? (on négligera les distances injecteur-colonne et colonne détecteur).