
G Gasso

IML

Practice Session Kernel SVM
4th year

— Apply Kernel SVM on synthetic and real datasets
— Investigate the choice of hyper-parameter C
— Extend to multi-class classification problem
— Provided codes : functions included in utility_svm.py on Moodle.

This Session relies on the same materials as for Linear SVM Session. You should refer to it
for data loading, processing and for comparison purpose.

1 Synthetic data

Let consider a non-linear binary classification problem with class. The samples we will deal
with are shown in Figure 1. We will rely on non-linear kernel SVM to classify these data.

FIGURE 1 – Two moons dataset

1. Generate n = 900 two-moons samples

from sklearn.datasets import make_moons
n = 900
X, Y = make_moons(n_samples=n, noise=0.25, random_state=42)

2. Split the data into respectively training (Xtrain, Ytrain), validation (Xval, Yval),
and test sets (Xtest, Ytest) of equal size.

3. Visualize the training samples and check that you will need a non-linear decision function.

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

p.1/3

IML Practice Session Kernel SVM ASI4

cm = plt.cm.PiYG
cm_bright = ListedColormap(["#b30065", "#178000"])
plt.figure(figsize=(12,8))
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train, cmap=cm_bright)

4. Let design a non-linear SVM.
(a) Let define the non-linear SVM using a rbf (also termed as gaussian) kernel k(x, z) =

exp−γ‖x−z‖
2
. We arbitrary set γ = 0.1 and the hyper-parameter C of SVM as C = 10.

from sklearn.svm import SVC
clfker = SVC(kernel="rbf") # SVM with rbf kernel
set parameters gamma and C
clfker.gamma = 0.1
clfker.C = 10

(b) The model being specified, let learn its parameters (the αi). Plot the decision frontier
and comment the obtained curve. Is is satisfactory ?

clfker.fit(X_train, Y_train)
Plot decision frontier
from utility_svm import plot_regions_decision_2d
plot_decision_regions_2d(X_train, Y_train, clfker, 0.02, title="

Kernel SVM")

5. We aim to analyzing the influence of the kernel parameter γ. For the sake, vary γ in
{10−2, 10−1, 1, 10, 100}, fit the corresponding SVM, visualize and comment on how the
decision frontier changes. Especially for small and large values of γ justify the shape of the
decision frontier.

6. To tune appropriately our SVM, we require to set the ”optimal” values ofC and γ. As for the
previous practical sessions, let apply the validation procedure. Select C in the logarithmic
range {10−3, · · · , 102} and γ in {10−2, · · · , 102} For each pair of (C, γ), train a SVM
model, compute the error rate on validation set.

from sklearn.metrics import accuracy_score
Ranges of C and Gamma
vectC = np.logspace(-3, 2, 6)
vectGamma = np.logspace(-2, 2, 6)
err_val = np.empty((vectC.shape[0], vectGamma.shape[0]))

for ind_C, C in enumerate(vectC):
clfker.C = C
for ind_gam, paramKer in enumerate(vectGamma):
clfker.gamma = paramKer
clfker.fit(X_train, Y_train)
err_val[ind_C, ind_gam]= 1 - accuracy_score(Y_val, clfker.predict(

X_val))

Plot the obtained error rates. What is the optimal pair (Copt, γopt) to select ?

p.2/3

IML Practice Session Kernel SVM ASI4

plt.imshow(err_val, extent=[min(vectC),max(vectC),min(vectGamma),max(
vectGamma)],aspect="auto");

plt.colorbar()
plt.xlabel("C"); plt.ylabel("gamma");
plt.title("Validation error rate")
plt.show()

(Copt, γopt) are retrieved as corresponding to the minimal error rate.

ind_C, ind_gamma = np.unravel_index(np.argmin(err_val), err_val.shape)
Copt = vectC[ind_C]
GammaOpt = vectGamma[ind_gamma]

7. Thereon, train your optimal kernel SVM and evaluate its performance either on training or
test set. Visualize the decision border and comment the results.

8. Bonus : repeat questions 4-7 for the polynomial kernel k(x, z) = (1 + x>z)degree. Vary
degree in {1, 2, 3, 4, 5, 6, 7}. Beware to set coef0 = 1 in SVC. The polynomial kernel
SVM has to be defined as

SVC(kernel="poly", gamma="scale" , coef0=1)

2 Spam classification

In this exercise we will compare kernel SVM with its linear counterpart on the spam classifi-
cation problem. Refer to the Linear SVM practical session for the dataset details. spambase.data
and the features name spambase_variables.csv are available on Moodle.

1. Read the files and extract the inputs X and the output Y (last column in the dataset).

2. Split the data into training and test sets. The test set size should be 1/3 of the data.

3. The goal is to learn a non-linear spam classifier. Design an rbf kernel SVM and evaluate
its performances on test set. Highlight the hyper-parameters selection and all the important
steps of the model learning and assessment.
Compare to the linear SVM results.

p.3/3

	Synthetic data
	Spam classification

