DEPARTEMENT

INSTITUT NATIONAL IML ARCHITEC TURE

INSA . : DES SYSTEMES
Practice Session Kernel SVM D’INFORMATION

G Gasso 4t year

— Apply Kernel SVM on synthetic and real datasets

— Investigate the choice of hyper-parameter C'

— Extend to multi-class classification problem

— Provided codes : functions included in utility_svm.py on Moodle.

This Session relies on the same materials as for Linear SVM Session. You should refer to it
for data loading, processing and for comparison purpose.

1 Synthetic data

Let consider a non-linear binary classification problem with class. The samples we will deal
with are shown in Figure 1. We will rely on non-linear kernel SVM to classify these data.

10

15 °
° 0. ° ° °
o o ‘°. .o' ° R
e o e o
10 o0 ° ... {: b4 ?...'“ ° 08
y ’. .0*.0 *® i.°o~0. °
° °
AN RS N M Y
° e © ° °
05 e ;.‘ o o:. wo :..c .o: . ’..._:.. 06
° :'0‘.0 ° o:.‘; .|0°; ° ."3 L\ TR
° ° F) ° L4
00 ° ..o o. ‘5 \‘ ‘..‘ ..o. °
° 8e :3.. e ©%9 ° 04
° ° ...o. .0..0. oo’ ‘O °
°
-05 ° v %o ?o :.O.:o .:
o °'.o 0® 00® o
o. & o® 02
oo
-1.0 °
°
00

-15 -10 05 00 05 10 15 20 25
FIGURE 1 — Two moons dataset

1. Generate n = 900 two-moons samples

from sklearn.datasets import make_moons
900
X, Y = make_moons (n_samples=n,

n =

noise=0.25, random_state=42)

2. Split the data into respectively training (Xtrain, Ytrain), validation (Xval, Yval),

and test sets (Xtest, Ytest) of equal size.
3. Visualize the training samples and check that you will need a non-linear decision function.

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

p.1/3

IML Practice Session Kernel SVM ASI4

cm = plt.cm.PiYG

cm_bright = ListedColormap (["#b30065", "#178000"])
plt.figure(figsize=(12,38))
plt.scatter (X_train[:, 0], X_train[:, 1], c=Y_train, cmap=cm_bright)

4. Let design a non-linear SVM.

(a) Let define the non-linear SVM using a rbf (also termed as gaussian) kernel k(x,z) =
exp‘””x_Z”Q. We arbitrary set v = 0.1 and the hyper-parameter C of SVM as C = 10.

from sklearn.svm import SVC

clfker = SVC (kernel="rbf") # SVM with rbf kernel
set parameters gamma and C

clfker.gamma = 0.1

clfker.C = 10

(b) The model being specified, let learn its parameters (the ;). Plot the decision frontier
and comment the obtained curve. Is is satisfactory ?

clfker.fit (X_train, Y_train)

Plot decision frontier

from utility_svm import plot_regions_decision_2d

plot_decision_regions_2d(X_train, Y_train, clfker, 0.02, title="
Kernel SVM")

5. We aim to analyzing the influence of the kernel parameter . For the sake, vary -y in
{1072,1071,1,10, 100}, fit the corresponding SVM, visualize and comment on how the
decision frontier changes. Especially for small and large values of v justify the shape of the
decision frontier.

6. To tune appropriately our SVM, we require to set the ”optimal” values of C and . As for the
previous practical sessions, let apply the validation procedure. Select C' in the logarithmic
range {1073,--- ,10%} and ~ in {1072,--- ,10%} For each pair of (C,), train a SVM
model, compute the error rate on validation set.

from sklearn.metrics import accuracy_score

Ranges of C and Gamma

vectC = np.logspace (-3, 2, 6)

vectGamma = np.logspace (-2, 2, 6)

err_val = np.empty ((vectC.shape[0], vectGamma.shape[0]))

for ind_C, C in enumerate (vectC) :
clfker.C = C
for ind_gam, paramKer in enumerate (vectGamma) :
clfker.gamma = paramKer
clfker.fit (X_train, Y_train)
err_val[ind_C, ind_gam]= 1 - accuracy_score (Y_val, clfker.predict (
X_val))

Plot the obtained error rates. What is the optimal pair (Copt, ’yopt) to select ?

p.2/3

IML Practice Session Kernel SVM ASI4

plt.imshow (err_val, extent=[min (vectC),max (vectC),min (vectGamma) ,h max (

vectGamma)] , aspect="auto") ;
plt.colorbar ()
plt.xlabel ("C"); plt.ylabel ("gamma") ;
plt.title("Validation error rate")
plt.show ()

(Copts Yopt) are retrieved as corresponding to the minimal error rate.

ind_C, ind_gamma = np.unravel_index (np.argmin (err_val), err_val.shape)
Copt = vectC[ind_C]
GammaOpt = vectGamma [ind_gamma]

7. Thereon, train your optimal kernel SVM and evaluate its performance either on training or
test set. Visualize the decision border and comment the results.

8. Bonus : repeat questions 4-7 for the polynomial kernel k(x,z) = (1 + x'z)%&, Vary
degree in {1,2,3,4,5,6,7}. Beware to set coef0 = 1 in SVC. The polynomial kernel
SVM has to be defined as

SVC (kernel="poly", gamma="scale" , coef0=1)

2 Spam classification

In this exercise we will compare kernel SVM with its linear counterpart on the spam classifi-
cation problem. Refer to the Linear SVM practical session for the dataset details. spambase.data
and the features name spambase_variables.csv are available on Moodle.

1. Read the files and extract the inputs X and the output Y (last column in the dataset).
2. Split the data into training and test sets. The test set size should be 1/3 of the data.

3. The goal is to learn a non-linear spam classifier. Design an rbf kernel SVM and evaluate
its performances on test set. Highlight the hyper-parameters selection and all the important
steps of the model learning and assessment.

Compare to the linear SVM results.

p.3/3

	Synthetic data
	Spam classification

