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Intuition and Motivation

Linear SVM

X1

X2

Inputs are vectors of IRd

Linear SVM seeks linear classification function
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Intuition and Motivation

Limitations

Data are not always vectors: (string, time series, graphs, images . . . )

The decision function can not always be linear (text categorization;
email filtering; gene detection; protein classification; prediction of loan
defaulting)

Figure: How to classify these data?
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Intuition and Motivation

From linear to non-linear decision function

Data might be separable with a
non-linear function

Non-linear embedding of x =

(
x(1)

x(2)

)
R2 → H

x 7→ Φ(x) =

 x2
(1)

x2
(2)√

2x(1)x(2)


Train a linear SVM with samples
{(Φ(xi), yi)}

Resulting SVM model

f(x) = b+
∑
i∈SV

αiyiΦ(xi)
⊤Φ(x)

‘
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Intuition and Motivation

Non-linear decision function

Decision function

f(x) = b+
∑
i∈SV

αiyi Φ(xi)
⊤Φ(x)︸ ︷︷ ︸

Kernel k(xi,x)

Kernel function: the trick

No explicit knowledge of Φ(x)

We only need to define a
function k(·, ·) : X × X → R

Problem linearly non-separable in
the original space X

but linear separable in the space H induced by
the kernel k
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Intuition and Motivation

Also. . .

How do we classify dataset composed of proteins?

Use the kernel trick: f(protein) = b+
∑

i∈SV αiyik(proteini, protein)
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Intuition and Motivation

Remark

Intuition

By simply modifying the dot product, SVM works in another space

Kernel Trick

1 Linear SVM relies on inner product between the Support Vectors and
the sample to predict

2 → Replaces the inner product between the sample in the ambient
space by a kernel k(·, ·)

3 → Leads to a non-linear version of the SVM
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Intuition and Motivation

Motivation of Kernel Machine

From

linear techniques
operating on vector spaces

to

non linear prediction models
operating on various, structured, high-dimensional data

Using a:
well known mathematical framework

leading to:
efficient and powerful algorithm and tools

−→ Kernel method
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What is a kernel ?

What can be k ?



Kernel Theoretical framework

Prerequisites

Definitions and notations

X : non empty input space (IRN , graphs, objects, . . . )

x ∈ X ,

H: feature space endowed with a dot product ⟨·, ·⟩H
Φ : X → H: embedding function from X to H
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Kernel Theoretical framework

Kernel

Kernel

A kernel k is a function k : X × X → IR:

k(x, z) = ⟨Φ(x),Φ(z)⟩H

Which kernel for SVM ? −→ positive definite kernels
Why ? −→ To ensure a well-defined SVM dual problem
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Kernel Theoretical framework

Positive Definite Kernels (1)

Positive definite kernel

A kernel k(x, z) on X × X is said to be positive definite

if it is symmetric: k(x, z) = k(z,x)

and if for any finite positive integer n:

∀{αi}i=1,n ∈ IR,∀{xi}i=1,n ∈ Ω,

n∑
i=1

n∑
j=1

αiαjk(xi,xj) ≥ 0

it is strictly positive definite if for αi ̸= 0
n∑

i=1

n∑
j=1

αiαjk(xi,xj) > 0
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Kernel Theoretical framework

Positive Definite Kernels (2)

Gram Matrix

Given a kernel k : X × X → IR, and samples {x1, . . . ,xn}, the Gram
Matrix K is a n× n matrix with entries Ki,j := k(xi,xj)

Another way to characterize positive definite kernel

If for any set of n ∈ IN samples {x1, . . . ,xn} the associated Gram Matrix
K ∈ IRn×n is positive definite, then k is a positive definite kernel on X .
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Positive definite Kernels



Kernel functions Kernel on vectors

Linear Kernel

k(x, z) = x⊤z

x, z ∈ IRd

symmetric: x⊤z = x⊤z

positive:

n∑
i=1

n∑
j=1

αiαjk(xi,xj) =

n∑
i=1

n∑
j=1

αiαjx
⊤
i xj

=

(
n∑

i=1

αixi

)⊤
 n∑

j=1

αjxj


=

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
2
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Kernel functions Kernel on vectors

Finite kernel

let ϕj , j = 1, p be a finite dictionary of functions from X to IR

(polynomials, wavelets...)

the feature map and linear kernel

feature map:
Φ : X → IRp

x 7→ Φ =
(
ϕ1(x), ..., ϕp(x)

)
Linear kernel in the feature space:

k(x, z) =
(
ϕ1(x), ..., ϕp(x)

)⊤(
ϕ1(z), ..., ϕp(z)

)
e.g. the quadratic kernel: x, z ∈ IRd, k(x, z) =

(
x⊤z+ b

)2
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Kernel functions Kernel on vectors

Closed form kernel: the quadratic kernel

Quadratic kernel k(x, z) =
(
x⊤z+ 1

)2
= 1 + 2x⊤z+

(
x⊤z

)2
x, z ∈ IRd,

It computes the dot product of the dictionary

Φ : IRd → IRp=1+d+
d(d+1)

2

x 7→ Φ =
(
1,
√
2x1,

√
2x2, ...,

√
2xd, x

2
1, x

2
2, ..., x

2
d, ...,

√
2xixj , ...

)
p = 1 + d+ d(d+1)

2 multiplications vs. d+ 1
use kernel to save computation
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Kernel functions Kernel on vectors

Gaussian kernel

k(x, z) = exp
(
−∥x−z∥2

2σ2

)
for σ = 1:

Φ(x) =

exp ∥x∥2
2j

√
j!

1/j

(
j

n1, . . . , nk

)1/2

xn1
1 . . .xnk

k


j=0,...,∞,

∑k
i=1 ni=j

Feature space has an infinite dimension

Overlearning

σ controls the influence area of the kernel
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Kernel functions Kernels on generic data

Kernels on structures

X may not be a vector space.

we can define kernels on any kind of data :

Strings
Time series
Graphs
Images
. . .

O

C N

N

C
C

C
C

C

C

D

N

N

D

C
C

C

C
C

Ck
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Kernel functions Kernels on generic data

Positive definite kernels: some common examples

Type Name k(x, z)

radial Gaussian exp
(
−∥x−z∥2

2σ2

)
radial Laplacian exp(−∥x− z∥/σ)

non stat. χ2 exp(−r/σ), r =
∑

k
(xk−zk)

2

xk+zk

projectif polynomial (x⊤z+ σ)p

projectif cosinus x⊤z/∥x∥∥z∥
projectif correlation exp

(
x⊤z

∥x∥∥z∥ − σ
)

The kernel may involve hyper-parameter(s) to tune (polynom order p,
bandwidth σ)

Their value has to be set by cross-validation
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Gram matrices with different bandwidths

raw data Gram matrix for σ = 2

σ = .5 σ = 10



Kernel Machine

How to exploit the kernel trick to implement non-linear methods ?



Non-Linear Kernel Machine SVM for classification

Non-Linear SVM: formulation

Let k(·, ·) be a positive definite kernel inducing the space H

There exits the mapping function Φ : X → H defined such that
∀x, z ∈ X we get ⟨Φ(x),Φ(z)⟩H = k(x, z)

Non-Linear SVM: general case

Dataset D = {(xi, yi) ∈ Rd × {−1, 1}}ni=1

Problem formulation

minw∈H,b,{ξi}ni=1

1
2∥w∥2H + C

∑N
i=1 ξi

s.t. yi(⟨w, ϕ(xi)⟩H + b) ≥ 1−ξi ∀i = 1, · · · , n
ξi ≥ 0 ∀i = 1, . . . , n
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Non-Linear Kernel Machine SVM for classification

Non-Linear SVM: the solution
Dual problem

max
{αi}

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj ⟨Φ(xi),Φ(xj)⟩H︸ ︷︷ ︸
k(xi,xj)

s.t. 0 ≤ αi ≤ C, ∀ i = 1, · · · , N
N∑
i=1

αiyi = 0

Matrix form

max
α∈RN

−1

2
α⊤Gα+ 1

⊤α

s.t. 0 ≤ α ≤ C 1,α⊤y = 0

with G ∈ Rn×n a matrix
such that
Gij = yiyjk(xi,xj)

G is positive definite for a

positive definite kernel k

Classification function

f(x) =
n∑

i=1

αiyik(xi,x) + b

Linear SVM = SVM with a linear kernel k(x, z) = x⊤z
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Non-Linear Kernel Machine SVM for classification

Illustration: from kernel mapping to decision function

Classification function:

f(x) =

n∑
i=1

αiyik(xi,x) + b

ftp://ftp.cea.fr/pub/unati/people/educhesnay/pystatml/StatisticsMachineLearningPythonDraft.pdf
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Non-Linear Kernel Machine SVM for classification

Sparsity of the SVM

f(x) =
n∑

i=1

αik(x,xi)

D(x) = sign
(
f(x) + b

)

useless data important data suspicious data
well classified support

α = 0 0 < α < C α = C
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Non-Linear Kernel Machine SVM for classification

Influence of kernel parameter

Gaussian kernel : exp
(
−∥x−z∥2

2σ2

)
with bandwidth σ

Kernel bandwidth (log. scale)
-3 -2 -1 0 1 2

E
rr

or

0.2

0.4

0.6

< too small

0

0

0

0

0

0

0

0

0 0

nice <

0

0

< too large

0

0

−→ select σ using cross-validation
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Non-Linear Kernel Machine SVM for classification

Conclusion

What we’ve seen

Kernels corresponds to scalar product in some Hilbert space:

value corresponds to high dimensional scalar product,
on non linear embedding
without explicit representations of Φ

Can be defined on any kind of data provided we are able to define a
measure of similarity

Applications

Algorithms operating on these functions

Non linear prediction models for classification and regression
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