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Intuition and Motivation

Linear SVM
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e Inputs are vectors of IR?

@ Linear SVM seeks linear classification function
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Intuition and Motivation

Limitations

e Data are not always vectors: (string, time series, graphs, images ...)

@ The decision function can not always be linear (text categorization;
email filtering; gene detection; protein classification; prediction of loan

defaulting)
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Figure: How to classify these data?
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Intuition and Motivation

From linear to non-linear decision function

Data might be separable with a

non-linear function
@ Non-linear embedding of x = <m(1)>

25 Z(2)
1
15 R2 - H
° . - ~ ° 2
e . T
R . x = Ox)= Ty
Tl . V2r()2(2)
1j5 @ Train a linear SVM with samples
2 {(q)(xl)7yz)}

Resulting SVM model
fx)=0b+ Z aiyi®(x;) ' P(x)
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Intuition and Motivation

Non-linear decision function

Decision function Kernel function: the trick

@ No explicit knowledge of ®(x)

FE) =b+ Y oy B(x;) 0(x) _
et NI o We o.nly need to define a
Kernel k(x;,x) function k(-,-) : ¥ x X - R

Problem linearly non-separable in  but linear separable in the space H induced by

the original space X the kernel k
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Intuition and Motivation

How do we classify dataset composed of proteins?

Dataset o(pr oteins {p1, p2,Ps, -, Pa}

3D structure - . Detworke
.
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Use the kernel trick: f(protein) = b+, g a;yk(protein,, protein)
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Intuition and Motivation

Remark

Intuition
By simply modifying the dot product, SVM works in another space

Kernel Trick

© Linear SVM relies on inner product between the Support Vectors and

the sample to predict

@ — Replaces the inner product between the sample in the ambient
space by a kernel k(-,-)

© — Leads to a non-linear version of the SVM
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Intuition and Motivation

Motivation of Kernel Machine

o From

e linear techniques
@ operating on vector spaces

@ to

e non linear prediction models
e operating on various, structured, high-dimensional data

e Using a:
well known mathematical framework

@ leading to:
efficient and powerful algorithm and tools

— Kernel method
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What is a kernel ?

What can be k£ ?



Prerequisites

Definitions and notations
e X: non empty input space (RY, graphs, objects, ...)
e xe X,
@ H: feature space endowed with a dot product (-, )3
e ®: X — H: embedding function from X to H
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Kernel

Kernel

Kernel
A kernel k is a function k : X x X — IR:

k(x,2) = (®(x), ®(2))n

Which kernel for SVM ? — positive definite kernels
Why ? — To ensure a well-defined SVM dual problem
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Theoretcal frameviork
Positive Definite Kernels (1)

Positive definite kernel

A kernel k(x,z) on X x X is said to be positive definite
e if it is symmetric: k(x,z) = k(z,x)
@ and if for any finite positive integer n:

V{ai}izl,n S R, V{Xi}izl,n S Q, ZZaiajk(xi,xj) >0

i=1 j=1

it is strictly positive definite if for a; # 0

Zn: Z OéiOtjk}(Xi, Xj) >0

i=1 j=1
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Positive Definite Kernels (2)

Gram Matrix

Given a kernel k: X x X — R, and samples {xy,...,X,}, the Gram
Matrix K is a n x n matrix with entries K; ; := k(x;,x;)

Another way to characterize positive definite kernel

If for any set of n € IN samples {x1,...,X,} the associated Gram Matrix
K € IR" " is positive definite, then k is a positive definite kernel on X.
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Positive definite Kernels



Kernel functions

Linear Kernel

o~ T
k(x,z) =x'z
@ X,z € R?
@ symmetric: x'z=x'z
@ positive:
n n n n
T
E E aiOéjk(Xi,Xj)Z E E Q;OX X
i=1j=1 i=1j=1
n T n
= E ;X5 E Oéij
i=1 j=1
" 2
= E 672,
i=1
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Finite kernel

let ¢;,j = 1,p be a finite dictionary of functions from X to R
(polynomials, wavelets...)
the feature map and linear kernel
d: X — R?
X = o= (¢1(X),...,¢p(x))
Linear kernel in the feature space:

k(%,2) = (61(%), coes 6p(%)) " (01(), ..., 6p(2))

feature map:

e.g. the quadratic kernel: x,z € R?, k(x,z) = (x'z + b)2
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Kernel functions

Closed form kernel: the quadratic kernel

Quadratic kernel  k(x,z) = (x'z+ 1)2 =14+2x"z+ (XTZ)2
o x,z € RY,
@ It computes the dot product of the dictionary

d(d+1)
$: RY — RpPHHIT

x = ®=(1,v2x1,V22,...,V2x4,2%,23, ..., 23, ... V2215, )

=1+d+ (dH) multiplications vs. d+1

use kernel to save computation
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Kernel functions Kernel on vectors

Gaussian kernel

X—Z 2
k(x,z) = exp (—7H 202” )
o foro =1:

12

. 1/2
exp 15
D(x) = —23( J ) xytLxpk
ni, , Nk

Vi

@ Feature space has an infinite dimension
o Overlearning A
@ o controls the influence area of the kernel
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Kernel functions Kernels on generic data

Kernels on structures

@ X may not be a vector space.

@ we can define kernels on any kind of data :
e Strings

o Time series

e Graphs

o Images

o
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Kernel functions Kernels on generic data

Positive definite kernels: some common examples

Type Name k(x,z)
dial G ; _ [ x—z*

radia aussian exp | — 57—

radial Laplacian exp(—||x — z||/o)
non stat. X2 exp(—r/o), =3, (’:“k:z’“k
projectif | polynomial (x'z+o)P
projectif | cosinus x"z/|x||||z]|
projectif | correlation exp xlz_

) [ESIIED]

@ The kernel may involve hyper-parameter(s) to tune (polynom order p,
bandwidth o)

@ Their value has to be set by cross-validation
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Gram matrices with different bandwidths

raw data




Kernel Machine

How to exploit the kernel trick to implement non-linear methods ?



\EHE ENEETR IO RVETHININ  SVM for classification

Non-Linear SVM: formulation

o Let k(-,-) be a positive definite kernel inducing the space H

@ There exits the mapping function ® : X — H defined such that
Vx,z € X we get (P(x),P(z))y = k(x,2)

Non-Linear SVM: general case
o Dataset D = {(x;,1;) € RT x {—1,1}},

@ Problem formulation

ming ey (eqn, 3lWI3 + CYL, &
s.t. yl(<wv ¢(Xz>>7‘[ + b) > 1_51 Vi = 17 LN
& >0 Vi=1,...,n
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SVM for classification
Non-Linear SVM: the solution

Dual problem

Matrix form
max —laTGa +1"
N 1 N aeRN 2
max > ai- 3 D @iy (P(x),205)% st 0<a<Claly=0
=1 1,7=1

) Fex) ith G € R™ ™ a matrix
s.t. OSOZZSC, VZ:].,"' ,N such that

N
> iy =0
i=1

Gij = yiyjk(xi, x;)

G is positive definite for a

positive definite kernel k

Classification function

Fx) =" auyiki(xi, %) + b
i=1

@ Linear SVM = SVM with a linear kernel k(x,z) = x "z
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\EHE ENEETR IO RVETHININ  SVM for classification

lllustration: from kernel mapping to decision function

Classification function:

= Zaiyik(xiax) +b
i=1

(1) Kernel mapping: (2) Learn the decision fi
2 K(zi, 2) = exp( - 22l fz)= a'i_qn( > augexp(~
- i€eSV
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ftp://ftp.cea. fr/pub/u.nat'i/peop1e/educhesnay/pystatml/Statist icsMachineLea}ningPythonDraft .pdf
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ftp://ftp.cea.fr/pub/unati/people/educhesnay/pystatml/StatisticsMachineLearningPythonDraft.pdf

Sl
Sparsity of the SVM

F) = aik(x,xi)
i=1

D(z) = sign(f(x) +b)

useless data important data suspicious data
well classified support
a=10 I<a<C a=C
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\EHE ENEETR IO RVETHININ  SVM for classification

Influence of kernel parameter

Gaussian kernel : exp (—%) with bandwidth o

06 T T T T

02 1 1 1

-3 -2 -1 0 1 2

Kernel bandwidth (log. scale)

o too small

— select ¢ using cross-validation
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\EHE ENEETR IO RVETHININ  SVM for classification

Conclusion

What we've seen

@ Kernels corresponds to scalar product in some Hilbert space:
e value corresponds to high dimensional scalar product,
@ on non linear embedding
e without explicit representations of ®
@ Can be defined on any kind of data provided we are able to define a
measure of similarity

Applications
@ Algorithms operating on these functions

@ Non linear prediction models for classification and regression
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