
G Gasso

IML

Practice Session Linear SVM
4th year

— Apply linear SVM on synthetic and real datasets
— Investigate the choice of hyper-parameter C
— Extend to multi-class classification problem
— Provided codes : functions included in utility_svm.py on Moodle.

This Session relies on the same materials as for Logistic Regression Session. You should re-
fer to it for data loading, processing and for comparison purpose.

1 Synthetic data

Let consider a binary classification problem with class y ∈ {0, 1}. The samples of each class
k are drawn according to a gaussian distribution with mean µk and covariance matrix Sk. We
will use the SKLearn SVM implementation through out this session for efficiency purpose.

1. Generate n1 = n2 = 300 training samples per class using µ1 =
(
0
2

)
, S1 =

3
2

(
1 0.1
0.1 1

)
,

µ2 =

(
−2
−2

)
and S2 =

7
2

(
1 −0.25

−0.25 1/2

)
from utility_svm import gen_data_twogaussians_2d
import numpy as np
class 1
n1 = 300
mu1 = np.array([0, 2]); S1 = 1.5*np.array([[1, 0.1], [0.1, 1]])
class 2
n2 = n1
mu2 = np.array([-2, -2]); S2 = 3.5*np.array([[1, -0.25], [-0.25, 1/2]])
Xtrain, Ytrain = gen_data_twogaussians_2d(mu1, S1, mu2, S2, n1, n2)

2. Split the data into respectively training, validation and test sets. Why do we need this data
splitting ? Why do we need to shuffle and stratify the data for the splitting ?
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(Xtrain, Ytrain, shuffle=

True, test_size=1/3, stratify=Ytrain)
Xtrain, Xval, Ytrain, Yval = train_test_split(Xtrain, Ytrain, shuffle=

True, test_size=1/2, stratify=Ytrain)

Check the dimensions of each set.
3. (a) Learn a linear SVM using the training set.

from sklearn.svm import SVC
define a linear SVM with C = 1
C = 1
clf_svm = SVC(kernel="linear", C = C) # we seek a linear svm (

kernel ="linear")
fit the parameters of the model
clf_svm.fit(Xtrain, Ytrain)

p.1/4

IML Practice Session Linear SVM ASI4

(b) Plot the decision frontier. Comment on the results.
plot the decision boundary
import matplotlib.pyplot as plt
from utility_svm import plot_decision_regions_2d
plot_decision_regions_2d(Xtrain, Ytrain, clf_svm, resolution=0.02,

title="Linear SVM")

The support vectors and their number are respectively provided in clf_svm.n_support_
and clf_svm.support_vectors_. How many support vectors do we have ? High-
light these samples on the plot.

(c) What is the validation error rate ?
from sklearn.metrics import accuracy_score
val_err_rate = 1 - accuracy_score(Yval, clf_svm.predict(Xval))
print(...)

Compare it to the training error rate.

4. Change the value of C and comment on how the decision frontier and the margin behave.
vectC = np.logspace(-3, 2, 6) #vector of C in logarithmic scale
for C in vectC:
clf_svm.C = C
clf_svm.fit(Xtrain, Ytrain)
plot_decision_regions_2d(Xtrain, Ytrain, clf_svm, resolution=0.02,

title="Linear SVM with c = {}".format(C))

5. We want to select the best value of C in the logarithmic range {10−3, · · · , 102} by checking
the validation error rate. To do so, for each value of C, train a SVM model, compute and
store its error rate on the validation set. For sanity check purpose we will also compute the
training error rate.
Select C by cross-validation
vectC = np.logspace(-3, 2, 10)
val_err_rate = np.empty(vectC.shape[0])
train_err_rate = ...
for ind_C, C in enumerate(vectC):
learn the SVM for C
...
compute the classification error rates
val_err_rate [ind_C] = 1 - accuracy_score(Yval, clf_svm.predict(Xval))
train_err_rate[ind_C] = ...

Plot the obtained error curves. What is the optimal value Copt to select ?

Error curves
plt.figure()
plt.semilogx(vectC, train_err_rate, "bs--", label="Training")
plt.semilogx(vectC, val_err_rate, "go--", label="Validation")
plt.xlabel("Parameter C")
plt.ylabel("Error rates")
plt.legend(loc="best")

p.2/4

IML Practice Session Linear SVM ASI4

Let select Copt. Is it safe and sound to select Copt on the training error rate basis ?

ind_min = val_err_rate.argmin()
Copt = vectC[ind_min]
print("\n Optimal C = {}".format(Copt))

6. Train the optimal SVM corresponding to Copt ane evaluate its performance on the training,
validation and test sets. Discuss the obtained results.
Fit the optimal SVM using Copt
...
compute and print the performances on train, validation and test sets
err_test = ...
print("Optimal Linear SVM : test error rate = {}".format(err_test))
...

2 Spam classification

We intend to spam classification problem using a linear SVM. We recall that the dataset
contains 4601 e-mails, from which 57 features have been extracted (refer to previous Session for
the details). The dataset spambase.data and the features name spambase_variables.csv
are in text format and available on Moodle.

1. Read the files and extract the inputs X and the output Y (last column in the dataset). Refer
to logistic regression labwork for the details.

2. Split the data into training and test sets. The test set size should be 1/3 of the data.

3. Our goal is to learn a linear SVM able to classify the e-mails.
(a) As we have seen in the first exercise, the SVM classifier requires to properly tune the

C-parameter. For the sake, split your current training set in halves (respectively the
new training set and a validation one).

X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train
, shuffle=True, test_size=1/2, stratify=Y_train)

(b) Normalize the data by centering and scaling the variables.
from sklearn.preprocessing import StandardScaler

sc = StandardScaler(with_mean=True, with_std=True)
sc = sc.fit(X_train)
X_train = sc.transform(X_train)
X_val = sc.transform(X_val)
X_test = sc.transform(X_test)

Is it the convenient way to normalize the datasets ?

(c) Learn a linear SVM model. You should highlight how the optimal C∗ parameter is
selected and how the related final SVM model is learned. Hint : you can look for C in
the range {10−3, · · · , 102}.

p.3/4

https://archive.ics.uci.edu/ml/datasets/spambase

IML Practice Session Linear SVM ASI4

(d) Evaluate the accuracy performances of your SVM. Compare to your previous results
using logistic regression model.

3 Multi-class SVM : digits classification

The goal is to apply mult-class SVM to solve the digit classification problem using MNIST
dataset. Recall that the training and test data-sets respectively contain 60,000 and 10,000 gray
images of the digits 0− 9. They are of dimension 28× 28 vectorized into vectors of size 784.

1. Load the datasets

import numpy as np
training set
mnist_train = np.loadtxt("./mnist/mnist-app.csv", delimiter=",")
Y_train = mnist_train[:,-1]
X_train = mnist_train[:, 0:784]
test set
mnist_test = np.loadtxt("./mnist/mnist-test.csv", delimiter=",")
Y_test = mnist_test[:,-1]
X_test = mnist_test[:, 0:784]

2. To lower the computation cost we will only retain three digits at your choice and extract
only samples corresponding to those digits. For instance let select digits 0, 2 and 8 (feel free
to change them).

digits = [0, 2, 8]
squeeze the training to the selected digits
index_train = np.argwhere((Y_train == digits[0]) | (Y_train == digits

[1]) | (Y_train == digits[2]))
X_train = X_train[np.squeeze(index_train), :]
Y_train = Y_train[np.squeeze(index_train)]
squeeze the test set as well
index_test = np.argwhere((Y_test == digits[0]) | (Y_test == digits[1]) |

(Y_test == digits[2]))
X_test = X_test[np.squeeze(index_test), :]
Y_test = Y_test[np.squeeze(index_test)]

3. Inspiring from the previous exercises learn a linear multi-class SVM. Which strategy is used
to solve the multi-class problem ? Hint : check the documentation of sklearn.svm.SVC.
How many support vectors does your final SVM model have ?

p.4/4

	Synthetic data
	Spam classification
	Multi-class SVM: digits classification

