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— Apply linear SVM on synthetic and real datasets
— Investigate the choice of hyper-parameter C
— Extend to multi-class classification problem
— Provided codes : functions included in utility_svm.py on Moodle.

This Session relies on the same materials as for Logistic Regression Session. You should re-
fer to it for data loading, processing and for comparison purpose.

1 Synthetic data

Let consider a binary classification problem with class y ∈ {0, 1}. The samples of each class
k are drawn according to a gaussian distribution with mean µk and covariance matrix Sk. We
will use the SKLearn SVM implementation through out this session for efficiency purpose.

1. Generate n1 = n2 = 300 training samples per class using µ1 =
(
0
2

)
, S1 =

3
2

(
1 0.1
0.1 1

)
,

µ2 =

(
−2
−2

)
and S2 =

7
2

(
1 −0.25

−0.25 1/2

)
from utility_svm import gen_data_twogaussians_2d
import numpy as np
# class 1
n1 = 300
mu1 = np.array([0, 2]); S1 = 1.5*np.array([[1, 0.1], [0.1, 1]])
# class 2
n2 = n1
mu2 = np.array([-2, -2]); S2 = 3.5*np.array([[1, -0.25], [-0.25, 1/2]])
Xtrain, Ytrain = gen_data_twogaussians_2d(mu1, S1, mu2, S2, n1, n2)

2. Split the data into respectively training, validation and test sets. Why do we need this data
splitting ? Why do we need to shuffle and stratify the data for the splitting ?
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(Xtrain, Ytrain, shuffle=

True, test_size=1/3, stratify=Ytrain)
Xtrain, Xval, Ytrain, Yval = train_test_split(Xtrain, Ytrain, shuffle=

True, test_size=1/2, stratify=Ytrain)

Check the dimensions of each set.
3. (a) Learn a linear SVM using the training set.

from sklearn.svm import SVC
# define a linear SVM with C = 1
C = 1
clf_svm = SVC(kernel="linear", C = C) # we seek a linear svm (

kernel ="linear")
# fit the parameters of the model
clf_svm.fit(Xtrain, Ytrain)
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(b) Plot the decision frontier. Comment on the results.
# plot the decision boundary
import matplotlib.pyplot as plt
from utility_svm import plot_decision_regions_2d
plot_decision_regions_2d(Xtrain, Ytrain, clf_svm, resolution=0.02,

title="Linear SVM")

The support vectors and their number are respectively provided in clf_svm.n_support_
and clf_svm.support_vectors_. How many support vectors do we have ? High-
light these samples on the plot.

(c) What is the validation error rate ?
from sklearn.metrics import accuracy_score
val_err_rate = 1 - accuracy_score(Yval, clf_svm.predict(Xval))
print(...)

Compare it to the training error rate.

4. Change the value of C and comment on how the decision frontier and the margin behave.
vectC = np.logspace(-3, 2, 6) #vector of C in logarithmic scale
for C in vectC:
clf_svm.C = C
clf_svm.fit(Xtrain, Ytrain)
plot_decision_regions_2d(Xtrain, Ytrain, clf_svm, resolution=0.02,

title="Linear SVM with c = {}".format(C))

5. We want to select the best value of C in the logarithmic range {10−3, · · · , 102} by checking
the validation error rate. To do so, for each value of C, train a SVM model, compute and
store its error rate on the validation set. For sanity check purpose we will also compute the
training error rate.
# Select C by cross-validation
vectC = np.logspace(-3, 2, 10)
val_err_rate = np.empty(vectC.shape[0])
train_err_rate = ...
for ind_C, C in enumerate(vectC):
# learn the SVM for C
...
# compute the classification error rates
val_err_rate [ind_C] = 1 - accuracy_score(Yval, clf_svm.predict(Xval))
train_err_rate[ind_C] = ...

Plot the obtained error curves. What is the optimal value Copt to select ?

# Error curves
plt.figure()
plt.semilogx(vectC, train_err_rate, "bs--", label="Training")
plt.semilogx(vectC, val_err_rate, "go--", label="Validation")
plt.xlabel("Parameter C")
plt.ylabel("Error rates")
plt.legend(loc="best")
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Let select Copt. Is it safe and sound to select Copt on the training error rate basis ?

ind_min = val_err_rate.argmin()
Copt = vectC[ind_min]
print("\n Optimal C = {}".format(Copt))

6. Train the optimal SVM corresponding to Copt ane evaluate its performance on the training,
validation and test sets. Discuss the obtained results.
# Fit the optimal SVM using Copt
...
# compute and print the performances on train, validation and test sets
err_test = ...
print("Optimal Linear SVM : test error rate = {}".format(err_test))
...

2 Spam classification

We intend to spam classification problem using a linear SVM. We recall that the dataset
contains 4601 e-mails, from which 57 features have been extracted (refer to previous Session for
the details). The dataset spambase.data and the features name spambase_variables.csv
are in text format and available on Moodle.

1. Read the files and extract the inputs X and the output Y (last column in the dataset). Refer
to logistic regression labwork for the details.

2. Split the data into training and test sets. The test set size should be 1/3 of the data.

3. Our goal is to learn a linear SVM able to classify the e-mails.
(a) As we have seen in the first exercise, the SVM classifier requires to properly tune the

C-parameter. For the sake, split your current training set in halves (respectively the
new training set and a validation one).

X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train
, shuffle=True, test_size=1/2, stratify=Y_train)

(b) Normalize the data by centering and scaling the variables.
from sklearn.preprocessing import StandardScaler

sc = StandardScaler(with_mean=True, with_std=True)
sc = sc.fit(X_train)
X_train = sc.transform(X_train)
X_val = sc.transform(X_val)
X_test = sc.transform(X_test)

Is it the convenient way to normalize the datasets ?

(c) Learn a linear SVM model. You should highlight how the optimal C∗ parameter is
selected and how the related final SVM model is learned. Hint : you can look for C in
the range {10−3, · · · , 102}.
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(d) Evaluate the accuracy performances of your SVM. Compare to your previous results
using logistic regression model.

3 Multi-class SVM : digits classification

The goal is to apply mult-class SVM to solve the digit classification problem using MNIST
dataset. Recall that the training and test data-sets respectively contain 60,000 and 10,000 gray
images of the digits 0− 9. They are of dimension 28× 28 vectorized into vectors of size 784.

1. Load the datasets

import numpy as np
# training set
mnist_train = np.loadtxt("./mnist/mnist-app.csv", delimiter=",")
Y_train = mnist_train[:,-1]
X_train = mnist_train[:, 0:784]
# test set
mnist_test = np.loadtxt("./mnist/mnist-test.csv", delimiter=",")
Y_test = mnist_test[:,-1]
X_test = mnist_test[:, 0:784]

2. To lower the computation cost we will only retain three digits at your choice and extract
only samples corresponding to those digits. For instance let select digits 0, 2 and 8 (feel free
to change them).

digits = [0, 2, 8]
# squeeze the training to the selected digits
index_train = np.argwhere((Y_train == digits[0]) | (Y_train == digits

[1]) | (Y_train == digits[2]))
X_train = X_train[np.squeeze(index_train), :]
Y_train = Y_train[np.squeeze(index_train)]
# squeeze the test set as well
index_test = np.argwhere((Y_test == digits[0]) | (Y_test == digits[1]) |

(Y_test == digits[2]))
X_test = X_test[np.squeeze(index_test), :]
Y_test = Y_test[np.squeeze(index_test)]

3. Inspiring from the previous exercises learn a linear multi-class SVM. Which strategy is used
to solve the multi-class problem ? Hint : check the documentation of sklearn.svm.SVC.
How many support vectors does your final SVM model have ?
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