

1 El classico

Consider a binary classification problem. Each class $C_k, k = 1, 2$ is characterized by a prior probability $P(C_k)$ and a conditional density.

$$p(\boldsymbol{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{d/2} \sigma_k^d} \exp^{-\frac{\|\boldsymbol{x}-\boldsymbol{\mu}_k\|^2}{2\sigma_k^2}}, \quad \boldsymbol{x}, \boldsymbol{\mu}_k \in \mathbb{R}^d, \sigma_k \in \mathbb{R}$$
(1)

- 1. Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ be the training data. We aim to estimate the parameters σ_k and μ_k of class $\mathcal{C}_k, k = 1, 2$ by maximum likelihood estimation using the training data.
 - (a) To estimate σ_k and μ_k , which samples in \mathcal{D} will you consider?
 - (b) Give the expression of the likelihood.
 - (c) Deduce σ_k and μ_k by maximum likelihood estimation.

We want to design a discrimination function of the samples using Bayesian theory. The cost of a good decision is 0 and a bad decision costs λ_s .

- 2. Give the expression of the conditionals risks $R(\mathcal{C}_k/\boldsymbol{x}), k = 1, 2$.
- 3. Deduce that the minimum risk is attained by deciding C_k if $P(C_k | \boldsymbol{x}) > P(C_\ell | \boldsymbol{x}) \quad \forall \ell \neq k$.
- 4. Give the explicit expression of the decision function knowing that $P(C_k) = 1/2 \ \forall k = 1, 2$ and $p(\boldsymbol{x}|C_k)$ is given by Equation (1).
- 5. Now, we consider the reject option with $\cot \lambda_r$. Show that we shall assign a sample \boldsymbol{x} to class \mathcal{C}_k if

$$P(\mathcal{C}_k|m{x}) > P(\mathcal{C}_\ell|m{x}) \quad orall k
eq \ell \quad ext{and} \quad P(\mathcal{C}_k|m{x}) > 1 - rac{\lambda_r}{\lambda_s}$$

What happens if $\lambda_r = 0$? Same question if $\lambda_r > \lambda_s$.

2 Bayes with log-normal conditional distribution

Let us have a classification problem of K classes. Each class C_k has a prior probability $P(\omega_k)$ and a conditional density function $p(x|C_k)$. Suppose that each sample of C_k follows a log-normal distribution with $x \in \mathbb{R}^+ - \{0\}$

$$p(x|\mathcal{C}_k) = \frac{1}{x\sigma_k\sqrt{2\pi}} \exp\left(-\frac{(\ln(x) - \mu_k)^2}{2\sigma_k^2}\right)$$
(4)

Answer to the same questions as in the exercise 1 with this conditional distribution.

DM

3 The distribution of networks

Let be some computer networks $C_k, k = 1, \dots, K$ with K = 3 that we aim to automatically classify based on their characteristics. Each class C_k is defined by a prior probability $P(C_k)$ and a conditional density $p(x|C_k)$. Here, the samples x represent event occurrence dates. The conditional distribution of each class C_k is an Erlang's distribution.

$$p(x|\mathcal{C}_k) = \theta_k^2 x \, e^{-x \, \theta_k} \, \Gamma(x) \tag{5}$$

where $\Gamma(x)$ is the function equal to 1 if x > 0 and 0 otherwise.

- 1. We have the training data $\{(x_i, y_i)\}_{i=1}^N$. For each given class we aim to estimate the parameter θ_k using maximum likelihood estimation.
 - (a) Give the expression of the likelihood function.
 - (b) Deduce the estimation of θ_k as a solution of the likelihood maximization problem.
- 2. We want to classify our data using the Bayes rule. The The cost of a good decision is 0 and a bad decision costs λ_s .

Derive the decision function assuming that classes C_k are equally likely (their prior probabilities are equal).

4 Bayes' little gallop

Lets consider a binary classification problem with the following conditional probabilities :

$$p(x|C_1) = \frac{1}{2}e^{-|x|}$$

 $p(x|C_2) = e^{-2|x|}$

and the following costs : $\ell_{11}=0,\,\ell_{22}=0,\,\ell_{12}=2$ and $\ell_{21}=1$

- 1. Determine Bayes' decision rule and its associated risk if the prior probability of C_1 is $P(C_1) = \frac{2}{3}$.
- 2. Remake the same computations for $P(C_1) = \frac{1}{2}$.