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Linear discrimination
Goal
o Let D ={(xj,y;) € X x {—1,1}}i=1..n : be a set of labeled samples

e Using D, train a classification function f : X — {—1,1} or
f: X — R able to predict the true class of x € X
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Formulation

o D= {(xi,yi) € X x {—1,1}}i=1..n: training set

Classification function
o Let the input space be X = R¢
@ Scoring function: f : RY — R such that if
f(x) <0  assign x to class —1
f(x) >0  assign x to class 1
@ Linear function:

f(x)=w'x+b, weRY beR

v
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I ' ".ation
Definition

Linearly separable classification problem

The data {(x;,y;)} are linearly separable if it exists a separating
hyperplane which classifies correctly the samples. Otherwise, the problem
is not linearly separable.
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2D example

Find a perfect linear classification function of the samples J

@ Decision function: w'x + b =10

=)

@ Several solutions exist

@ Do these solutions come equally?

-2

A potential solution to pick up
Select the margin maximizing classification function J
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Notion of geometry

Distance to the decision boundary

Let H(w,b) = {z € RY|f(z) = w'z + b= 0} be a hyperplane and x € R a
point. The distance of x to the hyperplane H is defined as

d(x, H) = lw " x+b| _ |f(x)]

[[wl [[wl]

Let x, be the orthogonal projection of x onto
H.

| © class 1 w
6 = —_— = X —
We have x = xp + a”W” = A = X~ Xp
5t

The dot product with w leads to
4 aw’ 2 =wTx —w xp.
s [Twl
Al Hence we deduce

[[wll T

a =w'x+b—(w'x b).
6 ° T +b—(w xp+b)
0 =0

% e Niw-oo T

b = Therefore we get a = w“u);ﬁrb
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The margin

Canonical hyperplane

@ A hyperplane is canonical w.r.t the data {xy,--- ,xy} if
miny, [w ' x; + b| =1

Margin
The geometrical margin is defined as

_ 2
M= ra

Optimal canonical hyperplane
@ maximize the margin

@ while correctly classifying each
sample i.e. Vi, yif(x;)>1
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Maximizing the margin: a formulation

Formulation of SVM
o D= {(xj,y;) € RY x {~1,1}}7_;: linearly separable data set

o Goal: determine a function f(x) = w' x 4 b which maximizes the
margin between the classes with no classification error D

miny p ||wl? margin maximization
s.t. yviwTx;+b)>1 Vi=1,---,n correct classification
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_ Primal problem and related Lagrangian
The Lagrangian function of SVM problem

Primal

minweRd,beR %HWHZ
s.t. yilw'x;+b)>1 Vi=1,---,n

o Let j >0, i =1---n the Lagrange multipliers related to inequality
constraints i.e. n dual variables «;

o Lagrangian

1 n
L(w, b,a) = S [wl? = ailyi(w'x; +b) — 1)
i=1
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Dual
@ KKT stationary optimality condition
OL(w, b, ) _0 OL(w, b, ) _0
0b ow
Soit :
n n
Zai}/i =0 w= Zai)/ixi
i=1 i=1
@ Dual problem: quadratic programming
By substituting the latter relation in £, we atttain:
n 1 . Matrix form
max Y ai— 3 ) aiogyyx! x; )
' i=1 ij=1 max —-a Ga+1'a
st.  a;>0, Yi=1---,n ack

st. 0<a, aTy:O

n
E aiyip = 0
i=1
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N "< '
Support Vectors

@ Solve the dual for the parameters {a;}7_;

@ According to the value of a; we may have the following situations
o For any sample x; such that y;(w " x; + b) > 1 we have o;; = 0
e For any x;, if y,-(wa,- +b)=1then — «; >0

o w= 27:1 a;yix;. w is solely defined on a restricted set of samples such
that y;(w " x; + b) = 1. They are called Support Vectors (SV)
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In practice

Computation of w
@ Solve the dual using the training set D = {(x;,yi)}7_;
— We get the dual parameters {a}7_,

e Obtain the solution as w* = > | afy;x;

Computation of b
@ The o > 0 corresponding to the support vectors satisfy the condition

y,'(W*TX,' + b) =1

@ Infer b from these relations

Classification function

n
f(x)=w""x+ b= Za?y;x;rx +b
i=1
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Non separable case

What if we cannot find a perfect linear classifier?

Relax the constraints o

@ Relax y;(w'x; +b) >1

@ and allow y,'(WTX,' + b) > 1-— f,' Eg:;%;ms
with & > 0 the slack variables

@ Minimize the sum of the slacks

27:1 &i . ° o
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Non separable case: formulation

Linear SVM: general case
s.t. yilwTx; +b)>1-¢ Vi=1,---,n
& >0 Vi=1,...,n

@ C > 0: regularization parameter (controls the trade-off between slack errors
and the margin maximization)

@ C: selected by the user

—a}
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Non separable case: dual derivation

Lagrangian
1 ) n n T n
L(w,b,§,a,v) = §“WH HCY &> ailyiwTxj+b)—1+&)— > i
i=1 i=1 i=1
avec o; >0, v; >0, pourtouti=1,---,n )
KKT stationary conditions
0L(w, b, &) 0 0L(w, b, &, a) 0 0L(w,b,&j,a) 0
0b N ow N O0&k N
give
S laiyi=0 w =Y 7 ajyix, C—ax—ve=0,Vk=1---p
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|
The dual problem

Dual
u 1 < Matrix form
max 3 ai— 5 Y aiogyivix' 1
i i=1 ij=1 max ——aTGa + 1—|—a
s.t. 0<o;<C, Vi=1---,n aER” 2

st. 0<a<Cl,a'y=0

n
Z a;y; =0
i—1

G € R™" and G = yiy;x, x;

Computation of w
@ Given the dual solution {a}}" ; the SVM parameter vector is given by
w =3 0 yiXi
@ Compared to linearly separable SVM, the general SVM differs by the box
constraints 0 < «; < C on the «;.

o
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Influence of the hyper-parameter C

A SVM solved respectively for C = 0.01 and C = 1000

Small C Big C
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Influence of C
Small C — large margin; large C — small margin J

Gilles Gasso 18/25



-
Practical Methodology

Inputs
Labeled samples : {(x;,y;) € RY x {—1,1}}"_;

Methodology

@ Center and scale the data : {x;}7_; — {x; = Z 7 1(x; — %)},
@ Fix the hyper-parameter C > 0

© Solve the dual problem to get the «; # 0, the corresponding support vector
x; and the bias term b

© Deduce the classification function f(x) =", s, iyix] x + b

© Compute the generalization error of the SVM. Repeat from step 2 until a
satisfying performance is attained

v
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-
Tuning C

@ Training set: compute w and b

Total available data

@ Validation set: evaluate the
performance of the SVM for different
values of C

Training data| X .Y | Validation data X, Y, Testdatal X ;.Y

@ Test set: assess the generalization
performance of the "best SVM"
Model selection: tuning C

function C < tuneC (X,Y, options)
@ Split the data (X,, Y, X,, Y,) < SplitData(X,Y,options)
@ For different values of C
o (w,b) « TrainLinearSVM(X,, Ya, C, options)
o error + EvaluateError (X,, Y,,w,b)

© C « argminerror

v
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[[lustration

@ Consider logscale values of C
@ For each C value, train an SVM and compute the validation error
@ Select the "best SVM” as the minimum of the validation error curve
Evolution of validation error wrt C SVM with a nice C (validation)
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Multi-class case

K classes Cq,--- ,Ck

Common approaches to lift binary SVM to multi-class case:
@ "One Against All"
o Learn K SVM (a class against the others)
o Classify each sample according to the "winner takes all” strategy
@ "One Against One"
o Learn K(K —1)/2 SVM (one class against another one)

o Classify each sample wih a majority vote

e or estimate the posterior probabilities (pairwise coupling) ; classify
according to the maximal posterior probability
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Multi-class SVM: One Against All

Dataset : {(x;,y;) € RY x {C1,--- ,Cx}}V,

Principle
@ For each class Cy

o Learn a binary SVM f(x) = w/ x + by
with data {(x;,z) € RY x {-1,1}}

e where z; =1if y; =Ck and z; = —1
otherwise

Classifying a new sample x;

@ Winner takes it all

® D(xg) =argmax_; . x{w] x¢+ by, w]xp+ by, -, wix+ bk}
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Multi-class SVM: One Against One
Dataset : D = {(x;,y;) € R? x {C1,--- ,Ck}}N,

Principle

@ For each pair of classes (C;,Cx)

o Filter out from D the samples y; = C; or Cy

o Learn a binary SVM fii(x) = w i x + bj
with data {(x;,z) € RY x {-1,1}}

o zi=1lify;=Cjand zi=—1if y; =Cx

Classifying a new sample x,: majority vote

@ For each learned SVM fj
o if fy(x;) > 0 increment the votes for class C; otherwise those of Cj

@ Assign x; to the class with maximum vote (the one which wins the
championship)
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To sum up

@ Linear SVM for binary classification: maximizes the separation margin
between classes while minimizing the classification errors

@ Extension to multi-class classification

@ Extension to non-linear case using the kernel trick.

Toolboxes
Scikit Learn (Python) implementation
R implementation
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https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://www.rdocumentation.org/packages/e1071/versions/1.7-2/topics/svm
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