Linear Support Vector Machine

Gilles Gasso

INSA Rouen - ASI Department Laboratory LITIS

December 8, 2020

Road map

- Discrimination function
 - Formulation
 - Notion of margin
- Solving SVM problem
 - Primal problem and related Lagrangian
 - The dual
- Non separable linear SVM
- 4 In practice
- 5 Generalization to multi-class problem

Linear discrimination

Goal

- Let $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \{-1, 1\}\}_{i=1\cdots n}$: be a set of labeled samples
- Using \mathcal{D} , train a classification function $f: \mathcal{X} \to \{-1, 1\}$ or $f: \mathcal{X} \to \mathbb{R}$ able to predict the true class of $\mathbf{x} \in \mathcal{X}$

Train

Formulation

• $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \{-1, 1\}\}_{i=1\cdots n}$: training set

Classification function

- ullet Let the input space be $\mathcal{X} = \mathbb{R}^d$
- Scoring function: $f: \mathbb{R}^d \to \mathbb{R}$ such that if

$$f(\mathbf{x}) < 0$$
 assign \mathbf{x} to class -1
 $f(\mathbf{x}) > 0$ assign \mathbf{x} to class 1

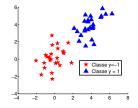
Linear function:

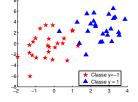
$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b, \qquad \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

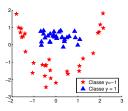
Definition

Linearly separable classification problem

The data $\{(\mathbf{x}_i, y_i)\}$ are linearly separable if it exists a separating hyperplane which classifies correctly the samples. Otherwise, the problem is not linearly separable.

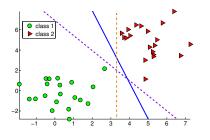






2D example

Find a perfect linear classification function of the samples



- Decision function: $\mathbf{w}^{\top}\mathbf{x} + b = 0$
- Several solutions exist
- Do these solutions come equally?

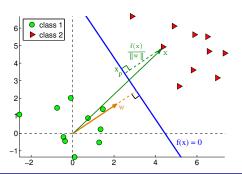
A potential solution to pick up

Select the margin maximizing classification function

Notion of geometry

Distance to the decision boundary

Let $H(\mathbf{w}, b) = \{ \mathbf{z} \in \mathbb{R}^d \mid f(\mathbf{z}) = \mathbf{w}^\top \mathbf{z} + b = 0 \}$ be a hyperplane and $\mathbf{x} \in \mathbb{R}^d$ a point. The distance of \mathbf{x} to the hyperplane H is defined as $d(\mathbf{x}, H) = \frac{|\mathbf{w}^\top \mathbf{x} + b|}{||\mathbf{w}||} = \frac{|f(\mathbf{x})|}{||\mathbf{w}||}$



Let x_p be the orthogonal projection of x onto H.

We have
$$\mathbf{x} = \mathbf{x}_p + a \frac{\mathbf{w}}{\|\mathbf{w}\|} \to a \frac{\mathbf{w}}{\|\mathbf{w}\|} = \mathbf{x} - \mathbf{x}_p$$
.

The dot product with \mathbf{w} leads to $a\mathbf{w}^{\top} \frac{\mathbf{w}}{\|\mathbf{w}\|} = \mathbf{w}^{\top} \mathbf{x} - \mathbf{w}^{\top} \mathbf{x}_{p}$.

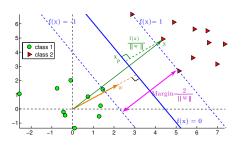
Hence we deduce
$$a \frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|} = \mathbf{w}^\top \mathbf{x} + b - \underbrace{(\mathbf{w}^\top \mathbf{x}_p + b)}_{=0}.$$

Therefore we get $a = \frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|}$

The margin

Canonical hyperplane

• A hyperplane is canonical w.r.t the data $\{x_1, \dots, x_N\}$ if $\min_{x_i} |\mathbf{w}^\top x_i + b| = 1$



Margin

The geometrical margin is defined as $M = \frac{2}{\|\mathbf{w}\|}$

Optimal canonical hyperplane

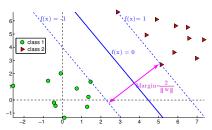
- maximize the margin
- while correctly classifying each sample i.e. $\forall i, y_i f(\mathbf{x}_i) > 1$

Maximizing the margin: a formulation

Formulation of SVM

- $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$: linearly separable data set
- Goal: determine a function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$ which maximizes the margin between the classes with no classification error \mathcal{D}

$$\begin{array}{ll} \min_{\pmb{w},b} & \frac{1}{2} \| \pmb{w} \|^2 & \text{margin maximization} \\ \text{s.t.} & y_i(\pmb{w}^\top \pmb{x}_i + b) \geq 1 & \forall i = 1,\cdots,n & \text{correct classification} \end{array}$$



The Lagrangian function of SVM problem

Primal

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}} \quad \frac{1}{2} \| \boldsymbol{w} \|^2$$
s.t.
$$y_i(\boldsymbol{w}^\top \boldsymbol{x}_i + b) \ge 1 \quad \forall i = 1, \cdots, n$$

- Let $\alpha_i \geq 0$, $i = 1 \cdots n$ the Lagrange multipliers related to inequality constraints i.e. n dual variables α_i
- Lagrangian

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\boldsymbol{w}^\top \boldsymbol{x}_i + b) - 1)$$

Dual

KKT stationary optimality condition

$$\frac{\partial \mathcal{L}(\boldsymbol{w}, b, \alpha)}{\partial b} = 0 \qquad \frac{\partial \mathcal{L}(\boldsymbol{w}, b, \alpha)}{\partial \boldsymbol{w}} = 0$$

Soit:

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

 Dual problem: quadratic programming By substituting the latter relation in \mathcal{L} , we atttain:

$$\max_{\{\alpha_i\}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^\top \boldsymbol{x}_j$$
s.t.
$$\alpha_i \ge 0, \quad \forall i = 1, \cdots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

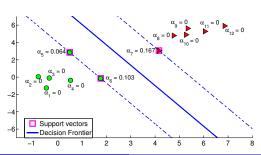
Matrix form

$$\max_{\alpha \in \mathbb{R}^n} \quad -\frac{1}{2} \alpha^\top \mathbf{G} \alpha + \mathbf{1}^\top \alpha$$
 s.t. $\mathbf{0} \le \alpha$, $\alpha^\top \mathbf{v} = 0$

$$\mathbf{G} \in \mathbb{R}^{n \times n}$$
 and $\mathbf{G}_{ij} = y_i y_i \mathbf{x}_i^{\top} \mathbf{x}_i$

Support Vectors

- Solve the dual for the parameters $\{\alpha_i\}_{i=1}^n$
- According to the value of α_i we may have the following situations
 - For any sample \mathbf{x}_i such that $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1$ we have $\alpha_i = 0$
 - For any \mathbf{x}_i , if $\mathbf{y}_i(\mathbf{w}^{\top}\mathbf{x}_i + b) = 1$ then $\longrightarrow \alpha_i \ge 0$
- $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$. \mathbf{w} is solely defined on a restricted set of samples such that $y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) = 1$. They are called **Support Vectors (SV)**



In practice

Computation of w

- ullet Solve the dual using the training set $\mathcal{D} = \{(oldsymbol{x}_i, oldsymbol{y}_i)\}_{i=1}^n$
 - \longrightarrow We get the dual parameters $\{\alpha_i^*\}_{i=1}^n$
- Obtain the solution as $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i$

Computation of b

• The $\alpha_i^* > 0$ corresponding to the support vectors satisfy the condition

$$y_i(\mathbf{w}^{*\top}\mathbf{x}_i+b)=1$$

Infer b from these relations

Classification function

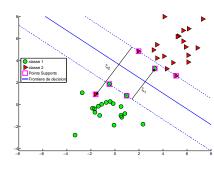
$$f(\mathbf{x}) = \mathbf{w}^{*\top} \mathbf{x} + b = \sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$$

Non separable case

What if we cannot find a perfect linear classifier?

Relax the constraints

- Relax $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1$
- and allow $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1 \xi_i$ with $\xi_i > 0$ the slack variables
- Minimize the sum of the slacks $\sum_{i=1}^{n} \xi_i$

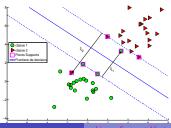


Non separable case: formulation

Linear SVM: general case

$$\begin{aligned} \min_{\boldsymbol{w},b,\{\xi_i\}} & \quad \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.} & \quad y_i(\boldsymbol{w}^\top \boldsymbol{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \cdots, n \\ & \quad \xi_i \ge 0 & \quad \forall i = 1, \dots, n \end{aligned}$$

- C > 0: regularization parameter (controls the trade-off between slack errors and the margin maximization)
- C: selected by the user



Gilles Gasso

Non separable case: dual derivation

Lagrangian

$$\mathcal{L}(\boldsymbol{w}, b, \xi, \alpha, \nu) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i (\boldsymbol{w}^\top \boldsymbol{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \nu_i \xi_i$$

avec $\alpha_i \geq 0$, $\nu_i \geq 0$, pour tout $i = 1, \dots, n$

KKT stationary conditions

$$\frac{\partial \mathcal{L}(\boldsymbol{w}, b, \xi_i, \alpha)}{\partial b} = 0 \quad \frac{\partial \mathcal{L}(\boldsymbol{w}, b, \xi_i, \alpha)}{\partial w} = 0 \quad \frac{\partial \mathcal{L}(\boldsymbol{w}, b, \xi_i, \alpha)}{\partial \xi_k} = 0$$

give

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \qquad \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}, \qquad C - \alpha_{k} - \nu_{k} = 0, \ \forall k = 1 \cdots n$$

The dual problem

Dual

$$\max_{\{\alpha_i\}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j$$
s.t.
$$0 \le \alpha_i \le C, \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

Matrix form

$$\begin{aligned} \max_{\alpha \in \mathbb{R}^n} & & -\frac{1}{2}\alpha^{\top}\mathbf{G}\alpha + \mathbf{1}^{\top}\alpha \\ \text{s.t.} & & \mathbf{0} \leq \alpha \leq C\mathbf{1}, \ \alpha^{\top}\mathbf{y} = 0 \end{aligned}$$

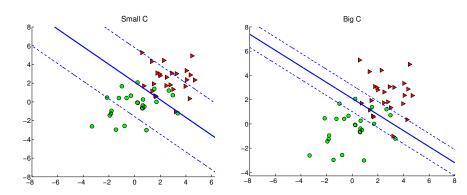
$$\mathbf{G} \in \mathbb{R}^{n \times n}$$
 and $\mathbf{G}_{ij} = y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j$

Computation of w

- Given the dual solution $\{\alpha_i^*\}_{i=1}^n$ the SVM parameter vector is given by $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i$
- Compared to linearly separable SVM, the general SVM differs by the box constraints $0 < \alpha_i < C$ on the α_i .

Influence of the hyper-parameter C

A SVM solved respectively for C=0.01 and C=1000



Influence of C

Small $C \rightarrow$ large margin; large $C \rightarrow$ small margin

Practical Methodology

Inputs

Labeled samples : $\{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$

Methodology

- ② Fix the hyper-parameter C > 0
- **3** Solve the dual problem to get the $\alpha_i \neq 0$, the corresponding support vector \mathbf{x}_i and the bias term b
- **1** Deduce the classification function $f(\mathbf{x}) = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i^\top \mathbf{x} + b$
- Compute the generalization error of the SVM. Repeat from step 2 until a satisfying performance is attained

Tuning C

- ullet Training set: compute $oldsymbol{w}$ and b
- Validation set: evaluate the performance of the SVM for different values of C
- Test set: assess the generalization performance of the "best SVM"

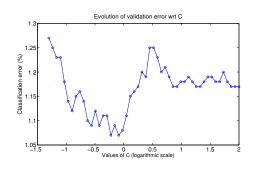
Model selection: tuning C

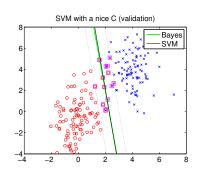
function $C \leftarrow \mathtt{tuneC}(X, Y, \mathtt{options})$

- Split the data $(X_a, Y_a, X_v, Y_v) \leftarrow \text{SplitData}(X, Y, \text{options})$
- For different values of C
 - $(\mathbf{w}, b) \leftarrow \text{TrainLinearSVM}(X_a, Y_a, C, options)$
 - $error \leftarrow EvaluateError(X_v, Y_v, w, b)$
- $C \leftarrow arg min error$

Illustration

- Consider logscale values of C
- For each C value, train an SVM and compute the validation error
- Select the "best SVM" as the minimum of the validation error curve





Multi-class case

K classes $\mathcal{C}_1,\cdots,\mathcal{C}_K$

Common approaches to lift binary SVM to multi-class case:

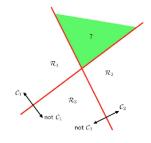
- "One Against All"
 - Learn K SVM (a class against the others)
 - Classify each sample according to the "winner takes all" strategy
- "One Against One"
 - Learn K(K-1)/2 SVM (one class against another one)
 - Classify each sample wih a majority vote
 - or estimate the posterior probabilities (pairwise coupling); classify according to the maximal posterior probability

Multi-class SVM: One Against All

$$\mathsf{Dataset}:\, \{(\boldsymbol{x}_i,y_i) \in \mathbb{R}^d \times \{\mathcal{C}_1,\cdots,\mathcal{C}_K\}\}_{i=1}^N$$

Principle

- For each class C_k
 - Learn a binary SVM $f_k(\mathbf{x}) = \mathbf{w}_k^{\top} \mathbf{x} + b_k$ with data $\{(\mathbf{x}_i, z_i) \in \mathbb{R}^d \times \{-1, 1\}\}$
 - where $z_i = 1$ if $y_i = C_k$ and $z_i = -1$ otherwise



Classifying a new sample x_ℓ

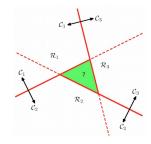
- Winner takes it all
- $D(\mathbf{x}_{\ell}) = \operatorname{argmax}_{k=1,\dots,K} \{ \mathbf{w}_{1}^{\top} \mathbf{x}_{\ell} + b_{1} \dots, \mathbf{w}_{k}^{\top} \mathbf{x}_{\ell} + b_{k}, \dots, \mathbf{w}_{K}^{\top} \mathbf{x}_{\ell} + b_{K} \}$

Multi-class SVM: One Against One

$$\mathsf{Dataset}:\, \mathcal{D} = \{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{\mathcal{C}_1, \cdots, \mathcal{C}_K\}\}_{i=1}^N$$

Principle

- ullet For each pair of classes $(\mathcal{C}_j,\mathcal{C}_k)$
 - Filter out from $\mathcal D$ the samples $y_i = \mathcal C_j$ or $\mathcal C_k$
 - Learn a binary SVM $f_{jk}(\mathbf{x}) = \mathbf{w}_{jk}^{\top} \mathbf{x} + b_{jk}$ with data $\{(\mathbf{x}_i, z_i) \in \mathbb{R}^d \times \{-1, 1\}\}$
 - $z_i = 1$ if $y_i = C_i$ and $z_i = -1$ if $y_i = C_k$



Classifying a new sample x_ℓ : majority vote

- For each learned SVM fjk
 - if $f_{jk}(\mathbf{x}_{\ell}) > 0$ increment the votes for class C_j otherwise those of C_k
- Assign x_ℓ to the class with maximum vote (the one which wins the championship)

To sum up

- Linear SVM for binary classification: maximizes the separation margin between classes while minimizing the classification errors
- Extension to multi-class classification
- Extension to non-linear case using the kernel trick.

Toolboxes Scikit Learn (Python) implementation R implementation