Bayesian Decision Theory

Gilles Gasso

INSA Rouen - ASI Departement Laboratory LITIS

October 12, 2019

Gilles Gasso

Bayesian Decision Theory

< 一型

()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 (
 ()
 (
 ()
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (

Plan

Introduction

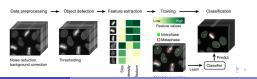
- 2 Recall: notions of probability
- 3 Bayesian decision theory
 - 0-1 loss
 - Reject option
- Bayesian decision theory
 - LDA
 - QDA

Classification problems

Applications

- Object detection
- Protein classification, Medical imaging
- Intrusion detection, fraud detection

Ο...



Bayesian Decision Theory

Classification: taxonomy and formulation

• Data :
$$\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$$

- \boldsymbol{x} : sample belonging to the space \mathcal{X} ($\mathcal{X} = \mathbb{R}^d$)
- $y \in \mathcal{Y}$: associated label. \mathcal{Y} : discrete finite set

Taxonomy

• Binary : $\mathcal{Y} = \{-1, 1\}$ ou $\mathcal{Y} = \{0, 1\}$

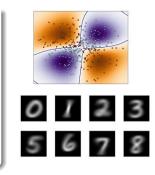
Anomaly detection, Fraud detection ...

• Multi-class : $\mathcal{Y} = \{1, 2, \cdots, K\}$

Objects or speakers recognition ...

• Multi-label : $\mathcal{Y} = 2^{\{1,2,\cdots,K\}}$

Recognition of the topic of documents ...



★ Ξ →

Gilles Gasso

Classification: taxonomy and formulation

• Data : $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$

- \pmb{x} : sample belonging to the space \mathcal{X} $(\mathcal{X} = \mathbb{R}^d)$
- $y \in \mathcal{Y}$: associated label. \mathcal{Y} : discrete finite set

Principle

• Learn a mathematical function $f: \mathcal{X} \to \mathcal{Y}$ able to predict the label of \boldsymbol{x}

• Example:
$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

X Y Prytes Prot

Different approaches and algorithms

- Bayesian decision, Logistic regression
- SVM, k-nearest neighbors, random forest, XGBoost ...

This lecture: Bayesian Decision Theory

- Probabilistic decision-making
- (x, y) is considered as a random variable

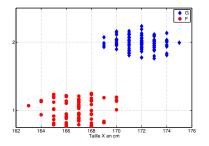
Pre-requisites

Basics of probability and statistics

Introduction

Example

- Let $x \in \mathbb{R}$ the height of a student
- Given x predict the gender of the person: F (class C_1) or M (class C_2)



Problem

- Find a statistical model (of each class)
- Infer a classification rule

Formulation

Elements of solution

- Consider a given height x (ex : x = 170 cm).
- Compute the probabilities $Pr(C_1/x)$ and $Pr(C_2/x)$,
 - $Pr(C_1/x)$: probability that the student is a F knowing x
 - $Pr(C_2/x)$: probability that the student is a G knowing x
- Assign x to the class with the highest probability,

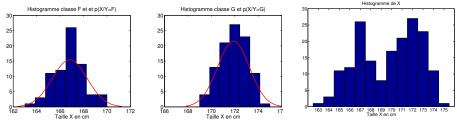
x is assigned to C_1 if $\Pr(C_1/x) > \Pr(C_2/x)$

• How to compute the probability
$$Pr(C_k/x)$$
?

The training data

	×ı	×2	×3	×4	×5	×6	×7	×8	×9	×10	×11	×12	×13	
	163	164	165	166	167	168	169	170	171	172	173	174	175	Tota
$C_1 = F$	1	3	11	12	26	14	4	4	0	0	0	0	0	75
$C_2 = G$	0	0	0	0	0	0	4	13	21	27	23	11	1	100
Total	1	3	11	12	26	14	8	17	21	27	23	11	1	179
Total	-	J.					v						-	1 -10

Table: training Data statistics



Notations

- n_{ik} : the number of persons of the class C_k (k = 1, 2) with height x_i (i = 1 to 13)
- c_i: number of persons with height equals to x_i
- N_k : cardinality of class C_k with $N = \sum_k N_k$.

Gilles Gasso

Bayesian Decision Theory

Notions of probability (1)

Random variables : X : size of a person and C : the category ($C_1 = F$ and $C_2 = G$)

	×1	×2	×3	×4	×5	×6	×7	×8	Xg	×10	×11	×12	×13	
	163	164	165	166	167	168	169	170	171	172	173	174	175	Total
$C_1 = F$	1	3	11	12	26	14	4	4	0	0	0	0	0	75
$C_2 = M$	0	0	0	0	0	0	4	13	21	27	23	11	1	100
Total	1	3	11	12	26	14	8	17	21	27	23	11	1	175

Joint probability p(X, C)

What is the probability that a student is $x_i = 170$ cm tall **and** is a F ?

- Solution: $p(x_i, C_1) = \frac{4}{175}$. Note: we also have $p(x_i, C_2) = \frac{13}{175}$
- Joint probability: $p(x_i, C_k) = \frac{n_{ik}}{N}$

Notions of probability (1)

Joint probability p(X, C)

What is the probability that a student is $x_i = 170$ cm tall **and** is a F ?

- Solution: $p(x_i, C_1) = \frac{4}{175}$. Note: we also have $p(x_i, C_2) = \frac{13}{175}$
- Joint probability: $p(x_i, C_k) = \frac{n_{ik}}{N}$

Marginal distribution $p_{\chi}(X)$

What is the probability that a student is $x_i = 170$ cm?

- $p_X(x_i) = \frac{17}{175} = \frac{4}{175} + \frac{13}{175}$: probability to have $(x_i = 170, C_1)$ or $(x_i = 170, C_2)$
- Marginal distribution: $p_X(x_i) = \frac{c_i}{N}$

Probabilities sum : $p_{X}(\mathbf{x}_{i}) = \sum_{k} p(\mathbf{x}_{i}, C_{k})$

イロト イポト イヨト イヨト

Notions of probability (2)

x: height and C: class ($C_1 = F$ and $C_2 = M$)

	×1	×2	X3	×4	×5	×6	×7	×8	X9	×10	×11	×12	×13	
	163	164	165	166	167	168	169	170	171	172	173	174	175	Total
$C_1 = F$	1	3	11	12	26	14	4	4	0	0	0	0	0	75
$C_2 = M$	0	0	0	0	0	0	4	13	21	27	23	11	1	100
Total	1	3	11	12	26	14	8	17	21	27	23	11	1	175

Prior probability Pr(C)

Without knowing her height what is the probability that a student is F?

- Solution: $\Pr(\mathcal{C}_1) = \frac{75}{175}$.
- Similarly we have $\Pr(\mathcal{C}_2) = \frac{100}{175}$. Note: $\Pr(\mathcal{C}_1) + \Pr(\mathcal{C}_2) = 1$
- Prior probability of class C_k : $Pr(C_k) = \frac{N_k}{N}$
- The sum of prior probabilities is equal to 1

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notions of probability (2)

x: height and C: class ($C_1 = F$ and $C_2 = M$)

	×1	×2	×3	×4	×5	×6	×7	×8	×g	×10	×11	×12	×13	
	163	164	165	166	167	168	169	170	171	172	173	174	175	Total
$C_1 = F$	1	3	11	12	26	14	4	4	0	0	0	0	0	75
$C_2 = M$	0	0	0	0	0	0	4	13	21	27	23	11	1	100
— — — —				10					01					
Total	1	3	11	12	26	14	8	17	21	27	23	11	1	175

Conditional probability p(X/C)

What is the probability that a student is $x_i = 170$ cm knowing that she is a F?

• Solution : $p(x_i/C_1) = \frac{4}{75}$.

• Note:
$$p(x_i/C_1) = \frac{4}{175} \times \frac{175}{75} = \frac{p(x_i,C_1)}{\Pr(C_1)}$$

• Conditional probability: $p(x_i/C_k) = \frac{n_{ik}}{N_k}$

Product rule: $p(\mathbf{x}_i, C_k) = p(\mathbf{x}_i/C_k) Pr(C_k)$

Decision function

Recall: to decide if a person is F or M knowing x, we only need to compare $Pr(C_1/x)$ and $Pr(C_2/x)$

Posterior probability $\Pr(\mathcal{C}_k/x)$

- Note: $p(\mathcal{C}_k, x_i) = p(x_i, \mathcal{C}_k)$.
- Apply the product rule gives $p(C_k, x_i) : p(C_k, x_i) = Pr(C_k/x_i)p_X(x_i)$
- Also it holds $p(C_k, x_i) = p(x_i/C_k)Pr(C_k)$, hence we deduce

Bayesian Rule

$$\mathsf{Pr}(\mathcal{C}_k/\mathbf{x}_i) = rac{p(\mathbf{x}_i/\mathcal{C}_k) imes \mathsf{Pr}(\mathcal{C}_k)}{p_{\chi}(\mathbf{x}_i)}$$

Decision function

Recall: to decide if a person is F or M knowing x, we only need to compare $Pr(C_1/x)$ and $Pr(C_2/x)$

Application

What is the assigned label to a student **knowing** $x_i = 170$?

•
$$\operatorname{Pr}(\mathcal{C}_1/x_i) = \frac{\frac{4}{75} \times \frac{75}{175}}{\frac{17}{175}} \Rightarrow \operatorname{Pr}(\mathcal{C}_1/x_i) = \frac{4}{17}$$

• $\operatorname{Pr}(\mathcal{C}_2/x_i) = \frac{\frac{13}{100} \times \frac{100}{175}}{\frac{17}{175}} \Rightarrow \operatorname{Pr}(\mathcal{C}_2/x_i) = \frac{13}{17}$
• $\operatorname{Pr}(\mathcal{C}_2/x_i) > \operatorname{Pr}(\mathcal{C}_1/x_i) \Longrightarrow x$ belongs to \mathcal{C}_2

Sum of posterior probabilities is equal to 1 i.e. $\sum_{k} \Pr(C_k/\mathbf{x}) = 1$

	Gasso	

Bayesian Decision Theory

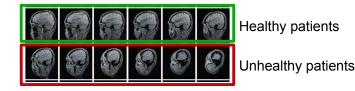
イロン イロン イヨン イヨン

æ

Example

Medical application

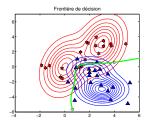
- Inputs: MRI for healthy and non-healthy patients
- Goal: predict based on his MRI if the patient is healthy (no treatment) or unhealthy (treatment)



lssue

- $\bullet\,$ A bad decision can be catastrophic \rightarrow associate a cost to each decision
- Take the decision with minimal cost

Problem formulation for binary classification



Training data

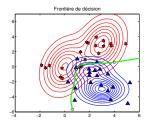
- Two classes C_1, C_2
- Data: $\{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{\mathcal{C}_1, \mathcal{C}_2\}\}_{i=1}^N$

Statistical model

- Each class C_k is characterized by its
 - prior probability $Pr(C_k)$ and its conditional distribution $p(x/C_K)$

• Marginal distribution of data: $p_{X}(x) = \sum_{k=1}^{2} p(x/C_{k}) \Pr(C_{k})$

Problem formulation for binary classification



Cost of a decision

Training data

• Two classes C_1, C_2

• Data:
$$\{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{\mathcal{C}_1, \mathcal{C}_2\}\}_{i=1}^N$$

 ℓ_{jk} : cost of predicting class class \mathcal{C}_j to $m{x}$ knowing that $m{x} \in \mathcal{C}_k$

Truth Decision a	Class C_1	$Class\;\mathcal{C}_2$
Class C_1	ℓ_{11}	ℓ_{12}
Class C_2	ℓ_{21}	ℓ_{22}

- Right dec. : $\ell_{jk} = 0$ if j = k
- Wrong dec. : $\ell_{jk} = 100$ if $j \neq k$

Problem to solve

Find the classification rule that minimizes the average cost

More formally

We seek to find a decision function D

$$D: \begin{array}{cccc} \mathbb{R}^d & \longrightarrow & \mathcal{A} \\ \textbf{x} & \longmapsto & \textbf{a} \end{array} \quad D(\textbf{x}) = \textbf{a} \ (\textbf{a} = \mathcal{C}_1 \ \text{or} \ \mathcal{C}_2) \end{array}$$

Classification error

- Erroneous prediction: $D(\mathbf{x}) = C_1$ while the true label is C_2
- or the other way around
- Conditional risk

$$R(\mathbf{a} = C_1 | \mathbf{x}) = \ell_{11} \Pr(C_1 / \mathbf{x}) + \ell_{12} \Pr(C_2 / \mathbf{x})$$
$$R(\mathbf{a} = C_2 | \mathbf{x}) = \ell_{21} \Pr(C_1 / \mathbf{x}) + \ell_{22} \Pr(C_2 / \mathbf{x})$$

• What decision to make for x ?

Bayes' rule

Overall principle : Minimal risk decision

- predict class $D(\mathbf{x}) = C_1$ to \mathbf{x} if $R(\mathbf{a} = C_1 | \mathbf{x}) < R(\mathbf{a} = C_2 | \mathbf{x})$
- otherwise predict $D(\mathbf{x}) = C_2$

Extension to multi-class classification

- Bayes' rule straightforwardly generalizes to multi-class classification problem \$\mathcal{Y} = {\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K}\$.
- For all $x \in \mathcal{X}$ Bayes' rule writes:

$$D_{Bayes}(oldsymbol{x}) = \operatorname{argmin}_{j=1\cdots K} R(a_j | oldsymbol{x})$$

with $R(a_j|\mathbf{x}) = \sum_{k=1}^{K} \ell_{jk} \Pr(\mathcal{C}_k/\mathbf{x}) \quad \forall j = 1, \cdots, K$

Concretely : decide a_r if $R(a_r|\mathbf{x}) < R(a_j|\mathbf{x})$ $(\forall a_j \neq a_r)$

Winner takes it all

Let consider 0-1 cost :

$$\ell_{jk} = \begin{cases} 0 & \text{if } j = k \pmod{\text{orror}} \\ 1 & \text{if } j \neq k \pmod{\text{error}} \end{cases}$$

Conditional risks become

$$\begin{aligned} R(\mathbf{a} &= \mathcal{C}_1 | \mathbf{x}) &= \ell_{11} \Pr(\mathcal{C}_1 / \mathbf{x}) + \ell_{12} \Pr(\mathcal{C}_2 / \mathbf{x}) = \Pr(\mathcal{C}_2 / \mathbf{x}) \\ R(\mathbf{a} &= \mathcal{C}_2 | \mathbf{x}) &= \ell_{21} \Pr(\mathcal{C}_1 / \mathbf{x}) + \ell_{22} \Pr(\mathcal{C}_2 / \mathbf{x}) = \Pr(\mathcal{C}_1 / \mathbf{x}) \end{aligned}$$

Maximum posterior probability rule

• Predict $D(\mathbf{x}) = C_1$ if $R(a = C_1 | \mathbf{x}) < R(a = C_2 | \mathbf{x})$

• $\Rightarrow \mathsf{Pr}(\mathcal{C}_1/\mathbf{x}) > \mathsf{Pr}(\mathcal{C}_2/\mathbf{x}) \text{ or } \mathsf{Pr}(\mathcal{C}_1/\mathbf{x}) > 1/2$

Interpretation: predict the class with maximum posterior probability

э

Reject option (1)

• Intuition: if the decision may be ambiguous, instead of predicting a class, do not make a decision \longrightarrow call for the reject option

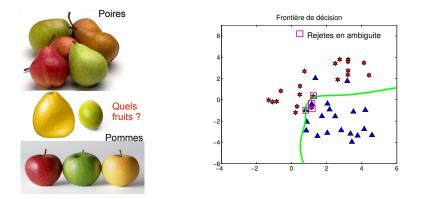


Image: A mathematical states and a mathem

Reject option (2)

- Binary classification case Let *a*₃ be the reject option
- Conditional risks

$$\begin{aligned} R(\mathcal{C}_1|\mathbf{x}) &= \ell_{11} \Pr(\mathcal{C}_1/\mathbf{x}) + \ell_{12} \Pr(\mathcal{C}_2/\mathbf{x}) \\ R(\mathcal{C}_2|\mathbf{x}) &= \ell_{21} \Pr(\mathcal{C}_1/\mathbf{x}) + \ell_{22} \Pr(\mathcal{C}_2/\mathbf{x}) \\ R(\mathbf{a}_3|\mathbf{x}) &= \ell_{31} \Pr(\mathcal{C}_1/\mathbf{x}) + \ell_{32} \Pr(\mathcal{C}_2/\mathbf{x}) \\ \end{aligned}$$

• Let consider he case of 0-1 cost and the reject cost fixed to α . The risks read:

$$R(\mathcal{C}_1|\mathbf{x}) = \Pr(\mathcal{C}_2/\mathbf{x})$$

$$R(\mathcal{C}_2|\mathbf{x}) = \Pr(\mathcal{C}_1/\mathbf{x})$$

$$R(\mathbf{a}_3|\mathbf{x}) = \alpha$$

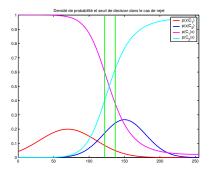
Classification with reject option

The Bayes' rule becomes:

$$D(\mathbf{x}): \begin{cases} \mathcal{C}_1 & \text{if } \mathbf{F} \\ \mathcal{C}_2 & \text{if } \mathbf{F} \\ \text{reject } \text{else} \end{cases}$$

$$\Pr(\mathcal{C}_1/\mathbf{x}) > \Pr(\mathcal{C}_2/\mathbf{x}) \text{ and } \Pr(\mathcal{C}_1/\mathbf{x}) > 1 - \alpha$$

$$\Pr(\mathcal{C}_2/\mathbf{x}) > \Pr(\mathcal{C}_1/\mathbf{x}) \text{ and } \Pr(\mathcal{C}_2/\mathbf{x}) > 1 - \alpha$$



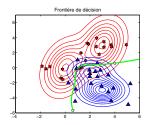
The figure describes conditional distributions and and posterior probabilities. Vertical green lines indicate the reject area

How and when the reject plays:

(日) (同) (三) (三)

 $\alpha = 0 \longrightarrow 100\%$ reject $\alpha = 1/2 \longrightarrow 0\%$ reject

Where is the learning for the machine?



Available information : data

•
$$\{(\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{\mathcal{C}_1, \dots, \mathcal{C}_K\}\}_{i=1}^N$$

Practical procedure

- Fix the costs related to each decision. Default: 0-1 costs
- Find the conditional distributions p(x/C_k) and prior probability Pr(C_k) of each class C_k, k = 1, · · · , K

 \rightarrow Use the data of each C_k to learn $p(\mathbf{x}/C_k)$ and $\Pr(C_k)$

• Deduce then the posterior probabilities using Bayes' Th. i.e. $\Pr(\mathcal{C}_k/\mathbf{x}) = \frac{\Pr(\mathcal{C}_k)p(\mathbf{x}/\mathcal{C}_k)}{p_x(\mathbf{x})}, \ k = 1, \cdots, K$

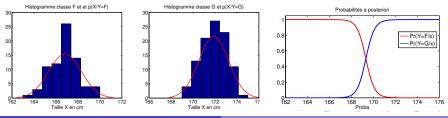
Practical procedure : example of gender classification

Data of each C_k follow a Gaussian distribution $p(x/C_k) = \frac{1}{\sigma_k \sqrt{(2\pi)}} \exp^{-\frac{(x-\mu_k)^2}{2\sigma_k^2}}$

Determine $Pr(C_k)$ and $p(x/C_k)$

- For each class C_k, select its data {(x_i, y_i = C_k)}_{i=1,...,N_k}
- Its prior probability is estimated by: $Pr(C_k) = \frac{N_k}{N}$
- Estimation of μ_k and σ_k : $\hat{\mu}_k = \frac{\sum_{i \in C_k} x_i}{N_k}$ and the variance: $\hat{\sigma}_k = \frac{\sum_{i \in C_k} (x_i \hat{\mu}_k)^2}{N_k}$
- with N_k the cardinality of class C_k and N: total number of points

Marginal $p_X(x) = p(x/C_1) Pr(C_1) + p(x/C_2) Pr(C_2)$. Deducing posterior probabilities $Pr(C_k/x)$



Gilles Gasso

Bayesian Decision Theory

Gaussian conditional distributions case

- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis

3.5

LDA

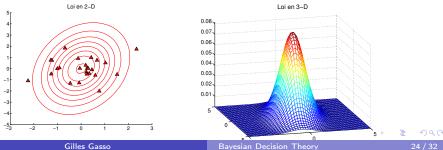
The Gaussian distribution case

Gaussian distribution for class C_k

$$p(oldsymbol{x}/\mathcal{C}_k) = rac{1}{\sqrt{(2\pi)^d |oldsymbol{\mathcal{C}}_k|}} \exp^{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu}_k)^ op \Sigma_j^{-1}(oldsymbol{x}-oldsymbol{\mu}_k)}, \quad x \in \mathbb{R}^d$$

 $\boldsymbol{\mu}_k \in \mathbb{R}^d$: mean and $\boldsymbol{C}_k \in \mathbb{R}^{d \times d}$: covariance matrix

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\mathcal{C}} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 4 \end{pmatrix}$$



Gilles Gasso

Case study of Gaussian distributions

Gaussian distribution for class C_k

$$p(\boldsymbol{x}/\mathcal{C}_k) = \mathcal{N}(\boldsymbol{x}_i, \boldsymbol{\mu}_k, \boldsymbol{C}_k) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{C}_k|}} \exp^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_k)^\top \sum_j^{-1} (\boldsymbol{x}-\boldsymbol{\mu}_k)}, \quad \boldsymbol{x} \in \mathbb{R}^d$$

Decision rule

For 0-1 costs, we assign \boldsymbol{x} to class \mathcal{C}_j if

$$\begin{array}{lll} \Pr(\mathcal{C}_{j}/\boldsymbol{x}) &> \Pr(\mathcal{C}_{k}/\boldsymbol{x}) &\forall k \neq j \\ \Leftrightarrow & p(\boldsymbol{x}/\mathcal{C}_{j})\Pr(\mathcal{C}_{j}) &> p(\boldsymbol{x}/\mathcal{C}_{k})\Pr(\mathcal{C}_{k}) &\forall k \neq j \\ \Leftrightarrow & \ln p(\boldsymbol{x}/\mathcal{C}_{j}) + \ln \Pr(\mathcal{C}_{j}) &> \ln p(\boldsymbol{x}/\mathcal{C}_{k}) + \ln \Pr(\mathcal{C}_{k}) &\forall k \neq j \end{array}$$
(1)

Discrimination function

• Let $g_k(\mathbf{x}) = \ln p(\mathbf{x}/C_j) + \ln \Pr(C_j)$ the discrimination function related to C_k

• For
$$p(m{x}/\mathcal{C}_k) = \mathcal{N}(m{x}_i,m{\mu}_k,m{\mathcal{C}}_k)$$
, we have

$$g_k(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{C}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln(|\boldsymbol{C}_k|) + \ln \Pr(\mathcal{C}_j)$$

Linear discriminant analysis (1)

• Assumption LDA assumes all classes have the same covariance matrix i.e.

$$\boldsymbol{C}_k = \boldsymbol{C} \quad \forall k = 1 \cdots K$$

• This introduces some simplifications in $g_k(\mathbf{x})$

$$g_k(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_j)^\top \boldsymbol{C}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) + \ln \Pr(\mathcal{C}_j) \underbrace{-\frac{d}{2} \ln 2\pi - \frac{1}{2} ln(|\boldsymbol{C}|)}_{\text{cst}}$$

• Expanding the quadratic term in $g_k(\mathbf{x})$, we get

$$g_{k}(\mathbf{x}) = \boldsymbol{\mu}_{k}^{\top} \boldsymbol{C}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_{k}^{\top} \boldsymbol{C}^{-1} \boldsymbol{\mu}_{k} + \ln \Pr(\mathcal{C}_{j}) + \underbrace{\operatorname{cst} - \frac{1}{2} \mathbf{x}^{\top} \boldsymbol{C}^{-1} \mathbf{x}}_{\operatorname{cst}}$$
$$g_{k}(\mathbf{x}) = \boldsymbol{w}_{k}^{\top} \mathbf{x} + w_{jo} + \operatorname{cst}, \text{ with } \boldsymbol{w}_{k} = \boldsymbol{C}^{-1} \boldsymbol{\mu}_{k}, \ w_{jo} = \ln \Pr(\mathcal{C}_{j}) - \frac{1}{2} \boldsymbol{\mu}_{k}^{\top} \boldsymbol{C}^{-1} \boldsymbol{\mu}_{k}$$

< ∃ > < ∃ >

Linear discriminant analysis (2)

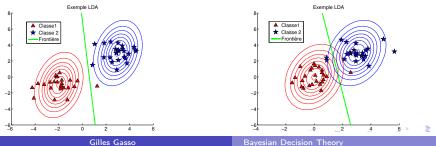
Decision rule: \mathbf{x} is predicted the class C_i if

$$g_j(oldsymbol{x}) = oldsymbol{w}_j^{ op}oldsymbol{x} + w_{jo} > g_k(oldsymbol{x}) = oldsymbol{w}_k^{ op}oldsymbol{x} + w_{ko} \quad orall k
eq j$$

Linear decision function : predict class C_i if

 $\mathbf{w}^{\top}(\mathbf{x} - \mathbf{x}_0) + b > 0 \qquad \forall k \neq j$

with
$$\boldsymbol{w} = \boldsymbol{C}^{-1}(\boldsymbol{\mu}_j - \boldsymbol{\mu}_k), \quad \boldsymbol{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_j + \boldsymbol{\mu}_k) \text{ and } b = \ln \frac{\Pr(\mathcal{C}_j)}{\Pr(\mathcal{C}_k)}$$



Quadratic discriminant analysis (QDA)

General case: the covariance matrices are different i.e. $\boldsymbol{C}_k \neq \boldsymbol{C}_j, \ \forall k \neq j$

Quadratic discrimination function

$$g_k(\boldsymbol{x}) = -\frac{1}{2}\boldsymbol{x}^\top \boldsymbol{C}_k^{-1} \boldsymbol{x} + \boldsymbol{w}_k^\top \boldsymbol{x} + \boldsymbol{w}_{ko}$$
$$\boldsymbol{w}_k = \boldsymbol{C}_k^{-1} \boldsymbol{\mu}_k, \ \boldsymbol{w}_{ko} = -\frac{1}{2} \boldsymbol{\mu}_k^\top \boldsymbol{C}_k^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \ln(|\boldsymbol{C}_k| \times \Pr(\mathcal{C}_k))$$

Decision function

 \boldsymbol{x} is predicted the class \mathcal{C}_i if

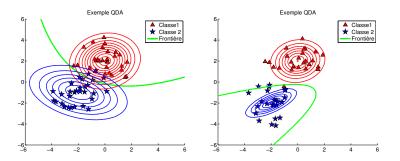
$$g_j(\boldsymbol{x}) > g_k(\boldsymbol{x}) \quad \forall k \neq j$$

$$\Leftrightarrow -\frac{1}{2}\boldsymbol{x}^\top \boldsymbol{C}_j^{-1} \boldsymbol{x} + \boldsymbol{w}_j^\top \boldsymbol{x} + w_{jo} > -\frac{1}{2}\boldsymbol{x}^\top \boldsymbol{C}_k^{-1} \boldsymbol{x} + \boldsymbol{w}_k^\top \boldsymbol{x} + w_{ko} \quad \forall k \neq j$$

 \implies the decision function is quadratic (hence the name of the method)

Quadratic discriminant analysis: illustration

For a binary classification problem, the decision boundary is quadratic



Conclusion: estimation strategies

Practical implementation

- For each class C_k , $k = 1, \cdots, K$
 - Get the training data-set associated to the class C_k
 - Estimate its prior probability $Pr(C_k)$ and its conditional distribution $p(x/C_k)$
- Estimate the decision rule (by using one of the two methods) :
 - Solution For each data x compute the posterior probabilities $Pr(C_k/x)$ and affect x to the class minimizing the conditional risk
 - Obtermine the functions of discrimination g_k(x) and deduce the rule. In the case of binary classification the decision function is often expressed as a sign of g(x) = g₁(x) - g₂(x)

Estimation strategies : Gaussian case

• LDA : The parameters of each class C_k and the common covariance matrix C are estimated as:

$$\mu_{k} = \frac{\sum_{i \in \mathcal{C}_{k}}^{N} \mathbf{x}_{i}}{N_{k}} \text{ with } N_{k} = \operatorname{card}(\mathcal{C}_{k})$$
$$\Pr(\mathcal{C}_{k}) = \frac{N_{k}}{N}$$
$$\boldsymbol{C} = \frac{\sum_{k=1}^{K} \sum_{i \in \mathcal{C}_{k}}^{N} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top}}{N - K}$$

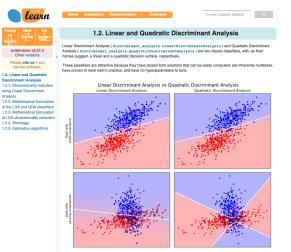
• QDA case : we estimate the covariance matrix of each class C_k by

$$\boldsymbol{C}_{k} = \frac{\sum_{i \in \mathcal{C}_{k}}^{N} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})^{\top}}{N - 1}$$

The estimation of the prior probability and of μ_k is similar to LDA.

Summing up

Bayesian decision theory provides a formal framework for (binary of multi-class) classification which minimizes the generalization risk.



Gilles Gasso

Bayesian Decision Theory