
Bayesian Decision Theory

Gilles Gasso

INSA Rouen - ASI Departement
Laboratory LITIS

October 12, 2019

Gilles Gasso Bayesian Decision Theory 1 / 32



Plan

1 Introduction

2 Recall: notions of probability

3 Bayesian decision theory
0-1 loss
Reject option

4 Bayesian decision theory
LDA
QDA

5 Conclusions

Gilles Gasso Bayesian Decision Theory 2 / 32



Introduction

Classification problems

Applications
Object detection
Protein classification, Medical imaging
Intrusion detection, fraud detection
. . .
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Introduction

Classification: taxonomy and formulation

Data : D = {(x i , yi )}Ni=1

x : sample belonging to the space X (X = Rd)
y ∈ Y : associated label. Y : discrete finite set

Taxonomy

Binary : Y = {−1, 1} ou Y = {0, 1}
Anomaly detection, Fraud detection ...

Multi-class : Y = {1, 2, · · · ,K}
Objects or speakers recognition ...

Multi-label : Y = 2{1,2,··· ,K}

Recognition of the topic of documents ...
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Introduction

Classification: taxonomy and formulation

Data : D = {(x i , yi )}Ni=1

x : sample belonging to the space X (X = Rd)
y ∈ Y : associated label. Y : discrete finite set

Principle
Learn a mathematical function
f : X → Y able to predict the label of x
Example: f (x) = w>x + b

Different approaches and algorithms
Bayesian decision, Logistic regression
SVM, k-nearest neighbors, random forest, XGBoost . . .
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Introduction

This lecture: Bayesian Decision Theory
Probabilistic decision-making
(x , y) is considered as a random variable

Pre-requisites
Basics of probability and statistics

Gilles Gasso Bayesian Decision Theory 5 / 32



Recall: notions of probability

Introduction

Example
Let x ∈ R the height of a student
Given x predict the gender of the person: F (class C1) or M (class C2 )

162 164 166 168 170 172 174 176

1

2

Taille X en cm

 

 

G

F

Problem

Find a statistical model (of
each class)

Infer a classification rule
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Recall: notions of probability

Formulation

Elements of solution

Consider a given height x (ex : x = 170 cm).

Compute the probabilities Pr(C1/x) and Pr(C2/x),
Pr(C1/x): probability that the student is a F knowing x

Pr(C2/x): probability that the student is a G knowing x

Assign x to the class with the highest probability,

x is assigned to C1 if Pr(C1/x) > Pr(C2/x)

How to compute the probability Pr(Ck/x) ?
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Recall: notions of probability

The training data
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
163 164 165 166 167 168 169 170 171 172 173 174 175 Total

C1 = F 1 3 11 12 26 14 4 4 0 0 0 0 0 75
C2 = G 0 0 0 0 0 0 4 13 21 27 23 11 1 100

Total 1 3 11 12 26 14 8 17 21 27 23 11 1 175

Table: training Data statistics
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Histogramme classe G et p(X/Y=G)
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Notations

nik : the number of persons of the class Ck (k = 1, 2) with height xi (i= 1 to 13)

ci : number of persons with height equals to xi

Nk : cardinality of class Ck with N =
∑

k Nk .
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Recall: notions of probability

Notions of probability (1)

Random variables : X : size of a person and C : the category ( C1 = F and C2 = G)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
163 164 165 166 167 168 169 170 171 172 173 174 175 Total

C1 = F 1 3 11 12 26 14 4 4 0 0 0 0 0 75
C2 = M 0 0 0 0 0 0 4 13 21 27 23 11 1 100

Total 1 3 11 12 26 14 8 17 21 27 23 11 1 175

Joint probability p(X , C)
What is the probability that a student is xi = 170cm tall and is a F ?

Solution: p(xi , C1) = 4
175 . Note: we also have p(xi , C2) = 13

175

Joint probability: p(xi , Ck) = nik
N
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Recall: notions of probability

Notions of probability (1)

Joint probability p(X , C)
What is the probability that a student is xi = 170cm tall and is a F ?

Solution: p(xi , C1) = 4
175 . Note: we also have p(xi , C2) = 13

175

Joint probability: p(xi , Ck) = nik
N

Marginal distribution p
X
(X )

What is the probability that a student is xi = 170cm?

pX (xi ) = 17
175 = 4

175 + 13
175 : probability to have (xi = 170, C1) or (xi = 170, C2)

Marginal distribution: p
X
(xi ) =

ci
N

Probabilities sum : p
X
(x i ) =

∑
k p(x i , Ck)
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Recall: notions of probability

Notions of probability (2)

x : height and C: class (C1 = F and C2 = M)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
163 164 165 166 167 168 169 170 171 172 173 174 175 Total

C1 = F 1 3 11 12 26 14 4 4 0 0 0 0 0 75
C2 = M 0 0 0 0 0 0 4 13 21 27 23 11 1 100

Total 1 3 11 12 26 14 8 17 21 27 23 11 1 175

Prior probability Pr(C)
Without knowing her height what is the probability that a student is F?

Solution: Pr(C1) = 75
175 .

Similarly we have Pr(C2) = 100
175 . Note: Pr(C1) + Pr(C2) = 1

Prior probability of class Ck : Pr(Ck) = Nk

N

The sum of prior probabilities is equal to 1
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Recall: notions of probability

Notions of probability (2)

x : height and C: class (C1 = F and C2 = M)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
163 164 165 166 167 168 169 170 171 172 173 174 175 Total

C1 = F 1 3 11 12 26 14 4 4 0 0 0 0 0 75
C2 = M 0 0 0 0 0 0 4 13 21 27 23 11 1 100

Total 1 3 11 12 26 14 8 17 21 27 23 11 1 175

Conditional probability p(X/C)
What is the probability that a student is xi = 170cm knowing that she is a F ?

Solution : p(xi/C1) = 4
75 .

Note: p(xi/C1) = 4
175 ×

175
75 = p(xi ,C1)

Pr(C1)

Conditional probability: p(xi/Ck) = nik
Nk

Product rule: p(x i , Ck) = p(x i/Ck)Pr(Ck)
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Recall: notions of probability

Decision function

Recall: to decide if a person is F or M knowing x , we only need to compare
Pr(C1/x) and Pr(C2/x)

Posterior probability Pr(Ck/x)
Note: p(Ck , xi ) = p(xi , Ck ).

Apply the product rule gives p(Ck , xi ) : p(Ck , xi ) = Pr(Ck/xi )pX (xi )

Also it holds p(Ck , xi ) = p(xi/Ck )Pr(Ck ), hence we deduce

Bayesian Rule

Pr(Ck/x i ) =
p(x i/Ck)× Pr(Ck)

p
X
(x i )

Gilles Gasso Bayesian Decision Theory 11 / 32



Recall: notions of probability

Decision function

Recall: to decide if a person is F or M knowing x , we only need to compare
Pr(C1/x) and Pr(C2/x)

Application
What is the assigned label to a student knowing xi = 170?

Pr(C1/xi ) =
4
75×

75
175

17
175

⇒ Pr(C1/xi ) = 4
17

Pr(C2/xi ) =
13
100×

100
175

17
175

⇒ Pr(C2/xi ) = 13
17

Pr(C2/xi ) > Pr(C1/xi ) =⇒ x belongs to C2

Sum of posterior probabilities is equal to 1 i.e.
∑

k Pr(Ck/x) = 1
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Bayesian decision theory

Bayesian Decision Theory
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Bayesian decision theory

Example

Medical application

Inputs: MRI for healthy and non-healthy patients

Goal: predict based on his MRI if the patient is healthy (no treatment) or
unhealthy (treatment)

Healthy patients

Unhealthy patients

Issue
A bad decision can be catastrophic→ associate a cost to each decision
Take the decision with minimal cost
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Bayesian decision theory

Problem formulation for binary classification

−4 −2 0 2 4 6
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Frontière de décision

0

0

0

Training data

Two classes C1, C2
Data: {(x i , yi ) ∈ Rd × {C1, C2}}Ni=1

Statistical model

Each class Ck is characterized by its

prior probability Pr(Ck) and its conditional distribution p(x/CK )

Marginal distribution of data: p
X
(x) =

∑2
k=1 p(x/Ck)Pr(Ck)
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Bayesian decision theory

Problem formulation for binary classification

−4 −2 0 2 4 6
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Frontière de décision
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0

0

Training data

Two classes C1, C2
Data: {(x i , yi ) ∈ Rd × {C1, C2}}Ni=1

Cost of a decision
`jk : cost of predicting class class Cj to x knowing that x ∈ Ck
XXXXXXXXXXDecision a

Truth Class C1 Class C2
Class C1 `11 `12

Class C2 `21 `22

Right dec. : `jk = 0 if j = k

Wrong dec. : `jk = 100 if j 6= k

Problem to solve
Find the classification rule that minimizes the average cost
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Bayesian decision theory

More formally

We seek to find a decision function D

D :
Rd −→ A
x 7−→ a D(x) = a (a = C1 or C2)

Classification error
Erroneous prediction: D(x) = C1 while the true label is C2
or the other way around

Conditional risk

R(a = C1|x) = `11Pr(C1/x) + `12Pr(C2/x)
R(a = C2|x) = `21Pr(C1/x) + `22Pr(C2/x)

What decision to make for x ?
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Bayesian decision theory

Bayes’ rule

Overall principle : Minimal risk decision

predict class D(x) = C1 to x if R(a = C1|x) < R(a = C2|x)
otherwise predict D(x) = C2

Extension to multi-class classification
Bayes’ rule straightforwardly generalizes to multi-class classification
problem Y = {C1, C2, · · · , CK}.

For all x ∈ X Bayes’ rule writes:

DBayes(x) = argminj=1···KR(aj |x)

with R(aj |x) =
∑K

k=1 `jkPr(Ck/x) ∀j = 1, · · · ,K

Concretely : decide ar if R(ar |x) < R(aj |x) (∀aj 6= ar )
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Bayesian decision theory 0-1 loss

Winner takes it all
Let consider 0-1 cost :

`jk =

{
0 if j = k (no error)
1 if j 6= k (error)

Conditional risks become

R(a = C1|x) = `11Pr(C1/x) + `12Pr(C2/x) = Pr(C2/x)
R(a = C2|x) = `21Pr(C1/x) + `22Pr(C2/x) = Pr(C1/x)

Maximum posterior probability rule

Predict D(x) = C1 if R(a = C1|x) < R(a = C2|x)

⇒ Pr(C1/x) > Pr(C2/x) or Pr(C1/x) > 1/2

Interpretation: predict the class with maximum posterior probability
Gilles Gasso Bayesian Decision Theory 17 / 32



Bayesian decision theory Reject option

Reject option (1)

Intuition: if the decision may be ambiguous, instead of predicting a
class, do not make a decision −→ call for the reject option

Poires

Pommes

Quels 
fruits ?

−4 −2 0 2 4 6
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6

Frontière de décision

Rejetes en ambiguite
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Bayesian decision theory Reject option

Reject option (2)

Binary classification case
Let a3 be the reject option

Conditional risks

R(C1|x) = `11Pr(C1/x) + `12Pr(C2/x)
R(C2|x) = `21Pr(C1/x) + `22Pr(C2/x)
R(a3|x) = `31Pr(C1/x) + `32Pr(C2/x) risk related to the reject

Let consider he case of 0-1 cost and the reject cost fixed to α. The
risks read:

R(C1|x) = Pr(C2/x)
R(C2|x) = Pr(C1/x)
R(a3|x) = α
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Bayesian decision theory Reject option

Classification with reject option

The Bayes’ rule becomes:

D(x) :


C1 if Pr(C1/x) > Pr(C2/x) and Pr(C1/x) > 1− α
C2 if Pr(C2/x) > Pr(C1/x) and Pr(C2/x) > 1− α
reject else
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1
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p(C
1
|x)

p(C
2
|x)

The figure describes conditional distributions

and and posterior probabilities. Vertical green

lines indicate the reject area

How and when the reject plays:

α = 0 −→ 100% reject
α = 1/2 −→ 0% reject
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Bayesian decision theory Reject option

Where is the learning for the machine?

−4 −2 0 2 4 6
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Frontière de décision

0

0

0

Available information : data

{(x i , yi ) ∈ Rd × {C1, . . . , CK}}Ni=1

Practical procedure

Fix the costs related to each decision. Default: 0-1 costs

Find the conditional distributions p(x/Ck) and prior probability Pr(Ck) of
each class Ck , k = 1, · · · ,K

→ Use the data of each Ck to learn p(x/Ck) and Pr(Ck)

Deduce then the posterior probabilities using Bayes’ Th. i.e.

Pr(Ck/x) =
Pr(Ck)p(x/Ck)

p
X
(x)

, k = 1, · · · ,K
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Bayesian decision theory Reject option

Practical procedure : example of gender classification

Data of each Ck follow a Gaussian distribution p(x/Ck ) = 1
σk
√

(2π)
exp
− (x−µk )2

2σ2
k

Determine Pr(Ck ) and p(x/Ck )

For each class Ck , select its data {(xi , yi = Ck )}i=1,··· ,Nk

Its prior probability is estimated by: Pr(Ck ) = Nk
N

Estimation of µk and σk : µ̂k =

∑
i∈Ck

xi

Nk
and the variance: σ̂k =

∑
i∈Ck

(xi−µ̂k )2

Nk

with Nk the cardinality of class Ck and N: total number of points

Marginal pX (x) = p(x/C1)Pr(C1) + p(x/C2)Pr(C2). Deducing posterior probabilities Pr(Ck/x)
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Bayesian decision theory

Gaussian conditional distributions case

Linear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis
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Bayesian decision theory LDA

The Gaussian distribution case
Gaussian distribution for class Ck

p(x/Ck) =
1√

(2π)d |C k |
exp−

1
2 (x−µk )>Σ−1j (x−µk ), x ∈ Rd

µk ∈ Rd : mean and C k ∈ Rd×d : covariance matrix

µ =

(
0
0

)
, C =

(
1 0.5
0.5 4

)
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Bayesian decision theory LDA

Case study of Gaussian distributions
Gaussian distribution for class Ck

p(x/Ck ) = N (x i ,µk ,Ck ) =
1√

(2π)d |Ck |
exp−

1
2 (x−µk )>Σ−1

j (x−µk )
, x ∈ Rd

Decision rule
For 0− 1 costs, we assign x to class Cj if

Pr(Cj/x) > Pr(Ck/x) ∀k 6= j
⇔ p(x/Cj)Pr(Cj) > p(x/Ck)Pr(Ck) ∀k 6= j
⇔ ln p(x/Cj) + ln Pr(Cj) > ln p(x/Ck) + ln Pr(Ck) ∀k 6= j (1)

Discrimination function

Let gk(x) = ln p(x/Cj) + ln Pr(Cj) the discrimination function related to Ck
For p(x/Ck) = N (x i ,µk ,C k), we have

gk(x) = −
1
2
(x − µk)

>C−1
k (x − µk)−

d

2
ln 2π − 1

2
ln(|C k |) + ln Pr(Cj)
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Bayesian decision theory LDA

Linear discriminant analysis (1)

Assumption
LDA assumes all classes have the same covariance matrix i.e.

C k = C ∀k = 1 · · ·K

This introduces some simplifications in gk(x)

gk(x) = −
1
2
(x − µj)

>C−1
k (x − µk) + ln Pr(Cj)−

d

2
ln 2π − 1

2
ln(|C |)︸ ︷︷ ︸

cst

Expanding the quadratic term in gk(x), we get

gk(x) = µ>k C−1x − 1
2
µ>k C−1µk + ln Pr(Cj) + cst− 1

2
x>C−1x︸ ︷︷ ︸
cst

gk(x) = w>k x + wjo + cst, with w k = C−1µk , wjo = ln Pr(Cj)−
1
2
µ>k C−1µk
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Bayesian decision theory LDA

Linear discriminant analysis (2)

Decision rule: x is predicted the class Cj if

gj(x) = w>j x + wjo > gk(x) = w>k x + wko ∀k 6= j

Linear decision function : predict class Cj if

w>(x − x0) + b > 0 ∀k 6= j

with w = C−1(µj − µk), x0 = 1
2 (µj + µk) and b = ln Pr(Cj )

Pr(Ck )
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Bayesian decision theory QDA

Quadratic discriminant analysis (QDA)

General case: the covariance matrices are different i.e. C k 6= C j , ∀k 6= j

Quadratic discrimination function

gk(x) = −
1
2
x>C−1

k x + w>k x + wko

w k = C−1
k µk , wko = − 1

2µ
>
k C−1

k µk − 1
2 ln(|C k | × Pr(Ck))

Decision function
x is predicted the class Cj if

gj(x) > gk(x) ∀k 6= j

⇔ −1
2
x>C−1

j x + w>j x + wjo > −1
2
x>C−1

k x + w>k x + wko ∀k 6= j

=⇒ the decision function is quadratic (hence the name of the method)
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Bayesian decision theory QDA

Quadratic discriminant analysis: illustration

For a binary classification problem, the decision boundary is quadratic
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Conclusions

Conclusion: estimation strategies

Practical implementation

For each class Ck , k = 1, · · · ,K

Get the training data-set associated to the class Ck
Estimate its prior probability Pr(Ck) and its conditional distribution p(x/Ck)

Estimate the decision rule (by using one of the two methods) :

1 For each data x compute the posterior probabilities Pr(Ck/x) and affect x to
the class minimizing the conditional risk

2 Determine the functions of discrimination gk(x) and deduce the rule.
In the case of binary classification the decision function is often expressed as
a sign of g(x) = g1(x)− g2(x)
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Conclusions

Estimation strategies : Gaussian case

LDA : The parameters of each class Ck and the common covariance matrix
C are estimated as:

µk =

∑N
i∈Ck x i

Nk
with Nk = card(Ck)

Pr(Ck) =
Nk

N

C =

∑K
k=1

∑N
i∈Ck (x i − µk)(x i − µk)

>

N − K

QDA case : we estimate the covariance matrix of each class Ck by

C k =

∑N
i∈Ck (x i − µk)(xi − µk)

>

N − 1

The estimation of the prior probability and of µk is similar to LDA.
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Conclusions

Summing up

Bayesian decision theory provides a formal framework for (binary of multi-class)
classification which minimizes the generalization risk.
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