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Introduction

Introduction

D = {x i ∈ Rd}Ni=1 : set of training samples

Goal : structure the data into homogeneous categories
Group the samples into clusters so that samples in a cluster are as
similar as possible

Clustering ≡ unsupervised learning

Clustering images

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L11_kmeans.pdf
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Introduction

Applications
Field Data type Clusters
Text mining Texts Close texts

E-mails Automatic folders
Graph mining Graphs Social sub-networks
BioInformatics Genes Resembling genes
Marketing Client profile, Customer

purchased products segmentation
Image Images Homogeneous areas
segmentation in an image
Web log analysis Clickstream User profile

http://images2.programmersought.com/267/fc/fc00092c0966ec1d4b726f60880f9703.png
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Introduction

What is clustering ?

How to define similarity or dissimilarity between samples
How to characterize a cluster ?
Number of clusters
Which algorithms of clustering?
How to assess a clustering result

https://image.slidesharecdn.com/k-means-130411020903-phpapp01/95/k-means-clustering-algorithm-4-638.jpg?
cb=1365646184
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Introduction Notion of dissimilarity

Dissimilarity measure (1)

Concept of dissimilarity

Dissimilarity is a function of the pair (x1, x2) with a value in R+ such that
D(x1, x2) = D(x2, x1) ≥ 0 and D(x1, x2) = 0⇒ x1 = x2

Dissimilarity measure: distance D(x1, x2) between x1 and x2 ∈ Rd

Minkoswski’s distance : D(x1, x2)
q =

∑d
j=1 |x1,j − x2,j |q

Euclidean distance corresponds to q = 2 :
D(x1, x2)

2 =
∑d

j=1 (x1,j − x2,j)
2 = (x1 − x2)

>(x1 − x2)

Manhattan distance (q = 1) : D(x1, x2) =
∑d

j=1 |x1,j − x2,j |

Metric linked to the positive definite matrix W :

D2(x1, x2) = (x1 − x2)
>W(x1 − x2)
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Introduction Notion of dissimilarity

Dissimilarity measure (2)

x1 and x2 are discrete

Compute the contingency matrix A(x1, x2) ∈ IRd×d

x1 =
(
0 1 2 1 2 1

)> and x2 =
(
1 0 2 1 0 1

)>
A(x1, x2) =

0 1 0
1 2 0
1 0 1


Hamming’s distance: number of indexes where the 2 samples differ

D(x1, x2) =
d∑

i=1

d∑
j=1,j 6=i

aij

Example: D(x1, x2) = 3
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Introduction Notion of dissimilarity

Dissimilarity between clusters (1)

Distance D(C1, C2) between 2 clusters C1 and C2
minimum diameter (nearest neighbor) :

Dmin(C1, C2) = min {D(x i , x j), x i ∈ C1, x j ∈ C2}

maximum diameter :

Dmax(C1, C2) = max {D(x i , x j), x i ∈ C1, x j ∈ C2}

Minimum diameter Maximum diameter
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Introduction Notion of dissimilarity

Dissimilarity between clusters (2)

Distance D(C1, C2) between 2 clusters C1 and C2
average distance :

Dmoy(C1, C2) =
∑

x i∈C1
∑

x j∈C2 D(x i , x j)

n1n2

Ward’s distance (between centres) :
DWard(C1, C2) =

√
n1n2
n1+n2

D(µ1,µ2)

Average distance Distance between centroids
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Introduction Quality of clusters

What is a good clustering?

Every cluster C` is characterized by:

a center: µ` =
1
N`

∑
i∈C`

x i with N` = card(C`)

intra-cluster variation: J` =
∑

i∈C`
D2(x i ,µ`)

measures how close are the points around µ`. The lower J`, the
smaller is the spread of the samples around µ`

Within (overall) cluster distance:
Jw =

∑
`

∑
i∈C` D

2(x i ,µ`) =
∑

i∈C` J`

Let µ be the centerof the samples: µ = 1
N

∑
i x i

Inter-cluster distance: Jb =
∑

`N`D
2(µ`,µ)

measures the "distance" between the clusters. The greater the µ, the
more the clusters are well separated
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Introduction Quality of clusters

Illustration

g

g1

g

g2

g3

g4

C1

C2

C3

C4

Total inertia of the points = Inertia Intra-cluster + Inertia Inter-cluster

A good clustering . . .
is the one which minimizes the within distance and maximizes the
inter-cluster distance
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Methods of clustering Hierarchical clustering

Approaches of clustering

Hierarchical clustering

K-means clustering
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Methods of clustering Hierarchical clustering

Hierarchical clustering: principle

Bottom up approach
The clusters are iteratively "merged" with their nearest clusters.

Algorithm
Initialization:

Each sample is a cluster,
Compute the pairwise distance matrix M with Mij = D(x i , x j)

Repeat
Select from M the two closest clusters CI and CJ
Merge CI and CJ into the cluster CG
Update M by computing the distance between CG and the remaining
clusters

Until all samples are merged into one cluster
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Methods of clustering Hierarchical clustering

Hierarchical clustering: illustration

Hiérarchie
(indicée)

C10

C1

C6

C5

C4

C3

C2

C9

C8

C7

C1
C2

C3

C4

C5

C6

C8

C10

C7

C9

i

Samples Dendogram Clustering

Dendrogram: represents the successive mergings

Height of a cluster in the dendrogram = distance between the 2
clusters before their merging
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Methods of clustering Hierarchical clustering

Merging two clusters

Common metrics

Single linkage (minimum) based on Dmin(C1, C2)
produces large clusters (by chaining effect)
sensitivity to noised data

Complete linkage (maximum) based on Dmax(C1, C2)
produces specific clusters (only very close clusters are combined)
sensitivity to noised data

Average linkage based on Dmoy(C1, C2)
produces classes with close variance

Ward distance DWard(C1, C2)
tends to minimize within variance of clusters being merged
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Methods of clustering Hierarchical clustering

Influence of linkage criterion (1)

Données (métrique : dist. Eucl.)
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2

1

0
43210

A

C

B

E

F

D

Saut minimal

F    E    A    B    C    D

i

0,5

1,1

0,9

0,7

Saut maximal

C    D    A    B    E    F

i

0,5

4,0

2,8

1,7

Clustering result may change w.r.t the selected linkage measure
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Methods of clustering Hierarchical clustering

Influence of linkage criterion (2)
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Methods of clustering K-means

Approaches of clustering

Hierarchical clustering

K-means clustering
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Methods of clustering K-means

Clustering by data partitioning

Goal

D = {x i ∈ Rd}Ni=1 a set of training samples

Search of a partition in K clusters (with K < N)

Direct approach
Build all possible partitions

Retain the best partition among them

NP-hard problem
The number of possible partitions increases exponentially:
#Clusters = 1

K !

∑K
k=1(−1)K−kCK

k kN .
For N = 10 and K = 4, we have 34105 possible partitions !
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Methods of clustering K-means

Data partitioning

Workaround solution

Determine the K clusters {C`}K`=1 and their centers {µ`}K`=1 that
minimize the cluster within-distance Jw

min
{C`}K`=1,{µ`}K`=1

K∑
`=1

∑
i∈C`

‖x i − µ`‖2

Global solution: NP-hard problem

A local solution (not necessarily the optimal partition) can be attained
using a simple algorithm: K-means
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Methods of clustering K-means

K-means clustering

A well-known clustering algorithm

Principle
Assume the centroids µ`, ` = 1, · · · ,K are fixed

assign any point x i to only one cluster
x i is assigned to the closest cluster Ck (according to the distance
between x i and the clusters’ center µ1` )

Given the clusters C`, ` = 1, · · · ,K ,
estimate their centers µ`, ` = 1, · · · ,K

Repeat the previous steps until convergence
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Methods of clustering K-means

K-Means: illustration
Clustering in K = 2 classes

Data
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Methods of clustering K-means

K-Means: Llyod’s algorithm

Initialize the centers µ1, · · ·µK

Repeat
Assign each point x i to the closest cluster

∀i ∈ {1, · · · ,N} si ← arg min
`
‖x i − µ`‖2 and Ck = {i : si = k}

Compute the center µk of each cluster

µ` =
1
N`

∑
i∈C`

x i with N` = card(C`)

Until convergence
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Methods of clustering K-means

K-Means: example (1)

Initial centers: plain yellow squares
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Methods of clustering K-means

K-Means: example (2)
Initial centers: plain yellow squares

=⇒ Different initializations lead to different partitions !
Gilles Gasso Clustering 25 / 28



Methods of clustering K-means

K-Means: remarks and limitations

The criterion Jw decreases at each iteration.

The algorithm converges to (at least) a local minimum of Jw
Initialization of µk :

select randomly within the range of definition of x i

select randomly among x i

Different initializations can lead to different clusters (convergence to
local minimum)

Gilles Gasso Clustering 26 / 28



Methods of clustering K-means

K-Means: some issues

Number of clusters

Hard to assess the number of clusters

Fixed a priori (e.g.: we want to split customers into K groups)

Use the "elbow trick" on the variation of Jw (K ) w.r.t K

Use ad-hoc metrics such as silhouette score
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Methods of clustering K-means

Conclusion

Clustering: unsupervised learning

Group data into homogeneous clusters

The number of clusters is application-dependent; can be selected
based on ad-hoc metrics such as silhouette score

Several algorithm: hierarchical clustering, K-means, but also DBScan,
Spectral clustering, . . .
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