Clustering

Gilles Gasso

INSA Rouen - ASI Departement Laboratory LITIS

September 29, 2021

Plan

Introduction

- Notion of dissimilarity
- Quality of clusters

2 Methods of clustering

Hierarchical clustering
 Principle and algorithm

K-means

• Principle and algorithm

Introduction

- $\mathcal{D} = \{ \mathbf{x}_i \in \mathbb{R}^d \}_{i=1}^N$: set of training samples
- Goal : structure the data into homogeneous categories Group the samples into clusters so that samples in a cluster are as similar as possible
- Clustering \equiv unsupervised learning

Clustering images

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L11_kmeans.pdf

Applications

Field	Data type	Clusters	
Text mining	Texts	Close texts	
	E-mails	Automatic folders	
Graph mining	Graphs	Social sub-networks	
BioInformatics	Genes	Resembling genes	
Marketing	Client profile,	Customer	
	purchased products	segmentation	
Image	Images	Homogeneous areas	
segmentation		in an image	
Web log analysis	Clickstream	User profile	
	Applications of clustering	* ******	

Astronomical data analysis

http://images2.programmersought.com/267/fc/fc00092c0966ec1d4b726f60880f9703.png

Gilles Gasso

Clustering

What is clustering ?

- How to define similarity or dissimilarity between samples
- How to characterize a cluster ?
- Number of clusters
- Which algorithms of clustering?
- How to assess a clustering result

What is a natural grouping among these objects?

https://image.slidesharecdn.com/k-means-130411020903-phpapp01/95/k-means-clustering-algorithm-4-638.jpg? cb=1365646184

Dissimilarity measure (1)

Concept of dissimilarity

Dissimilarity is a function of the pair (x_1, x_2) with a value in \mathbb{R}_+ such that $D(x_1, x_2) = D(x_2, x_1) \ge 0$ and $D(x_1, x_2) = 0 \Rightarrow x_1 = x_2$

Dissimilarity measure: distance $D(\pmb{x}_1, \pmb{x}_2)$ between \pmb{x}_1 and $\pmb{x}_2 \in \mathbb{R}^d$

- Minkoswski's distance : $D(\boldsymbol{x}_1, \boldsymbol{x}_2)^q = \sum_{j=1}^d |x_{1,j} x_{2,j}|^q$
 - Euclidean distance corresponds to q = 2: $D(\mathbf{x}_1, \mathbf{x}_2)^2 = \sum_{j=1}^d (x_{1,j} - x_{2,j})^2 = (\mathbf{x}_1 - \mathbf{x}_2)^\top (\mathbf{x}_1 - \mathbf{x}_2)$
 - Manhattan distance (q = 1) : $D(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^d |x_{1,j} x_{2,j}|$

• Metric linked to the positive definite matrix W :

$$D^2(\boldsymbol{x}_1, \boldsymbol{x}_2) = (\boldsymbol{x}_1 - \boldsymbol{x}_2)^\top W(\boldsymbol{x}_1 - \boldsymbol{x}_2)$$

Dissimilarity measure (2)

x_1 and x_2 are discrete

• Compute the contingency matrix $A(\mathbf{x}_1, \mathbf{x}_2) \in {\rm I\!R}^{d imes d}$

•
$$\mathbf{x}_1 = \begin{pmatrix} 0 & 1 & 2 & 1 & 2 & 1 \end{pmatrix}^\top$$
 and $\mathbf{x}_2 = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 1 \end{pmatrix}^\top$
• $A(\mathbf{x}_1, \mathbf{x}_2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

• Hamming's distance: number of indexes where the 2 samples differ

$$D(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i=1}^d \sum_{j=1, j \neq i}^d a_{ij}$$

• Example: $D(x_1, x_2) = 3$

Dissimilarity between clusters (1)

Distance $D(\mathcal{C}_1, \mathcal{C}_2)$ between 2 clusters \mathcal{C}_1 and \mathcal{C}_2

• minimum diameter (nearest neighbor) :

$$D_{\min}(\mathcal{C}_1, \mathcal{C}_2) = \min \{ D(\boldsymbol{x}_i, \boldsymbol{x}_j), \boldsymbol{x}_i \in \mathcal{C}_1, \boldsymbol{x}_j \in \mathcal{C}_2 \}$$

• maximum diameter :

$$D_{\max}(\mathcal{C}_1, \mathcal{C}_2) = \max \left\{ D(\boldsymbol{x}_i, \boldsymbol{x}_j), \boldsymbol{x}_i \in \mathcal{C}_1, \boldsymbol{x}_j \in \mathcal{C}_2 \right\}$$

Minimum diameter

Dissimilarity between clusters (2)

Distance $D(\mathcal{C}_1, \mathcal{C}_2)$ between 2 clusters \mathcal{C}_1 and \mathcal{C}_2

• average distance :

$$D_{\text{moy}}(\mathcal{C}_1, \mathcal{C}_2) = \frac{\sum_{\boldsymbol{x}_i \in \mathcal{C}_1} \sum_{\boldsymbol{x}_j \in \mathcal{C}_2} D(\boldsymbol{x}_i, \boldsymbol{x}_j)}{n_1 n_2}$$

• Ward's distance (between centres) : $D_{\mathsf{Ward}}(\mathcal{C}_1, \mathcal{C}_2) = \sqrt{rac{n_1 n_2}{n_1 + n_2}} D(\mu_1, \mu_2)$

Clustering

What is a good clustering?

- Every cluster \mathcal{C}_{ℓ} is characterized by:
 - a center: $\mu_\ell = rac{1}{N_\ell} \sum_{i \in {\mathcal C}_\ell} {m x}_i$ with $N_\ell = {\sf card}({\mathcal C}_\ell)$
 - intra-cluster variation: $J_\ell = \sum_{i \in {\mathcal C}_\ell} D^2({\pmb x}_i, {\pmb \mu}_\ell)$

measures how close are the points around μ_ℓ . The lower J_ℓ , the smaller is the spread of the samples around μ_ℓ

- Within (overall) cluster distance: $J_{w} = \sum_{\ell} \sum_{i \in C_{\ell}} D^{2}(\mathbf{x}_{i}, \boldsymbol{\mu}_{\ell}) = \sum_{i \in C_{\ell}} J_{\ell}$
- Let μ be the centerof the samples: $\mu = \frac{1}{N} \sum_i x_i$
- Inter-cluster distance: $J_b = \sum_\ell N_\ell D^2({m \mu}_\ell,{m \mu})$

measures the "distance" between the clusters. The greater the $\mu,$ the more the clusters are well separated

Illustration

Total inertia of the points = Inertia Intra-cluster + Inertia Inter-cluster

Clustering

A good clustering ...

Gilles Gasso

is the one which minimizes the within distance and maximizes the inter-cluster distance

Approaches of clustering

- Hierarchical clustering
- K-means clustering

Hierarchical clustering: principle

Bottom up approach

The clusters are iteratively "merged" with their nearest clusters.

Algorithm

- Initialization:
 - Each sample is a cluster,
 - Compute the pairwise distance matrix \boldsymbol{M} with $M_{ij} = D(\boldsymbol{x}_i, \boldsymbol{x}_j)$
- Repeat
 - Select from $\boldsymbol{\textit{M}}$ the two closest clusters $\mathcal{C}_{\textit{I}}$ and $\mathcal{C}_{\textit{J}}$
 - Merge C_I and C_J into the cluster C_G
 - Update \boldsymbol{M} by computing the distance between \mathcal{C}_{G} and the remaining clusters
- Until all samples are merged into one cluster

Hierarchical clustering: illustration

- Dendrogram: represents the successive mergings
- Height of a cluster in the dendrogram = distance between the 2 clusters before their merging

Merging two clusters

Common metrics

- Single linkage (minimum) based on $D_{\min}(\mathcal{C}_1, \mathcal{C}_2)$
 - produces large clusters (by chaining effect)
 - sensitivity to noised data
- Complete linkage (maximum) based on $D_{max}(C_1, C_2)$
 - produces specific clusters (only very close clusters are combined)
 - sensitivity to noised data
- Average linkage based on $D_{moy}(\mathcal{C}_1, \mathcal{C}_2)$
 - produces classes with close variance
- Ward distance $D_{Ward}(\mathcal{C}_1, \mathcal{C}_2)$
 - tends to minimize within variance of clusters being merged

Influence of linkage criterion (1)

• Clustering result may change w.r.t the selected linkage measure

Influence of linkage criterion (2)

Clustering with maximum (complete) linkage

K-means

Approaches of clustering

- Hierarchical clustering
- K-means clustering

Clustering by data partitioning

Goal

- $\mathcal{D} = \{ \mathbf{x}_i \in \mathbb{R}^d \}_{i=1}^N$ a set of training samples
- Search of a partition in K clusters (with K < N)

Direct approach

- Build all possible partitions
- Retain the best partition among them

NP-hard problem

The number of possible partitions increases exponentially: #Clusters $= \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} C_{k}^{K} k^{N}.$ For N = 10 and K = 4, we have 34105 possible partitions !

Data partitioning

Workaround solution

• Determine the K clusters $\{C_\ell\}_{\ell=1}^K$ and their centers $\{\mu_\ell\}_{\ell=1}^K$ that minimize the cluster within-distance J_w

$$\min_{\{\mathcal{C}_\ell\}_{\ell=1}^K, \{\boldsymbol{\mu}_\ell\}_{\ell=1}^K} \sum_{\ell=1}^K \sum_{i \in \mathcal{C}_\ell} \|\boldsymbol{x}_i - \boldsymbol{\mu}_\ell\|^2$$

- Global solution: NP-hard problem
- A local solution (not necessarily the optimal partition) can be attained using a simple algorithm: K-means

K-means clustering

A well-known clustering algorithm

Principle

- Assume the centroids $\mu_{\ell}, \ell = 1, \cdots, K$ are fixed
 - assign any point x_i to only one cluster
 - \mathbf{x}_i is assigned to the closest cluster \mathcal{C}_k (according to the distance between x_i and the clusters' center $\mu_1 \ell$)
- Given the clusters $C_{\ell}, \ell = 1, \cdots, K$,
 - estimate their centers $\mu_{\ell}, \ell = 1, \cdots, K$
- Repeat the previous steps until convergence

K-means

K-Means: illustration Clustering in K = 2 classes

Gilles Gasso

K-Means: Llyod's algorithm

- Initialize the centers $\mu_1, \cdots \mu_K$
- Repeat
 - Assign each point x_i to the closest cluster

$$\forall i \in \{1, \cdots, N\} \quad s_i \leftarrow \arg \min_{\ell} \|\boldsymbol{x}_i - \boldsymbol{\mu}_\ell\|^2 \quad \text{and} \quad \mathcal{C}_k = \{i : s_i = k\}$$

• Compute the center μ_k of each cluster

$$oldsymbol{\mu}_\ell = rac{1}{N_\ell} \sum_{i \in \mathcal{C}_\ell} oldsymbol{x}_i \quad ext{with} \quad N_\ell = ext{card}(\mathcal{C}_\ell)$$

Until convergence

K-Means: example (1)

Initial centers: plain yellow squares

K-Means: example (2)

Initial centers: plain yellow squares

\implies Different initializations lead to different partitions !

C		-	
(- III	ec -	(- 2	SSO
U	6.5	u u	330

Clustering

K-Means: remarks and limitations

• The criterion J_w decreases at each iteration.

- The algorithm converges to (at least) a local minimum of J_w • Initialization of μ_k :
 - select randomly within the range of definition of x_i
 - select randomly among x_i
- Different initializations can lead to different clusters (convergence to local minimum)

K-Means: some issues

- Number of clusters
 - Hard to assess the number of clusters
 - Fixed a priori (e.g.: we want to split customers into K groups)
 - Use the "elbow trick" on the variation of $J_w(K)$ w.r.t K
 - Use ad-hoc metrics such as silhouette score

Conclusion

- Clustering: unsupervised learning
- Group data into homogeneous clusters
- The number of clusters is application-dependent; can be selected based on ad-hoc metrics such as silhouette score
- Several algorithm: hierarchical clustering, K-means, but also DBScan, Spectral clustering, ...