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The goal
Goal
o D= {(xj,yi) € X x Y} | : set of labeled data

o (xz,y) ~p(X,Y) with p(X,Y) the joint distribution generally
unknown

@ Goal : learn from D a function

fr X =Y
v = f(@)

that predicts the output ¢ associated to each point x € X

Properties of the learning
o V (x;,y;) € D, we want f to predict the correct label y;

o f should correctly predict the labels of unseen sample x;
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Introduction

Example

Example : image classification

Classification methods
o K-NN
o Logistic Regression
@ SVM (linear or non-linear)
°

= Which model to select 7 How to asess its ability to generalize to
unseen data ?
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Principles of statistical learning

Loss function

Loss function ((Y, f(X))

@ evaluates how "close” is the prediction f(x) to the true label y

e it penalizes errors: {(y, f(x)) = { ;0 :: g;-}cgg

For binary classification
o We suppose Y = {—1,1}

@ 0-1 cost

0 if yf(x)>0
(y f ILyfa:)<0_{ 1 if yf(ac)SO 05

measures the number of classification errors |

Gilles Gasso Model selection and assessment 5/39



Principles of statistical learning

Risk function and learning

Risk function

Assesses the expected error (generalization ability) of f

R(f) = ExylY, f(X))
R(f) = / Uy, f(@))p(a, y)dedy

)

Statistical learning problem
Find the function f* that minimises R(f)

[ = argmin/Exy (Y, f(X))

However

f* is not attainable as p(X,Y") is unknown
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Principles of statistical learning

Empirical risk

We only have access to a finite set of samples D = {(x;, v;)}1 4

Define the empirical risk

Ralf) = - " i )
i=1

Empirical risk minimization
@ We are looking for a decision function
fn = argminfRn(f)

e Ry(f,) is the empirical risk corresponding to f,. It is an
approximation of the real risk R(f,) = IExy{(Y, fn(X))
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Principles of statistical learning

Empirical risk and over-fitting

@ Should we choose f based on R,(f,) 7 NO!

@ as we can design a sufficiently complex function f,, such that
Rn(fn) — 0 but with high risk R(f,)

K-NN classification function
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= Control the complexity of the function f
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Principles of statistical learning

The paradigm of statistical learning

Hypothesis
space F

p(z,y) ——| D ={(=i,vi) }ie

R(f) Error R (f)
- 1)
]P< S f@) Ly (f(wz)yz)—i_e)g

With given D, find a model f in a family F (linear, kernel SVM ...) with
good generalization properties
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Why the learning is possible

Supremum on generalization error

Let's D = {(@i,vi)},_, the dataset. Let F be a space of functions. For
each f € F, with probability 1 — § we have

R(f) < Ralf) + O (\/% log 2¢™ logi/é)

h

h > 0 measures the "complexity" of the functions class F

@ Generalization occurs whenever h < 0o

@ Bigger is n better it is (n >> h: the number of data increases with
model complexity )

o Linear model f(z) =w'x +bwithw c R h=d+1
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Principles of statistical learning

[[lustration

Generalization / over-fitting

n

Zg(f(wz)Jh) + term(nv h’(]:))

i=1

RS+

o Ro(f)=213"" 4(f(z),y;) is not a good estimator of generalization
ability

e Over-fitting appears with the increasing complexity of f

Ensemble de Test

Erreur de prediction

Ensemble d’apprentissage

Faible Elevé
Complexité du modele
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Principles of statistical learning

Complexity control: regularisation

Let k1 < ko < kg < ---

We define F; = {f : Q(f) < k;}
Q(f) : regularisation function
Example : Q(f) = |||

Minimization of the regularized empiric risk

m}n % Zﬁ(f(wi), yi) + AQ(f)
i=1

@ A > 0 : regularization hyper-parameter

@ A >> 1 — we encourage f to be of low complexity
Example : SVM miny 2 377" 4(f (), y;) + A fI|I* with cost function
U(y, f(x)) = max(0,1 - yf(x)) and A = 1/C
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Principles of statistical learning

[llustration: influence of model’s hyper-parameters

0.2 : : :

o too small o too large

@ The choice of the hyper-parameter’s value (hence of the model)
impacts the quality of the prediction J

Gilles Gasso Model selection and assessment 13 /39



Principles of statistical learning

Model selection and evaluation

Raised issues

@ Model evaluation : what measure(s) of performance?
o Estimation of the generalisation capacity of the model

@ Practical model selection procedures

The Classifier Evaluation Framework

[ choice of Leaming Aigorithm(s) |

Datasats Selection ||

A
Performance Measure Error-Estimation/ Statistical Test |
of Interest ~ [¥7" Sampling Method

| | |

Perform Evaluation
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AR e LT
Assessing the quality of a model

The confusion matrix

A matrix showing the predicted and actual classifications. A confusion matrix is
of size p X p, where p is the number of classes.

Predicted / Actual Positive Negative
Positive TP FP
Negative FN TN

P=TP+FN N=FP+TN

Error rate = (FP +FN)/(P + N) (\,\\\)
Accuracy = 1 - Error rate = (TP + TN) /(P + N) ()
Precision = TP/(TP + FP)
Recall, Sensitivity = TP/P
Specificity = FP/N
Precision x Recall

F-Measure = 2 Ve

Precision + Recall
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Assessing model’s quality Performance measures

ROC Curve

@ It's the curve TPR = fonction(FPR)

o Allows graphical

comparison of different models

Courbes ROC
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Assessing model’s quality Performance measures

Measure of performances

Area Under the ROC Curve (AUC)

o Let D = {(zs,yi = D)}, U{(z;,y; = —1)}Y, and f be the decision
function. The AUC is deflned by

f(@i) > f(z)] + 050 [f(z:) = f(z;)]
AUC = ZZ N
i=1 j=1
with T the indicator function

e AUC is between 0 and 1 (')

e Favours the decision function such that f(x;) > f(z;)
V(yi=1y;=-1)
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Assessing model’s quality Performance measures

Other performance measures

e Many performance measures exist

@ Each classifier may be the best one according to a specific measure

@ Keep in mind that your model may fail according to another measure
— Choose wisely according to your problematic

Al
measures

I
‘Additional Info
(Classifier Uncertainty
Cost ratio, skew)

[
[ Contusion Matrix |

Deterministic Classifiers

Scoring Continuous and
Classifiers Prob. Classifiers

(Reliability metrics)

Graphical | [ Summary
measures || Statistics
ROC Curves

Single Class
Focus

AUC
PR Curves || Hmeasure
DET Curves
LiftChants
Cost Curves
iterestingness
TEEP Rate Comprenensiilty
Cohen's Kappa || predsionRecal Multcrtera
Fleiss Kappa ||~ Sens/Spec.
F-measure
‘Geom. Mean
Dice
. . Shah, earning Algorithms: ) ress,
N kowicz & M. Shah, "Evaluating Learning Algorithms: A Classificati ive" Cambridge University P 2011
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VACEEEET A SERCTTEN A Estimation of generalization ability

The model’ generalization

@ Let f be a decision-making function developed using the data
Dy, = {(®i, ¥i) i=1.n
o We are looking at R(Dw, f) the theoretical performance of f on all
possible future data
Generalisation Capacity

Capacity of f to perform well (measured with one of the previous metrics)
when tested on data other than those used for training

How to estimate R(Dx, f) in practice ? )
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Estimation of generalization ability
Paradigm test set/training set

Randomly split D,, into two disjoints sets Dyyqin and Dyegt

Données disponibles

Apprentissage | X, .7, Test (X Vi)

® Diain = {(xs,y:) }¢" : data used for training f

® Diest = {(x4,y:) }e* : data used to evaluate the generalization
capacity of f

Remark
o Bigger nrain is, better the training
o Bigger nyest is, better the estimation of performance is f

@ Dy is used only once !
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Estimation of generalization ability
Error bars on Bernoulli trials

Hypothesis

My new method classifies well 90 (ng) examples over 100 (n). 10 (np) examples

are mis-classified. What is my level of confidence?
v

Level of confidence «
success probability : p=10.9
R p(1—-p)

pa=ptz /P =5y
n n

z nsng
n n

with z is the 1 — § quantile of a standard normal distribution.
@ Consider oo = 0.95,

@ z = scipy. stats .norm.ppf(0.975)*np.sqrt(0.9%(1—0.9)/100)
Do = 0.9 £0.059

@ ie. 95% of time: 0.84 < p < 0.96

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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VACEEEET A SERCTTEN A Estimation of generalization ability

To improve the estimate

Dataset size

@ If you increase the number of runs, your confidence increases.

@ Check the confidence interval

Increase n
e Random Subsampling (The repeated holdout method)
e K-Fold Cross-Validation (K = 10,5,2,...)
@ Leave-one-out Cross-Validation (K = n)

@ Bootstrap (each sample can be in differents subsets)
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VACEEEET A SERCTTEN A Estimation of generalization ability

Conclusion

Best practices
@ Simulate real conditions
@ Avoid test set bias by adding it within learning procedure

@ Look for stability rather than performance
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Model Selection: the principle

Problem

e Given a set of models F = {fi, fo, -

giving the best performances on future data

- }, choose the decision function

Examples of function choice by classification type

@ K-NN :choice of K

@ Sparse Logistic Regression : number of selected variables

@ SVM : choice of the hyper-parameter C, kernel tuning

Gilles Gasso
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Validation set

How to choose the "best" model without testing on Dyegt ?

Données disponibles

Apprentissage (XY, Validation(X,,.Y,,] Test (X,,.7,,]

@ Randomly split D, = Dirain U Dyar U Drest

@ Train each possible model on Dyy.4in

© Evaluate the performance on D,

@ Select the model with the best performance on D,y
@ Test the selected model on Dy.y;

Remark
@ Dy is used only one time ! J
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K -fold validation

What if the size of D,, is small ?

I Validation I Apprentissage _
e T otsion | oo [N
I Apprentissage | Validation _

© Randomly split D,, = Dyygin U Diest
@ Then split randomly Dypgin = D1 U--- U Dk in K sets

Q@ Fork=1to K

@ Put aside Dy,
@ Train the model f on the K — 1 remaining sets
@ Evaluate its performance Ry on generalizing to Dy,

© Average the K measures of performance Ry
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Model selection

[[lustration

K-Fold Cross-Validation

dataset = cardio - clIf =SVM linear

0.11 1 m_

I\\
0.10 - “\ 'l-...'-I----r""'“'
oosd{ \

e
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“
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0.07 A - L STy
107! 10! 103
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Erreur validation

Cross-Validation

dataset = mnist - cIf =Reg log
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Fairness in Machine Learning

@ Fairness refers to the absence of unjustified discrimination in algorithmic
decision-making.

@ A machine learning system is unfair if it systematically disadvantages
individuals or groups based on sensitive attributes.

@ Sensitive attributes may include:

o Race, gender, age
o Disability status
e Socioeconomic background
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Fairness: COMPAS example!

Black defendants

White defendants
Prediction Prediction
Outcome Low Risk High Risk Outcome Low Risk  High Risk
No Recidivism | 1139 (TN) 349 (FP) No Recidivism | 990 (TN) 805 (FP)
Recidivated 461 (FN) 505 (TP) Recidivated 532 (FN) 1369 (TP)

Error Rate =~ 36.2%
False Positive Rate ~ 44.9%
False Negative Rate ~ 28.0%

Error Rate ~ 33%
False Positive Rate ~ 23.5%
False Negative Rate ~ 47.7%

Findings
@ Similar overall error rates between white and black defendants but...

@ ...very different outcomes for white and black defendants

o Black defendants have 1.9x higher False Positive Rate
o White defendants have 1.7x higher False Negative Rate

1
https://waw.propublica.org/article/how-ve-analyzed- the- compas-recidivism-algorithm
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Fairness: Facial Recognition (FR)

FR involves ML or Al algorithms at different stages of the processing pipeline
BEE=E @ ﬂ
[y
Aecaparce | Loalntion T —
-
dm.m prm—
— False lead

ozmsm e — Displaces actuallead  °" wrvo?
Missed PA
— Security nnle = FNMR FNIR
11 False LN “Miss
BPCER False etnciion Rejection Rate”
Assert of PA

“Exposure  — False accusation ofrecapture  — Wasted effort

NIST reports show discrepancies in error rates between social groups for FR

ROC (DET) Curve FPR for t s.t. FPRuy= 107
10 M/F: Male/Female —
nzc W/B: White/Black
E—/ 0.8 MW
8
g 0.6 e 00024 00002
2
® 04
g W
<
o 0.2
o
L 40 L B
0.0 0.2 0.4 0.6 08 1.0
False positive rate (FPR) (Grother and Ngan, 2019)
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Source of bias

> Societal bias

Image search for CEOs biased
Top-ranked results attract towards men (only -5.15% of Fortune
more clicks. More popular 500 CEOS are women)
items are exposed more

ML model deployment
and decision making Training data

Training data may be easily

Algorithmic b del i
igorithmic bias  (mode! capacity, available but poor control of the

optimization...) ; Evaluation bias d lecti d
(inappropriate model assessment or ata  collection process (data
bench i ) representation, under-represented

groups, distribution shift..)

ML model design |«
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Formalizing fairness

Individual Fairness

@ Principle: Similar individuals (differing only on sensitive attributes) should
receive similar outcomes ||z — 2’| < e = || f(x) — ()| < €

@ Requires to define the task-specific similarity metric

@ Scale poorly to large scale data.

Group fairness

@ Ensures statistical parity across predefined groups

Fairness metric = R(R(f;D1), -+ ,R(f; Dk)) for K subgroups

@ Groups are defined by sensitive attributes S

@ Easier to measure and commonly used in practice
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Different strategies to ensure Fairness

@ Pre-processing: produce discrimination-free training data
o Reweighting samples
e Removing sensitive features
o Learning fair representations

@ In-processing: fairness-aware model training

@ Post-processing: correcting biased predictors
e output correction
e input correction
o classifier correction
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In-processing: example

@ Minimize classification error with fairness constraints over subgroup defined
by the attribute S

min R(f)
st. P(f(X,8)>0Y=18=A4)=P(f(X,S)>0]Y =1,5 = B)

@ Empirical minimization

m}n R.(f)
st [RA() = RP(f)l <e

with RA(f) =P (f(X,S) > 0]Y = 1,8 = A) the empirical probability
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In-processing: example for kernel SVM 2

Let H a Hilbert space induced by kernel k such that the feature map is
defined by « — ¢(x) and f(x) = (w, (x))

Optimization problem

1111)&6171_1[ % S O f (i), y:) + Aw|)?

s.t. [(w,u)|y < e
Relaxation of the fairness constraint

1
u=uyg —upg with Us = o(x;)

2Empirical Risk Minimization under Fairness Constraints
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Post-processing:

False Non-
Match
Rate
(FNMR)

example

Demographic Y

Demographic X
AFNMRy

P4

AFNMRy

FMR pouicy False Match Rate (FMR)

Figure 28: The figure shows the increases in FNMR implied by increasing the operating threshold to achieve the target
FMR on the high-FMR demographic, Y.
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