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Introduction

The goal

Goal
D = {(xi, yi) ∈ X × Y}ni=1 : set of labeled data

(x, y) ∼ p(X,Y ) with p(X,Y ) the joint distribution generally
unknown

Goal : learn from D a function

f : X −→ Y
x 7−→ ŷ = f(x)

that predicts the output ŷ associated to each point x ∈ X

Properties of the learning

∀ (xi, yi) ∈ D, we want f to predict the correct label yi
f should correctly predict the labels of unseen sample xj
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Introduction

Example

Example : image classification

Classification methods
K-NN
Logistic Regression
SVM (linear or non-linear)
· · ·

=⇒ Which model to select ? How to asess its ability to generalize to
unseen data ?
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Principles of statistical learning

Loss function

Loss function ℓ(Y, f(X))

evaluates how ”close” is the prediction f(x) to the true label y

it penalizes errors: ℓ(y, f(x)) =

{
0 if y = f(x)
≥ 0 if y ̸= f(x)

For binary classification

We suppose Y = {−1, 1}
0 - 1 cost

ℓ(y, f(x)) = II yf(x)≤0 =

{
0 if yf(x) > 0
1 if yf(x) ≤ 0

measures the number of classification errors
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Principles of statistical learning

Risk function and learning

Risk function
Assesses the expected error (generalization ability) of f

R(f) = IEX,Y ℓ(Y, f(X))

R(f) =

∫
X ,Y

ℓ(y, f(x))p(x, y)dxdy

Statistical learning problem

Find the function f∗ that minimises R(f)

f∗ = argminf IEX,Y ℓ(Y, f(X))

However
f∗ is not attainable as p(X,Y ) is unknown
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Principles of statistical learning

Empirical risk

We only have access to a finite set of samples D = {(xi, yi)}ni=1.

Define the empirical risk

Rn(f) =
1

n

n∑
i=1

ℓ(yi, f(xi))

Empirical risk minimization
We are looking for a decision function

fn = argminfRn(f)

Rn(fn) is the empirical risk corresponding to fn. It is an
approximation of the real risk R(fn) = IEX,Y ℓ(Y, fn(X))
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Principles of statistical learning

Empirical risk and over-fitting

Should we choose f based on Rn(fn) ? NO !
as we can design a sufficiently complex function fn such that
Rn(fn) → 0 but with high risk R(fn)

K-NN classification function
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Principles of statistical learning

The paradigm of statistical learning

D = {(xi, yi)}ni=1 Algo A f

x

Error Rn(f)
=

1
n

∑n
i=1 ℓ(f(xi), yi)

Cost ℓ

Hypothesis

space F

y

R(f)
=

IEx,yℓ(y, f(x))

p(x, y)

IP

( )
≤ δ> +ϵ

With given D, find a model f in a family F (linear, kernel SVM . . . ) with
good generalization properties
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Principles of statistical learning

Why the learning is possible

Supremum on generalization error

Let’s D = {(xi, yi)}ni=1 the dataset. Let F be a space of functions. For
each f ∈ F , with probability 1− δ we have

R(f) ≤ Rn(f) +O

(√
h

n
log

2en

h
+

log 2/δ

n

)

h > 0 measures the "complexity" of the functions class F

Generalization occurs whenever h < ∞
Bigger is n better it is (n >> h: the number of data increases with
model complexity )
Linear model f(x) = w⊤x+ b with w ∈ Rd, h = d+ 1
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Principles of statistical learning

Illustration

Generalization / over-fitting

R(f) ≤ 1

n

n∑
i=1

ℓ(f(xi), yi) + term(n, h(F))

Rn(f) =
1
n

∑n
i=1 ℓ(f(xi), yi) is not a good estimator of generalization

ability
Over-fitting appears with the increasing complexity of f
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Principles of statistical learning

Complexity control: regularisation

Let k1 < k2 < k3 < · · ·
We define Fj = {f : Ω(f) ≤ kj}
Ω(f) : regularisation function
Example : Ω(f) = ∥f∥2

Minimization of the regularized empiric risk

min
f

1

n

n∑
i=1

ℓ(f(xi), yi) + λΩ(f)

λ > 0 : regularization hyper-parameter
λ >> 1 → we encourage f to be of low complexity

Example : SVM minf
1
n

∑n
i=1 ℓ(f(xi), yi) + λ ∥f∥2 with cost function

ℓ(y, f(x)) = max(0, 1− yf(x)) and λ = 1/C

Gilles Gasso Model selection and assessment 12 / 39



Principles of statistical learning

Illustration: influence of model’s hyper-parameters

Kernel bandwidth (log. scale)
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The choice of the hyper-parameter’s value (hence of the model)
impacts the quality of the prediction
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Principles of statistical learning

Model selection and evaluation

Raised issues
Model evaluation : what measure(s) of performance?

Estimation of the generalisation capacity of the model

Practical model selection procedures

N. Japkowicz & M. Shah, "Evaluating Learning Algorithms: A Classification Perspective", Cambridge University Press, 2011
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Assessing model’s quality
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Assessing model’s quality Performance measures

Assessing the quality of a model
The confusion matrix
A matrix showing the predicted and actual classifications. A confusion matrix is
of size p× p, where p is the number of classes.

Predicted / Actual Positive Negative
Positive TP FP
Negative FN TN

P = TP + FN N = FP + TN

Error rate = (FP + FN)/(P + N) (↘↘)

Accuracy = 1 - Error rate = (TP + TN)/(P + N) (↗↗)

Precision = TP/(TP + FP)

Recall, Sensitivity = TP/P

Specificity = FP/N

F-Measure = 2
Precision × Recall
Precision + Recall

(↗↗)
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Assessing model’s quality Performance measures

ROC Curve

It’s the curve TPR = fonction(FPR)

Allows graphical comparison of different models
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Assessing model’s quality Performance measures

Measure of performances

Area Under the ROC Curve (AUC)

Let D = {(xi, yi = 1)}Pi=1 ∪ {(xj , yj = −1)}Ni=1 and f be the decision
function. The AUC is defined by

AUC =

P∑
i=1

N∑
j=1

II [f(xi) > f(xj)] + 0.5 II [f(xi) = f(xj)]

P ×N

with II the indicator function
AUC is between 0 and 1 (↗↗ )

Favours the decision function such that f(xi) > f(xj)
∀ (yi = 1, yj = −1)
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Assessing model’s quality Performance measures

Other performance measures

Many performance measures exist
Each classifier may be the best one according to a specific measure
Keep in mind that your model may fail according to another measure

→ Choose wisely according to your problematic

N. Japkowicz & M. Shah, "Evaluating Learning Algorithms: A Classification Perspective", Cambridge University Press, 2011
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Assessing model’s quality Estimation of generalization ability

The model’ generalization

Let f be a decision-making function developed using the data
Dn = {(xi, yi)}i=1···n

We are looking at R(D∞, f) the theoretical performance of f on all
possible future data

Generalisation Capacity

Capacity of f to perform well (measured with one of the previous metrics)
when tested on data other than those used for training

How to estimate R(D∞, f) in practice ?
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Assessing model’s quality Estimation of generalization ability

Paradigm test set/training set

Randomly split Dn into two disjoints sets Dtrain and Dtest

Données disponibles

Apprentissage {X app ,Y app } Test {X test ,Y test }

Dtrain = {(xi, yi)}ntrain
i=1 : data used for training f

Dtest = {(xi, yi)}ntest
i= : data used to evaluate the generalization

capacity of f

Remark
Bigger ntrain is, better the training
Bigger ntest is, better the estimation of performance is f

Dtest is used only once !

Gilles Gasso Model selection and assessment 21 / 39



Assessing model’s quality Estimation of generalization ability

Error bars on Bernoulli trials
Hypothesis

My new method classifies well 90 (nS) examples over 100 (n). 10 (nF ) examples
are mis-classified. What is my level of confidence?

Level of confidence α

success probability : p̂ = 0.9

p̂α = p̂± z

√
p̂ (1− p̂)

n
=

nS

n
± z

n

√
nSnF

n

with z is the 1− α
2 quantile of a standard normal distribution.

Consider α = 0.95,

z = scipy. stats .norm.ppf(0.975)∗np.sqrt(0.9∗(1−0.9)/100)
p̂α = 0.9± 0.059

ie. 95% of time: 0.84 < p̂ < 0.96

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
Gilles Gasso Model selection and assessment 22 / 39

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval


Assessing model’s quality Estimation of generalization ability

To improve the estimate

Dataset size
If you increase the number of runs, your confidence increases.
Check the confidence interval

Increase n

Random Subsampling (The repeated holdout method)
K-Fold Cross-Validation (K = 10, 5, 2, . . . )
Leave-one-out Cross-Validation (K = n)
Bootstrap (each sample can be in differents subsets)
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Assessing model’s quality Estimation of generalization ability

Conclusion

Best practices
Simulate real conditions
Avoid test set bias by adding it within learning procedure
Look for stability rather than performance
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Model selection

Model Selection: the principle

Problem
Given a set of models F = {f1, f2, · · · }, choose the decision function
giving the best performances on future data

Examples of function choice by classification type
K-NN :choice of K
Sparse Logistic Regression : number of selected variables
SVM : choice of the hyper-parameter C, kernel tuning
· · ·
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Model selection

Validation set

How to choose the "best" model without testing on Dtest ?

Validation Apprentissage {X app ,Y app }

Données disponibles

Test {X test ,Y test }{X val ,Y val}

1 Randomly split Dn = Dtrain ∪ Dval ∪ Dtest

2 Train each possible model on Dtrain

3 Evaluate the performance on Dval

4 Select the model with the best performance on Dval

5 Test the selected model on Dtest

Remark
Dtest is used only one time !
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Model selection

K-fold validation

What if the size of Dn is small ?

TestApprentissageValidation 

Validation TestApprentissage Apprentissage

Validation TestApprentissage

1 Randomly split Dn = Dtrain ∪ Dtest

2 Then split randomly Dtrain = D1 ∪ · · · ∪ DK in K sets
3 For k = 1 to K

1 Put aside Dk

2 Train the model f on the K − 1 remaining sets
3 Evaluate its performance Rk on generalizing to Dk

4 Average the K measures of performance Rk
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Model selection

Illustration

K-Fold Cross-Validation Cross-Validation
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Fairness in ML Introduction

Fairness in Machine Learning

Fairness refers to the absence of unjustified discrimination in algorithmic
decision-making.

A machine learning system is unfair if it systematically disadvantages
individuals or groups based on sensitive attributes.

Sensitive attributes may include:

Race, gender, age
Disability status
Socioeconomic background
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Fairness in ML Introduction

Fairness: COMPAS example1

White defendants
Prediction

Outcome Low Risk High Risk
No Recidivism 1139 (TN) 349 (FP)
Recidivated 461 (FN) 505 (TP)

Error Rate ≈ 33%
False Positive Rate ≈ 23.5%
False Negative Rate ≈ 47.7%

Black defendants
Prediction

Outcome Low Risk High Risk
No Recidivism 990 (TN) 805 (FP)
Recidivated 532 (FN) 1369 (TP)

Error Rate ≈ 36.2%
False Positive Rate ≈ 44.9%
False Negative Rate ≈ 28.0%

Findings

Similar overall error rates between white and black defendants but...

...very different outcomes for white and black defendants

Black defendants have 1.9x higher False Positive Rate
White defendants have 1.7x higher False Negative Rate

1
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
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Fairness in ML Introduction

Fairness: Facial Recognition (FR)
FR involves ML or AI algorithms at different stages of the processing pipeline

NIST reports show discrepancies in error rates between social groups for FR
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Fairness in ML Introduction

Source of bias

Gilles Gasso Model selection and assessment 34 / 39



Fairness in ML Formalization of Fairness in ML

Formalizing fairness

Individual Fairness

Principle: Similar individuals (differing only on sensitive attributes) should
receive similar outcomes ∥x− x′∥ ≤ ε ⇒ ∥f(x)− (x′)∥ ≤ ε′

Requires to define the task-specific similarity metric

Scale poorly to large scale data.

Group fairness

Ensures statistical parity across predefined groups

Fairness metric = R(R(f ;D1), · · · , R(f ;DK)) for K subgroups

Groups are defined by sensitive attributes S

Easier to measure and commonly used in practice
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Fairness in ML Fairness in practice

Different strategies to ensure Fairness

Pre-processing: produce discrimination-free training data
Reweighting samples
Removing sensitive features
Learning fair representations

In-processing: fairness-aware model training
Post-processing: correcting biased predictors

output correction
input correction
classifier correction
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Fairness in ML Fairness in practice

In-processing: example

Minimize classification error with fairness constraints over subgroup defined
by the attribute S

min
f

R(f)

s.t. IP(f(X,S) > 0|Y = 1, S = A) = IP(f(X,S) > 0|Y = 1, S = B)

Empirical minimization

min
f

Rn(f)

s.t. |RA
n (f)−RB

n (f)| ≤ ε

with RA
n (f) = ÎP (f(X,S) > 0|Y = 1, S = A) the empirical probability
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Fairness in ML Fairness in practice

In-processing: example for kernel SVM 2

Let H a Hilbert space induced by kernel k such that the feature map is
defined by x 7→ ϕ(x) and f(x) = ⟨w, ϕ(x)⟩

Optimization problem

min
w∈H

1
n

∑n
i=1 ℓ(f(xi), yi) + λ ∥w∥2

s.t. |⟨w, u⟩|H ≤ ε

Relaxation of the fairness constraint

u = uA − uB with uA =
1

nA

∑
i=1,Si=A

ϕ(xi)

2Empirical Risk Minimization under Fairness Constraints
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Fairness in ML Fairness in practice

Post-processing: example

https://nvlpubs.nist.gov/nistpubs/ir/2019/nist.ir.8280.pdf
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