

Model selection and assessment

Gilles Gasso

INSA Rouen - ITI Department
Laboratory LITIS

December 15, 2025

Plan

- 1 Introduction
- 2 Principles of statistical learning
- 3 Assessing model's quality
 - Performance measures
 - Estimation of generalization ability
- 4 Model selection
- 5 Fairness in ML
 - Introduction
 - Formalization of Fairness in ML
 - Fairness in practice

The goal

Goal

- $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$: set of labeled data
- $(\mathbf{x}, y) \sim p(X, Y)$ with $p(X, Y)$ the joint distribution generally unknown
- **Goal** : learn from \mathcal{D} a function

$$\begin{aligned} f : \mathcal{X} &\longrightarrow \mathcal{Y} \\ x &\longmapsto \hat{y} = f(x) \end{aligned}$$

that predicts the output \hat{y} associated to each point $\mathbf{x} \in \mathcal{X}$

Properties of the learning

- $\forall (\mathbf{x}_i, y_i) \in \mathcal{D}$, we want f to predict the correct label y_i
- f should correctly predict the labels of unseen sample \mathbf{x}_j

Example

Example : image classification

Classification methods

- K-NN
- Logistic Regression
- SVM (linear or non-linear)
- ...

⇒ Which model to select ? How to assess its ability to generalize to unseen data ?

Loss function

Loss function $\ell(Y, f(X))$

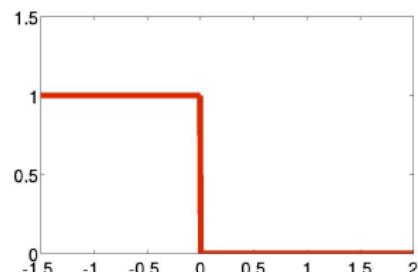
- evaluates how "close" is the prediction $f(\mathbf{x})$ to the true label y
- it penalizes errors: $\ell(y, f(\mathbf{x})) = \begin{cases} 0 & \text{if } y = f(\mathbf{x}) \\ \geq 0 & \text{if } y \neq f(\mathbf{x}) \end{cases}$

For binary classification

- We suppose $\mathcal{Y} = \{-1, 1\}$
- 0 - 1 cost

$$\ell(y, f(\mathbf{x})) = \mathbb{I}_{yf(\mathbf{x}) \leq 0} = \begin{cases} 0 & \text{if } yf(\mathbf{x}) > 0 \\ 1 & \text{if } yf(\mathbf{x}) \leq 0 \end{cases}$$

measures the number of classification errors



Risk function and learning

Risk function

Assesses the expected error (generalization ability) of f

$$R(f) = \mathbb{E}_{X,Y} \ell(Y, f(X))$$

$$R(f) = \int_{\mathcal{X}, \mathcal{Y}} \ell(y, f(x)) p(x, y) dx dy$$

Statistical learning problem

Find the function f^* that minimises $R(f)$

$$f^* = \operatorname{argmin}_f \mathbb{E}_{X,Y} \ell(Y, f(X))$$

However

f^* is not attainable as $p(X, Y)$ is unknown

Empirical risk

We only have access to a finite set of samples $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.

Define the empirical risk

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i))$$

Empirical risk minimization

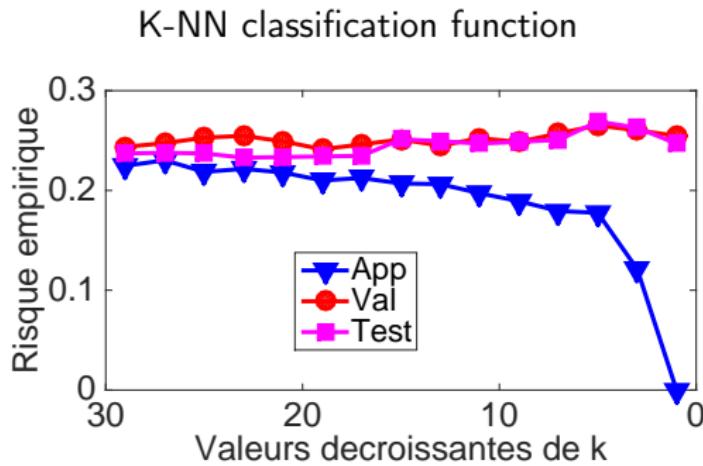
- We are looking for a decision function

$$f_n = \operatorname{argmin}_f R_n(f)$$

- $R_n(f_n)$ is the empirical risk corresponding to f_n . It is an approximation of the real risk $R(f_n) = \mathbb{E}_{X,Y} \ell(Y, f_n(X))$

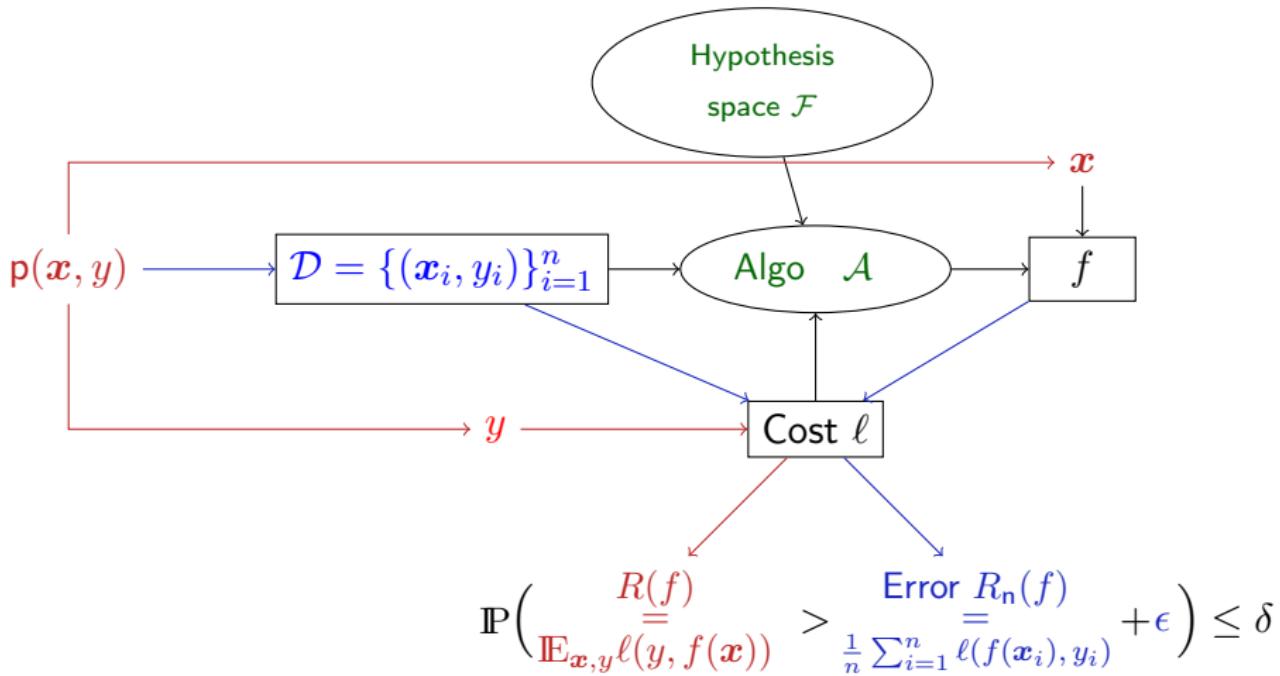
Empirical risk and over-fitting

- Should we choose f based on $R_n(f_n)$? **NO !**
- as we can design a sufficiently complex function f_n such that $R_n(f_n) \rightarrow 0$ but with high risk $R(f_n)$



⇒ Control the complexity of the function f

The paradigm of statistical learning



With given \mathcal{D} , find a model f in a family \mathcal{F} (linear, kernel SVM ...) with good generalization properties

Why the learning is possible

Supremum on generalization error

Let's $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ the dataset. Let \mathcal{F} be a space of functions. For each $f \in \mathcal{F}$, with probability $1 - \delta$ we have

$$R(f) \leq R_n(f) + \mathcal{O} \left(\sqrt{\frac{h}{n} \log \frac{2en}{h}} + \frac{\log 2/\delta}{n} \right)$$

$h > 0$ measures the "complexity" of the functions class \mathcal{F}

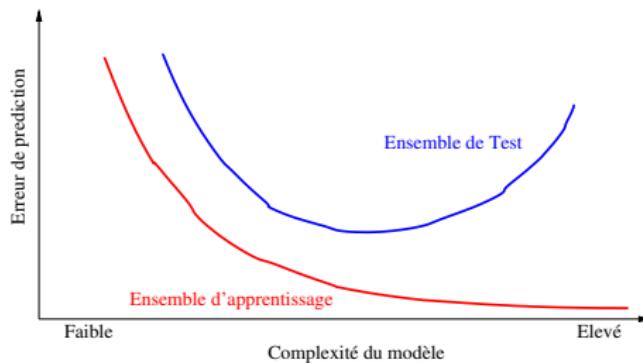
- Generalization occurs whenever $h < \infty$
- Bigger is n better it is ($n \gg h$: the number of data increases with model complexity)
- Linear model $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$ with $\mathbf{w} \in \mathbb{R}^d$, $h = d + 1$

Illustration

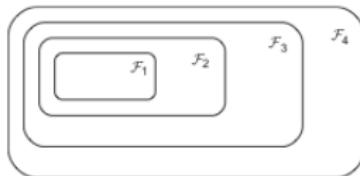
Generalization / over-fitting

$$R(f) \leq \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i) + \text{term}(n, h(\mathcal{F}))$$

- $R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i)$ is not a good estimator of generalization ability
- Over-fitting appears with the increasing complexity of f



Complexity control: regularisation



Let $k_1 < k_2 < k_3 < \dots$

We define $\mathcal{F}_j = \{f : \Omega(f) \leq k_j\}$

$\Omega(f)$: regularisation function

Example : $\Omega(f) = \|f\|^2$

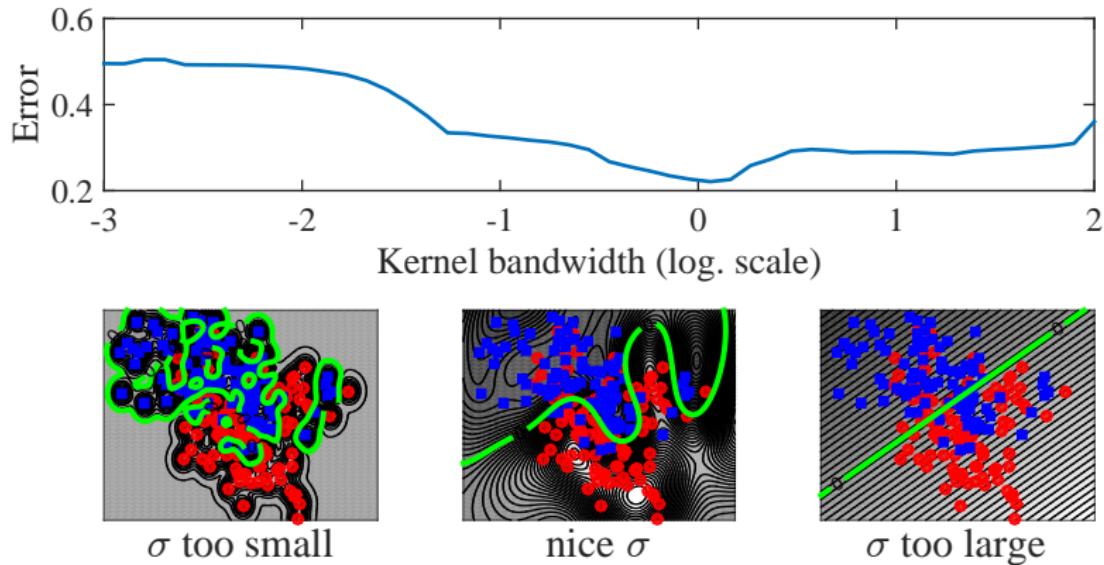
Minimization of the regularized empiric risk

$$\min_f \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i) + \lambda \Omega(f)$$

- $\lambda > 0$: regularization hyper-parameter
- $\lambda \gg 1 \rightarrow$ we encourage f to be of low complexity

Example : SVM $\min_f \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i) + \lambda \|f\|^2$ with cost function $\ell(y, f(\mathbf{x})) = \max(0, 1 - yf(\mathbf{x}))$ and $\lambda = 1/C$

Illustration: influence of model's hyper-parameters

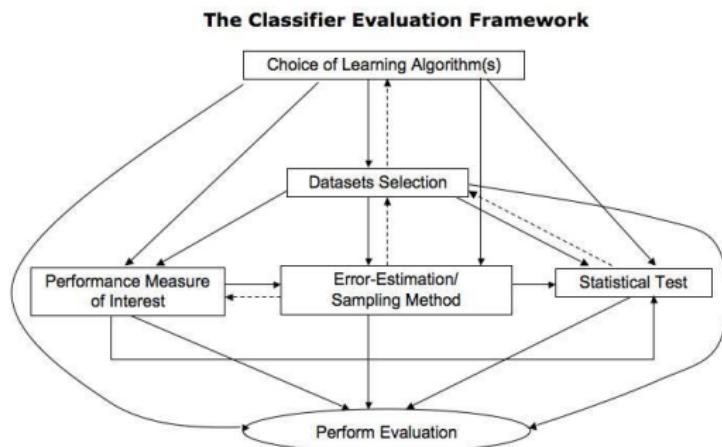


- The choice of the hyper-parameter's value (hence of the model) impacts the quality of the prediction

Model selection and evaluation

Raised issues

- Model evaluation : what measure(s) of performance?
- Estimation of the generalisation capacity of the model
- Practical model selection procedures



Plan

- 1 Introduction
- 2 Principles of statistical learning
- 3 Assessing model's quality
 - Performance measures
 - Estimation of generalization ability
- 4 Model selection
- 5 Fairness in ML
 - Introduction
 - Formalization of Fairness in ML
 - Fairness in practice

Assessing the quality of a model

The confusion matrix

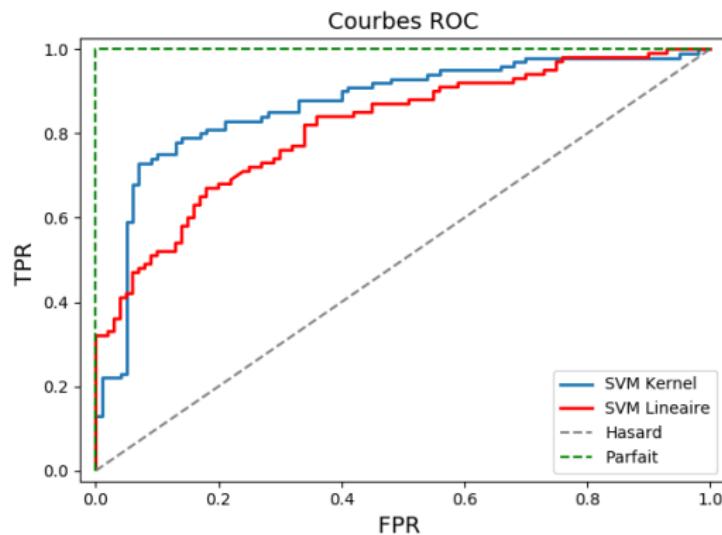
A matrix showing the predicted and actual classifications. A confusion matrix is of size $p \times p$, where p is the number of classes.

Predicted / Actual	Positive	Negative
Positive	TP	FP
Negative	FN	TN
$P = TP + FN$	$N = FP + TN$	

- Error rate = $(FP + FN)/(P + N)$ (↙↙)
- Accuracy = $1 - \text{Error rate} = (TP + TN)/(P + N)$ (↗↗)
- Precision = $TP/(TP + FP)$
- Recall, Sensitivity = TP/P
- Specificity = FP/N
- F-Measure = $2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$ (↗↗)

ROC Curve

- It's the curve $TPR = \text{fonction}(FPR)$
- Allows graphical comparison of different models



Measure of performances

Area Under the ROC Curve (AUC)

- Let $\mathcal{D} = \{(\mathbf{x}_i, y_i = 1)\}_{i=1}^P \cup \{(\mathbf{x}_j, y_j = -1)\}_{j=1}^N$ and f be the decision function. The AUC is defined by

$$\text{AUC} = \sum_{i=1}^P \sum_{j=1}^N \frac{\mathbb{I}[f(\mathbf{x}_i) > f(\mathbf{x}_j)] + 0.5 \mathbb{I}[f(\mathbf{x}_i) = f(\mathbf{x}_j)]}{P \times N}$$

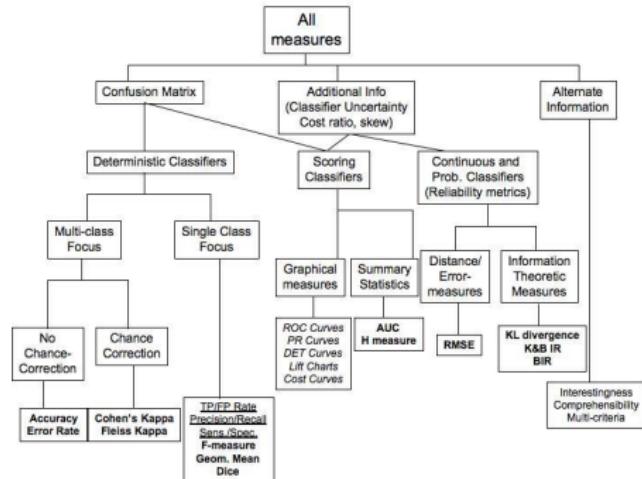
with \mathbb{I} the indicator function

- AUC is between 0 and 1 (↗↗)
- Favours the decision function such that $f(\mathbf{x}_i) > f(\mathbf{x}_j)$
 $\forall (y_i = 1, y_j = -1)$

Other performance measures

- Many performance measures exist
- Each classifier may be the best one according to a specific measure
- Keep in mind that your model may fail according to another measure

→ Choose wisely according to your problematic



The model' generalization

- Let f be a decision-making function developed using the data $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1 \dots n}$
- We are looking at $R(\mathcal{D}_\infty, f)$ the theoretical performance of f on all possible future data

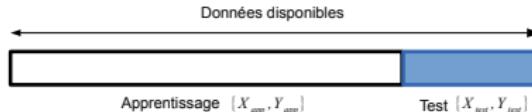
Generalisation Capacity

Capacity of f to perform well (measured with one of the previous metrics) when tested on data other than those used for training

How to estimate $R(\mathcal{D}_\infty, f)$ in practice ?

Paradigm test set/training set

Randomly split \mathcal{D}_n into two disjoint sets \mathcal{D}_{train} and \mathcal{D}_{test}



- $\mathcal{D}_{train} = \{(x_i, y_i)\}_{i=1}^{n_{train}}$: data used for training f
- $\mathcal{D}_{test} = \{(x_i, y_i)\}_{i=1}^{n_{test}}$: data used to evaluate the generalization capacity of f

Remark

- Bigger n_{train} is, better the training
- Bigger n_{test} is, better the estimation of performance is f
- \mathcal{D}_{test} is used only once !

Error bars on Bernoulli trials

Hypothesis

My new method classifies well 90 (n_S) examples over 100 (n). 10 (n_F) examples are mis-classified. What is my level of confidence?

Level of confidence α

success probability : $\hat{p} = 0.9$

$$\hat{p}_\alpha = \hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \frac{n_S}{n} \pm \frac{z}{n} \sqrt{\frac{n_S n_F}{n}}$$

with z is the $1 - \frac{\alpha}{2}$ quantile of a standard normal distribution.

- Consider $\alpha = 0.95$,
- $z = \text{scipy.stats.norm.ppf}(0.975) * \text{np.sqrt}(0.9 * (1 - 0.9) / 100)$
- $\hat{p}_\alpha = 0.9 \pm 0.059$
- ie. 95% of time: $0.84 < \hat{p} < 0.96$

To improve the estimate

Dataset size

- If you increase the number of runs, your confidence increases.
- Check the confidence interval

Increase n

- Random Subsampling (The repeated holdout method)
- K-Fold Cross-Validation ($K = 10, 5, 2, \dots$)
- Leave-one-out Cross-Validation ($K = n$)
- Bootstrap (each sample can be in different subsets)

Conclusion

Best practices

- Simulate real conditions
- Avoid test set bias by adding it within learning procedure
- Look for stability rather than performance

Plan

- 1 Introduction
- 2 Principles of statistical learning
- 3 Assessing model's quality
 - Performance measures
 - Estimation of generalization ability
- 4 Model selection
- 5 Fairness in ML
 - Introduction
 - Formalization of Fairness in ML
 - Fairness in practice

Model Selection: the principle

Problem

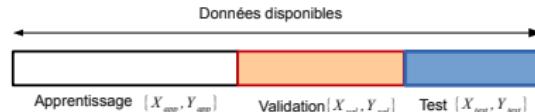
- Given a set of models $\mathcal{F} = \{f_1, f_2, \dots\}$, choose the decision function giving the best performances on future data

Examples of function choice by classification type

- K-NN :choice of K
- Sparse Logistic Regression : number of selected variables
- SVM : choice of the hyper-parameter C , kernel tuning
- ...

Validation set

How to choose the "best" model without testing on \mathcal{D}_{test} ?



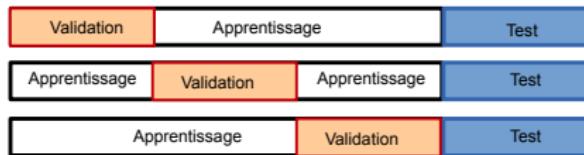
- ① Randomly split $\mathcal{D}_n = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$
- ② Train each possible model on \mathcal{D}_{train}
- ③ Evaluate the performance on \mathcal{D}_{val}
- ④ Select the model with the best performance on \mathcal{D}_{val}
- ⑤ Test the selected model on \mathcal{D}_{test}

Remark

- \mathcal{D}_{test} is used only one time !

K -fold validation

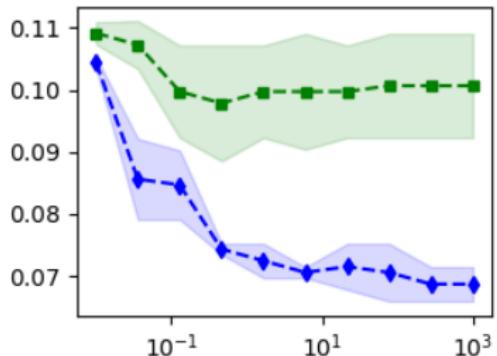
What if the size of \mathcal{D}_n is small ?



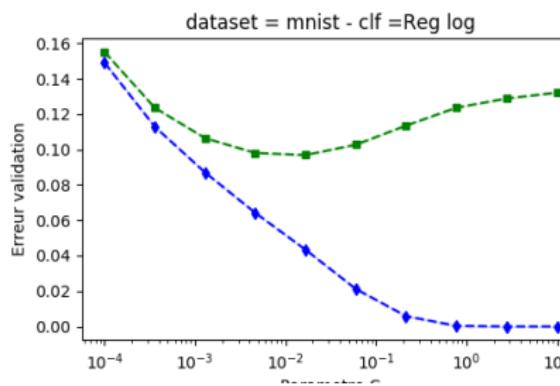
- ➊ Randomly split $\mathcal{D}_n = \mathcal{D}_{train} \cup \mathcal{D}_{test}$
- ➋ Then split randomly $\mathcal{D}_{train} = \mathcal{D}_1 \cup \dots \cup \mathcal{D}_K$ in K sets
- ➌ For $k = 1$ to K
 - ➊ Put aside \mathcal{D}_k
 - ➋ Train the model f on the $K - 1$ remaining sets
 - ➌ Evaluate its performance R_k on generalizing to \mathcal{D}_k
- ➍ Average the K measures of performance R_k

Illustration

K-Fold Cross-Validation
dataset = cardio - clf =SVM linear



Cross-Validation



Plan

- 1 Introduction
- 2 Principles of statistical learning
- 3 Assessing model's quality
 - Performance measures
 - Estimation of generalization ability
- 4 Model selection
- 5 Fairness in ML
 - Introduction
 - Formalization of Fairness in ML
 - Fairness in practice

Fairness in Machine Learning

- Fairness refers to the absence of unjustified discrimination in algorithmic decision-making.
- A machine learning system is unfair if it systematically disadvantages individuals or groups based on sensitive attributes.
- Sensitive attributes may include:
 - Race, gender, age
 - Disability status
 - Socioeconomic background

Fairness: COMPAS example¹

White defendants		Prediction	
Outcome	Low Risk	High Risk	
No Recidivism	1139 (TN)	349 (FP)	
Recidivated	461 (FN)	505 (TP)	

Error Rate $\approx 33\%$

False Positive Rate $\approx 23.5\%$

False Negative Rate $\approx 47.7\%$

Black defendants		Prediction	
Outcome	Low Risk	High Risk	
No Recidivism	990 (TN)	805 (FP)	
Recidivated	532 (FN)	1369 (TP)	

Error Rate $\approx 36.2\%$

False Positive Rate $\approx 44.9\%$

False Negative Rate $\approx 28.0\%$

Findings

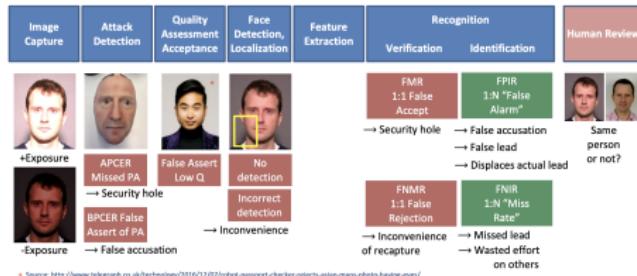
- Similar overall error rates between white and black defendants but...
- ...very different outcomes for white and black defendants
 - Black defendants have 1.9x higher False Positive Rate
 - White defendants have 1.7x higher False Negative Rate

¹

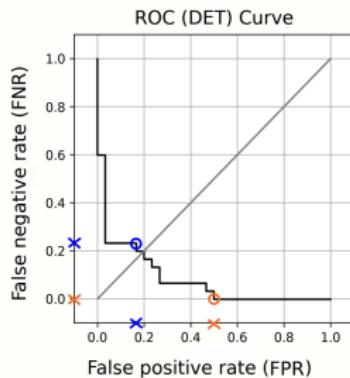
<https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm>

Fairness: Facial Recognition (FR)

FR involves ML or AI algorithms at different stages of the processing pipeline



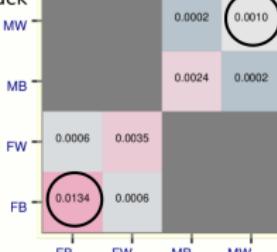
NIST reports show discrepancies in error rates between social groups for FR



FPR for t s.t. $FPR_{MW} = 10^{-3}$

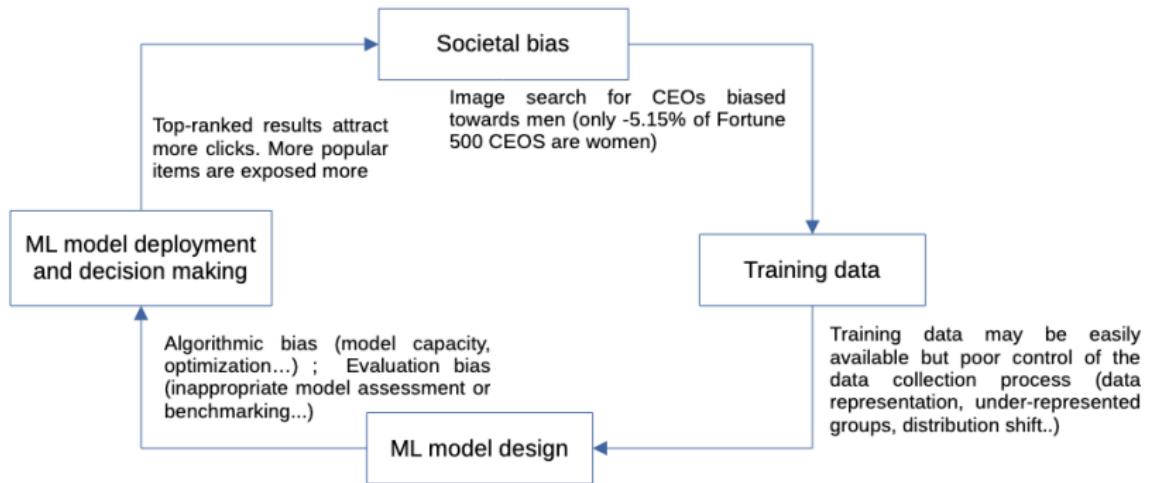
M/F: Male/Female

W/B: White/Black



(Grother and Ngan, 2019)

Source of bias



Formalizing fairness

Individual Fairness

- Principle: *Similar individuals* (differing only on sensitive attributes) should receive *similar outcomes* $\|\mathbf{x} - \mathbf{x}'\| \leq \varepsilon \Rightarrow \|f(\mathbf{x}) - f(\mathbf{x}')\| \leq \varepsilon'$
- Requires to define the task-specific similarity metric
- Scale poorly to large scale data.

Group fairness

- Ensures statistical parity across predefined groups

Fairness metric = $R(R(f; \mathcal{D}_1), \dots, R(f; \mathcal{D}_K))$ for K subgroups

- Groups are defined by sensitive attributes S
- Easier to measure and commonly used in practice

Different strategies to ensure Fairness

- Pre-processing: produce discrimination-free training data
 - Reweighting samples
 - Removing sensitive features
 - Learning fair representations
- In-processing: fairness-aware model training
- Post-processing: correcting biased predictors
 - output correction
 - input correction
 - classifier correction

In-processing: example

- Minimize classification error with fairness constraints over subgroup defined by the attribute S

$$\min_f R(f)$$

$$\text{s.t. } \mathbb{P}(f(X, S) > 0 | Y = 1, S = A) = \mathbb{P}(f(X, S) > 0 | Y = 1, S = B)$$

- Empirical minimization

$$\min_f R_n(f)$$

$$\text{s.t. } |R_n^A(f) - R_n^B(f)| \leq \varepsilon$$

with $R_n^A(f) = \hat{\mathbb{P}}(f(X, S) > 0 | Y = 1, S = A)$ the empirical probability

In-processing: example for kernel SVM ²

Let \mathcal{H} a Hilbert space induced by kernel k such that the feature map is defined by $\mathbf{x} \mapsto \phi(\mathbf{x})$ and $f(\mathbf{x}) = \langle w, \phi(\mathbf{x}) \rangle$

Optimization problem

$$\begin{aligned} \min_{w \in \mathcal{H}} \quad & \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i) + \lambda \|w\|^2 \\ \text{s.t.} \quad & |\langle w, u \rangle|_{\mathcal{H}} \leq \varepsilon \end{aligned}$$

Relaxation of the fairness constraint

$$u = u_A - u_B \quad \text{with} \quad u_A = \frac{1}{n_A} \sum_{i=1, S_i=A} \phi(\mathbf{x}_i)$$

²Empirical Risk Minimization under Fairness Constraints

Post-processing: example

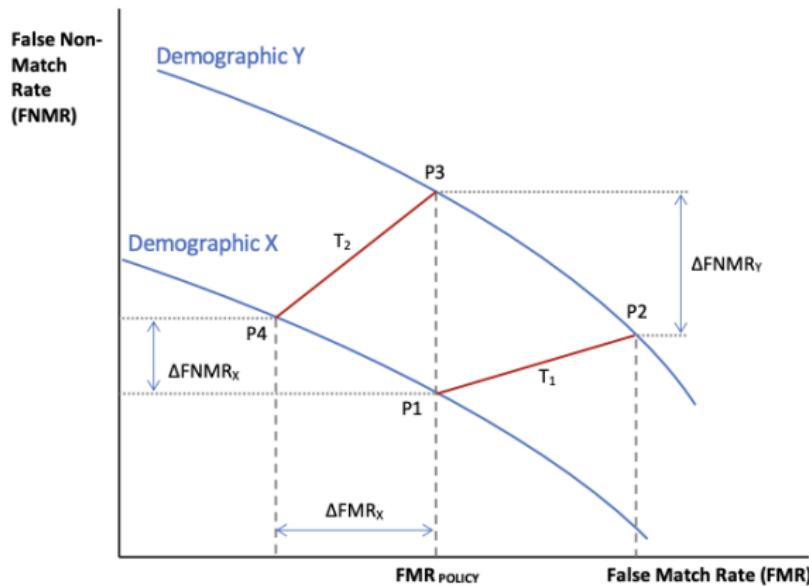


Figure 28: The figure shows the increases in FNMR implied by increasing the operating threshold to achieve the target FMR on the high-FMR demographic, Y.

<https://nvlpubs.nist.gov/nistpubs/ir/2019/nist.ir.8280.pdf>