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Avant propos

Evaluation par attendus d’apprentissages disciplinaires

Depuis I’année universitaire 2018-2019, la validation du cours « Algorithique avancée et programmation
C > utilise une évaluation par attendus d’apprentissages disciplinaires (AAD). Le référentiel des AAD est dispo-
nible sur le site Moodle de 'INSA Rouen Normandie : https://moodle.insa-rouen.fr/course/
view.php?id=60&section=0.

Les exercices de ce document vous permettent de travailler ces AAD.

Quelque soit I’exercice les AAD suivants sont évalués :

— ANO001
— ANO002

— CP001

— CP002 :
— CP006 :
— CDO004 :
— CDO005 :
— CD006 :
— CDO007 :
— CDO009 :
— CDO010:

: Désigner les choses (identifiant significatif)
: Btre précis quant aux types de données utilisés
— ANO003 :

Connaitre le role de 1’analyse

: Comprendre le paradigme de programmation impératif

Comprendre le paradigme de programmation structuré

Comprendre le rdle de la conception préliminaire

Ecrire des algos avec le pseudo code utilisé 2 'INSA

Ecrire un pseudo code lisible (indentation, identifiant significatif)

Choisir la bonne itération

Utiliser les bonnes catégories de parametres effectifs pour un passage de parametre donnée
Ecrire un algorithme qui résout le probleme

Connaitre le role de la conception détaillée

Le tableau ci dessous croise les exercices de ce livret avec les autres compétences :

Croisement AAD - exercices

] AAD ‘ Exercices
ANOQ04 : Comprendre et appliquer des consignes al- | 3.4,7,12, 13
gorithmiques sur un exemple
ANI101 : Identifier les entrées et sorties d’un | 1.3,2.4,4,5
probleme
AN102 : Décomposer logiquement un probleme 24,4
AN103 : Généraliser un probleme 4
ANT104 : Savoir si un probléme doit étre décomposé | 2.4
AN201 : Identifier les dépendances d’un TAD 6,8, 12
AN203 : Savoir si une opération identifiée fait partie | 6, 8, 12
du TAD a spécifier
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AAD | Exercices \
AN204 : Formaliser des opérations d’un TAD 6,12

AN205 Formaliser les préconditions d’une | 6,8

opération d’un TAD

AN?206 : Formaliser des axiomes ou savoir définir la | 6, 12

sémantique d’une opération d’'un TAD

AN?301 : Lister les collections usuelles 8

CP003 : Choisir entre une fonction et une procédure | 1.3,4,5,6, 8, 12

CP004 : Concevoir une signature (préconditions in-
cluses)

1.1,1.2,1.3,2.1,2.2,2.3,3.1,3.2,3.3,3.5,4,5,6, 12

CPO0O05 : Choisir un passage de parametre (E, S, E/S) | 2.2, 5, 6, 12
CDO001 : Dissocier les deux roles du développeur : | 6
concepteur et utilisateur

CDO002 : En tant qu’utilisateur, respecter une signa- | 1.1, 1.2
ture

CDO003 : Utiliser le principe d’encapsulation 6,8

CD101 : Estimer la taille d’un probleme (n) 14,4
CD102 : Calculer une complexité dans le pire et le | 1.4,4,7
meilleur des cas

CD104 : Ecrire un algorithme d’une complexité | 2.3,3.2, 3.3

donnée

CD201 : Identifier et résoudre le probleme des cas
non récursifs

3.1,3.2,3.3,34,35,7,8,10, 12

CD202 : Identifier et résoudre le probleme des cas
récursifs

3.1,32,3.3,34,35,7,8,10, 12

CD203 : Identifier une récursivité terminale et non
terminale et ce que cela implique

3.1,32,33,34,3.5

CD301 : Identifier un probleme qui se résout a I’aide | 2.3
d’un algorithme dichotomique

CD302 : Définir I’espace de recherche d’un algorith- | 1.4, 2.3
mique dichotomique

CD303 : Diviser et extraire les bornes de ’espace de | 1.4,2.3
recherche d’un algorithme dichotomique (cas discret

ou continu)

CD403 : Concevoir et utiliser des arbres (binaires, | 10
n-aires)

CD501 : Comprendre les algorithmes des différents | 7

tris et leurs complexités

CD601 : Concevoir des collections a I’aide de SDD | 10
CD602 : Comprendre les algorithmes d’insertion et | 10

de suppression (naifs et AVL) dans un arbre binaire

de recherche

CD701 : Définir la programmation dynamique 13
CD702 : Appliquer la programmation dynamique | 13
pour des cas simples

CD801 : Concevoir des graphes (matrice d’adja- | 12

cence, matrice d’incidence, liste d’adjacence)
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\ AAD \ Exercices

CD804 : Comprendre des algorithmes de recherche | 12
du plus court chemin : Dijkstra et A*
CD901 : Concevoir un type de données adapté a la | 9, 10
situation en terme d’espace mémoire et d’efficacité

Pseudo code

Vous écrirez vos algorithmes avec le pseudo code utilisé dans la plupart des cours d’algorithmique de
I’INSA Rouen Normandie. Voici la syntaxe des instructions disponibles :

Type de données

Les types de base sont : Entier, Naturel, NatureINonNul, Reel, ReelPositif, ReelPositifNonNul, Reel-
Negatif, ReelNegatifNonNul, Booleen, Caractere, Chaine de caracteres.
On définit un nouveau type de la fagon suivante :
Type Identifiant_nouveau_type = Identifiant_type_existant
On déclare un tableau de la fagon suivante :

— Tableau a une dimension : Tableau[borne_de_début. . .borne_de_fin] de type_des_éléments

— Tableau a deux dimensions : Tableau[borne_de_début. . .borne_de_fin][borne_de_début. . .borne_de_fin] de
type_des_éléments

On définit une structure de la facon suivante :
Type Identifiant = Structure
identifiant_attribut_1 : Type_1

finstructure

Affectation

Le symbole d’affectation est <.

Conditionnelles

Il y a trois instructions conditionnelles :

si condition alors si condition alors cas ou identifiant_variable vaut
instruction(s) instruction(s) valeur_I:

finsi sinon instruction(s)_1

instruction(s) e

finsi autre :
instruction(s)
fincas

Itérations

L’instruction de base pour les itérations déterministes est le pour :
pour identifiant <borne_de_début a borne_de_fin faire
instruction(s)
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finpour
On peut itérer sur les éléments d’une liste, d’une liste ordonnée ou d’un ensemble grice a I’instruction pour
chaque :
pour chaque élément de collection
instruction(s)
finpour
Pour les itérations indéterministes nous avons deux instructions :

tant que condition faire repeter
instruction(s) instruction(s)
fintantque jusqu’a ce que condition

Sous-programmes

Les fonctions permettent de calculer un résultat (composé d’une ou plusieurs valeurs) de maniere déterministe :

fonction identifiant (parametre(s)_formel(s)) : Type(s) de retour
| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s) avec au moins une fois 1’instruction retourner
fin
Les procédures permettent de créer de nouvelles instructions :
procédure identifiant (parametre(s)_formel(s)_avec_passage_de_parametres)

| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s)
fin
Les passages de parametre sont : entrée (E), sortie (S) et entrée/sortie (E/S).



Chapitre 1

Rappels : chaine de caracteres, itérations,
conditionnelles

Pour certains de ces exercices on considere que 1’on posséde les fonctions suivantes :
— fonction longueur (uneChaine : Chaine de caracteres) : Naturel
— fonction iemeCaractere (uneChaine : Chaine de caracteres, iemePlace : Naturel) : Caractere

| précondition(s) 0 < iemePlace et iemePlace < longueur(uneChaine)

1.1 estUnPrefixe

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO006 : Choisir la bonne itération

J

Proposez la fonction estUnPrefixe qui permet de savoir si une premiere chaine de caracteres est préfixe
d’une deuxie¢me chaine de caractéres (par exemple < pré > est un préfixe de < prédire > et de < pré ).

Correction proposée:
fonction estUnPrefixe (lePrefixePotentiel,uneChaine : Chaine de caracteres) : Booleen

Déclaration i: NaturelNonNul
resultat : Booleen

debut
si longueur(lePrefixePotentiel) >longueur(uneChaine) alors
retourner FAUX
sinon
i1
resultat < VRAI
tant que resultat et i<longueur(lePrefixePotentiel) faire
si iemeCaractere(uneChaine,i)=iemeCaractere(lePrefixePotentiel,i) alors
1+ i+l
sinon
resultat <+ FAUX
finsi
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fintantque
retourner resultat
finsi
fin

1.2 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO006 : Choisir la bonne itération

Une chaine de caracteres est un palindrome si la lecture de gauche a droite et de droite a gauche est iden-
bl 66 L 299 13

tique. Par exemple “radar”, “été”, “rotor”, etc. La chaine de caracteres vide est considérée comme €tant un
palindrome

Ecrire une fonction qui permet de savoir si une chaine est un palindrome.

Correction proposée:

fonction estUnPalindrome (ch : Chaine de caracteres) : Booleen

Déclaration g.d : NaturelNonNul
resultat : Booleen

debut
si longueur(ch)=0 alors
retourner VRAI
sinon
resultat < VRAI
g+ 1
d < longueur(ch)
tant que resultat et g<d faire
si iemeCaractere(ch,g) = iemeCaractere(ch,d) alors
g+ g+l
d<+d-1
sinon
resultat <+ FAUX
finsi
fintantque
retourner resultat
finsi
fin
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1.3 Position d’une sous-chaine

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme
— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

7

Soit I’analyse descendante présentée par la figure 1.1 qui permet de rechercher la position d’une chaine de
caracteres dans une autre chaine indépendemment de la casse (d’ou le suffixe IC a I’opération positionSousChaineIC),
c’est-a-dire que 1’on ne fait pas de distinction entre majuscule et minuscule.

— positionSousChainelC —>

/\

—— sontEgalesIC —»

— sousChaine ——»

— longueur

—> minuscule —

—» iemeCaractere ——»

FIGURE 1.1 — Une analyse descendante

Pour résoudre ce probleme il faut pouvoir :
— obtenir la longueur d’une chaine de caracteres ;

— obtenir la sous-chalne d’une chaine en précisant I’indice de départ de cette sous-chaine et sa longueur (le
premier caractere d’une sous-chaine a I’indice 1);

— savoir si deux chalnes de caracteres sont égales indépendemment de la casse.

L’opération positionSousChaineIC retournera la premiere position de la chaine recherchée dans la
chaine si cette premiere est présente, 0 sinon.
Par exemple :

— positionSousChaineIC ("AbCdEfGh", "cDE") retournera la valeur 3;
— positionSousChaineIC ("AbCdEfGh", "abc") retournera la valeur 1;

— positionSousChaineIC ("AbCdEfGh", "xyz") retournera la valeur 0.

1. Complétez I’analyse descendante en précisant les types de données en entrée et en sortie.

2. Donnez les signatures completes (avec préconditions si nécessaire) des sous-programmes (fonctions ou
procédures) correspondant aux opérations de 1’analyse descendante.

3. Donnez I’algorithme du sous-programme correspondant a 1’opération positionSousChaineIC et
sousChaine

Correction proposée:
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Chalne de caractc\ares;» positionSousChainelC — Naturel
Chaine de caracteres

Chaine de caracteres Chaine de caractéres )
NaturelNonNul —— sousChaine — Chaine de caractéres Chaine de caractéres ™ SONtEgalesiC  —— Booléen
Naturel ‘

Y

Chaine de caracteres— longueur —— Naturel

y

y

Chaine de caractéres . Caractére ——» minuscule —— Caractere
—» iemeCaractere —— Caractere
NaturelNonNul

Note : minuscule est sur les caracteres et non chaine de caracteres sinon il y aurait une autre sous boite. ..
fonction positionSousChainelC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

| précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher) <longueur(chaine)

fonction longueur (chaine : Chaine de caracteres) : Naturel
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

| précondition(s) long<longueur(chaine)-position+1

fonction sontEgalesIC (chainel, chaine2 : Chaine de caracteres) : Booleen
fonction minuscule (c : Caractere) : Caractere

fonction positionSousChainelC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

| précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)<longueur(chaine)

Déclaration i: Naturel

debut
i1
tant que i+longueur(chaineARechercher)-1<longueur(chaine) et non sontEgalesIC(sousChaine(chaine,i,
longueur(chaineARechercher)),chaineARechercher) faire
i<+ i+l
fintantque
si i+longueur(chaineARechercher)>longueur(chaine)+1 alors
<0
finsi
retourner i
fin
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

| précondition(s) long<longueur(chaine)-pos+1
Déclaration resultat : Chaine de caracteres, i : Naturel

debut
resultat <—
pour i <0 a long-1 faire
resultat < resultat + iemeCaractere(chaine,pos+i)

9999
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finpour

retourner resultat
fin

1.4 Racine carrée d’un nombre : recherche par dichotomie

Attendus d’apprentissages disciplinaires évalués

— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

— CD101 : Estimer la taille d’un probleme (n)

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

7

L’ objectif de cet exercice est de rechercher une valeur approchée de la racine carrée d’un nombre réel positif
x (x > 1) a e pres a ’aide d’un algorithme dichotomique.
Pour rappel :

< La dichotomie (“couper en deux” en grec) est, en algorithmique, un processus itératif [..]
de recherche ot, a chaque étape, on coupe en deux parties (pas forcément égales) un espace de
recherche qui devient restreint a I’une de ces deux parties.

On suppose bien siir qu’il existe un test relativement simple permettant a chaque étape de
déterminer 1’'une des deux parties dans laquelle se trouve une solution. Pour optimiser le nombre
d’itérations nécessaires, on s’arrangera pour choisir a chaque étape deux parties sensiblement de
la mé&me “taille” (pour un concept de “taille” approprié¢ au probléme), le nombre total d’itérations
nécessaires a la complétion de 1’algorithme étant alors logarithmique en la taille totale du probleme
initial. > (wikipédia).

Définir « I’espace de recherche > pour le probleme de la recherche d’une racine carrée.
Quelle condition booléenne permet de savoir si il doit y avoir une nouvelle itération ?

Quel test va vous permettre de savoir dans laquelle des deux parties se trouve la solution ?

Hwh o=

Proposez 1’algorithme de la fonction suivante (on suppose que x et epsilon sont positifs et que x est
supérieur ou égala 1) :

— fonction racineCarree (x,epsilon : ReelPositif) : ReelPositif

5. Quelle est la complexité de votre algorithme ?

Correction proposée:
La taille de ’espace de recherche est : (d — g)/e.
d—g>ce¢

m? plus petit ou plus grand que

Hwh o=

fonction racineCarree (x,¢ : ReelPositif) : ReelPositif
Déclaration g,d,m : ReelPositif

debut
g+ 0
d+x
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tant que d-g> e faire
m < (g+d)/2
si m*m<x alors
g+ m
sinon
d+m
finsi
fintantque
retourner g
fin

: CHAINE DE CARACTERES, ITERATIONS, CONDITIONNELLES

5. La taille du probleéme est définie par la valeur (d — g)/e. Le nombre d’itérations est donc de loga((d —

g)/e).

La représentation des flottants utilise un nombre fixe de bits (souvent la norme IEEE 754), Il y a donc
une borne MAX. De plus chaque opération sur les flottants (comparaison, multiplication, division par 2)
est dans ce cas supposée en temps constant, cet algorithme est O(loga((d — g)/€).



Chapitre 2

Rappels : les tableaux

Dans certains exercices qui vont suivre, le tableau d’entiers ¢ est défini par [1..MAX] et il contient n
éléments significatifs (n < MAX).

2.1 Plus petit élément

Attendus d’apprentissages disciplinaires évalués ]

— CP004 : Concevoir une signature (préconditions incluses) J

Ecrire une fonction, minTableau, qui i partir d’un tableau d’entiers ¢ non trié de n éléments significatifs
retourne le plus petit élément du tableau.

Correction proposée:

fonction minTableau (t : Tableau[1..MAX] d’Entier, n : NaturelNonNul) : Entier

| précondition(s) n<MAX

Déclaration 1i: Naturel,
min : Entier

debut
min < t[1]
pour i <2 a n faire
si t[i]<min alors
min < t[i]
finsi
finpour
retourner min
fin
15
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2.2 Sous-séquences croissantes

Attendus d’apprentissages disciplinaires évalués

— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O0S5 : Choisir un passage de parametre (E, S, E/S)

— CDO005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)

. v

Ecrire un sous-programme sousSequencesCroissantes, qui a partir d’un tableau d’entiers ¢ de n
éléments, fournit le nombre de sous-séquences strictement croissantes de ce tableau, ainsi que les indices de
début et de fin de la plus grande sous-séquence. Exemple : ¢ un tableau de 15 éléments : 1,2,5,3,12,25,13
,8,4,7,24,28,32,11,14. Les séquences strictement croissantes sont : < 1,2,5 >, < 3,12,25 > < 13 >, <
8 >,< 4,7,24,28,32 >, < 11,14 >. Le nombre de sous-séquences est : 6 et la plus grande sous-séquence
est: < 4,7,24,28,32 >. Donc dans ce cas les trois valeurs calculées seraient 6, 9 et 13.

Correction proposée:
fonction sousSequencesCroissantes (t :Tableau[1..MAX] d’Entier, n : NaturelNonNul) : NaturelNonNul,
NaturelNonNul, NaturelNonNul

| précondition(s) n<MAX

Déclaration i :Naturel
debutSequenceCourante, nbSsSequences, debutDelL.aPlusGrandeSsSequence, finDelLLaPlusGran-
deSsSequence : NaturelNonNul

debut
si n>1 alors
nbSsSequences < 1
debutDeLaPlusGrandeSsSequence < 1
finDeLaPlusGrandeSsSequence <« 1
debutSequenceCourante < 1
pour i <1 a n-1 faire
si t[i]>t[i+1] alors
nbSsSequences <— nbSsSequences+1
si i-debutSequenceCourante >finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence
alors
debutDeLaPlusGrandeSsSequence <— debutSequenceCourante
finDeLaPlusGrandeSsSequence <« i
finsi
debutSequenceCourante < i+1
finsi
finpour
si n-debutSequenceCourante>finDelLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence alors

debutDeLaPlusGrandeSsSequence <— debutSequenceCourante
finDeLaPlusGrandeSsSequence < n
finsi
retourner nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeLaPlusGrandeSsSequence
sinon
retourner 1,1,1
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finsi
fin

2.3 Recherche d’un élément en O(log(n))

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDI104 : Ecrire un algorithme d’une complexité donnée

— CD301 : Identifier un probleme qui se résout a I’aide d’un algorithme dichotomique
— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

J

Ecrire une fonction, recherche, qui détermine le plus petit indice d’un élément, (dont on est sir de
I’existence) dans un tableau d’entiers ¢ trié¢ dans 1’ordre croissant de n éléments en O(log(n)). Il peut y avoir
des doubles (ou plus) dans le tableau.

Correction proposée:

fonction recherche (t : Tableau[1.. MAX] d’Entier, n : NaturelNonNul, element : Entier) : NaturelNonNul

| précondition(s) n<MAX
31 <i < ntel que t[i] = element
estTrieEnOrdreCroissant(t)

Déclaration g,d,m : Naturel

debut
g+ 1
d+<n
tant que g # d faire
m <+ (g+d)div2
si tfm] > element alors
d+< m
sinon
g m+1
finsi
fintantque
retourner d
fin

Quelques remarques sur les algorithmes dichotomiques sur du discret :
— On sort du tant quand les deux indices se croisent

— 1l faut savoir quand « garder > 1’élément du milieu (et donc quand I’exclure, sinon il y a un risque de
boucle infinie). Ici, comme on cherche le plus petit indice de I’élément recherché, lorsque t[m] est cet
élément, il faut le garder (c’est peut étre lui qui est recherché).
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2.4 Lissage de courbe

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme
— AN102 : Décomposer logiquement un probleme

— ANI104 : Savoir si un probleme doit €tre décomposé

7

L’ objectif de cet exercice est de développer un « filtre non causal >, c’est-a-dire une fonction qui lisse
un signal en utilisant une fenétre glissante pour moyenner les valeurs (Cf. figure 2.1). Pour les premicres et
dernieres valeurs, seules les valeurs dans la fenétre sont prises en compte.

[ [2[1]4]5]3]6]3]|7] l2]1]4]s5/3]6]3]7] (2]1]a]s|3]e]3][7] ]
v v v
\1_5\ \ \ \ \ \ \ \ \1.5\2.3\3.3\4\4.7\ \ \ \ \1.5\2.3\3.3\4\4.7\4\5.3\5\

FIGURE 2.1 — Lissage d’un signal avec une fenétre de taille 3

Soit le type Signal :
Type Signal = Structure
donnees : Tableau[1..MAX] de Reel
nbDonnees : Naturel
finstructure
Apres avoir fait une analyse descendante du probleme, proposez I’ algorithme de la fonction filtreNonCausal

avec la signature suivante :
— fonction filtreNonCausal (signalNonLisse : Signal, tailleFenetre : NaturelNonNul) : Signal

| précondition(s) impair(tailleFenetre)

Correction proposée:
Analyse descencante :

— filtreNonCausal : Signal x Naturel -» Signal
— min : Naturel x Entier — Entier
— moax : Naturel x Entier — Entier
— moyenne : Signal x Naturel x Naturel -~ Reel
— somme : Stgnal x Naturel x Naturel - Reel
Algorithmes :
fonction somme (unSignal : Signal, debut, fin : NaturelNonNul) : Reel

| précondition(s) debut< fin
fin< unSignal.nbDonnees
unSignal.nbDonnees< MAX

Déclaration resultat : Reel
i: Naturel
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debut
resultat < 0
pour i <—debut a fin faire
resultat <— resultat+ unSignal.donnes[i]
finpour
retourner resultat
fin
fonction moyenne (unSignal : Signal, debut, fin : NaturelNonNul) : Reel

| précondition(s) debut< fin
fin< unSignal.nbDonnees
unSignal.nbDonnees< MAX

debut
retourner somme(unSignal,debut,fin)/(fin-debut+1)
fin
fonction filtreNonCausal (unSignal : Signal, tailleFenetre : NaturelNonNul) : Signal

| précondition(s) impaire(tailleFenetre)
unSignal.nbDonnees< MAX

Déclaration resultat : Signal
i : Naturel

debut
resultat.nbDonnees <— unSignal.nbDonnees
pour i <1 a resultat.nbDonnees faire
resultat.donnes[i] +— moyenne(unSignal,entierEnNaturel(max(1,i-tailleFenetre div 2)),
entierEnNaturel(min(unSignal.nbDonnees,i+tailleFenetre div 2)))
finpour
retourner resultat
fin
Il est noté qu’il faut explicitement utiliser la fonction de transtypage entierEnNaturel qui posséde la
signature suivante :

— fonction entierEnNaturel (e : Entier) : Naturel

| précondition(s) e>0
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Chapitre 3

Rappels : récursivité

3.1 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

7

Ecrire une fonction qui permet de savoir si une chaine est un palindrome. Est-ce un algorithme récursif
terminal ou non-terminal ?

Correction proposée:

fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut
si longueur(uneChaine)=0 ou longueur(uneChaine)=1 alors
retourner VRAI
sinon
si iemeCaractere(uneChaine, 1)#iemeCaractere(uneChaine,longueur(uneChaine)) alors
retourner FAUX
sinon
retourner estUnPalindrome(sousChaine(uneChaine,2,longueur(uneChaine)-2))
finsi
finsi
fin

Le probléme est que ¢’est algorithme est en O(n?). Pour obtenir un algorithme en O(n), il faut utiliser une
fonction privée prenant en parametre le chaine et les indices :

fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

retourner estUnPalindromeR (uneChaine,1,longueur(uneChaine)-1)
fin
fonction estUnPalindromeR (uneChaine : Chaine de caracteres, debut, fin : NaturelNonNul) : Booleen
debut

si fin<debut alors

retourner VRAI
21
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sinon

si iemeCaractere(uneChaine,debut)7#iemeCaractere(uneChaine,fin) alors
retourner FAUX
sinon
retourner estUnPalindromeR (sousChaine(uneChaine,debut+1,fin-1))
finsi
finsi
fin

Il est noté que ces deux algorithmes sont des algorithmes récursif terminal.

3.2 Puissance d’un nombre

Attendus d’apprentissages disciplinaires évalués )

— CP004 : Concevoir une signature (préconditions incluses)
— CD104 : Ecrire un algorithme d’une complexité donnée
— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction récursive, puissance, qui éleve un réel a a la puissance nb (naturel) en Q(n).
Correction proposée:

fonction puissance (a : Reel, nb : Naturel) : Reel
Déclaration temp : Reel

debut
si nb = 0 alors
retourner 1
sinon
si estPair(nb) alors
temp <— puissance(a,nb div 2)
retourner temp*temp
sinon
retourner a*puissance(a,nb-1)
finsi
finsi
fin

Pour rappel, la taille du probleme n ici est le nombre de bits qu’il faut pour représenter nb. Donc nb vaut
au maximum 2". Dans le meilleur des cas I’algorithme divise nb par 2, le nombre d’itérations dans le meilleur
des cas est donc de loga(nb) et donc la complexité de cet algorithme est en O(n * loga(n)).

Il est noté que cet algorithme n’est pas une récursivité terminale.



3.3. RECHERCHE DU ZERO D’UNE FONCTION EN O(n) 23

3.3 Recherche du zéro d’une fonction en O(n)

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDI104 : Ecrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

J

Ecrire une fonction récursive, zeroFonction, qui calcule le zéro d’une fonction réelle f(x) sur Iinter-
valle réel [a, b], avec une précision €. La fonction f est strictement monotone sur [a, b].

Correction proposée:
fonction zeroFonction (a,b : Reel, ¢ : ReelPositif, f : FonctionRDansR) : Reel

| précondition(s) a<b
strictementMonotone(f,a,b)

Déclaration m : Reel

debut
m<+ (a+b)/2
si (b - a)< ¢ alors
retourner m
sinon
si memeSigne(f(a),f(m)) alors
retourner zeroFonction(m, b, ¢,f)
sinon
retourner zeroFonction(a, m, ¢,f)
finsi
finsi
fin

La taille du probléme est égal aux nombre de bits qu’il faut pour représenter ce (b — a)/e. Si on arrondit
ce nombre au naturel le plus proche N, et si n représente le nombre de bits pour représenter N, [N vaut au
maximum 2" — 1. Comme le nombre d’itérations est de logs (V) (algorithmique dichotomique), la complexité
de cet algorithme est en O(n) et en (1) (dans le cas ot il n’y aucune itération).

3.4 Dessin récursif

Attendus d’apprentissages disciplinaires évalués

— ANO04 : Comprendre et appliquer des consignes algorithmiques sur un exemple
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

7

Supposons que la procédure suivante permette de dessiner un carré sur un graphique (variable de type
Graphique):
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— procédure carre (E/S g : Graphique,E x,y,cote : Reel)

L’ objectif est de concevoir une procédure carres qui permet de dessiner sur un graphique des dessins
récursifs tels que présentés par la figure 3.1. La signature de cette procédure est :

— procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)

200 1
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(a) carres(g,100,100,100, 1) (b) carres(g, 100,100, 100, 3) (c) carres(g,100, 100,100, 4)

FIGURE 3.1 — Résultats de différents appels de la procédure carres

1. Dessinez le résultat de 1’exécution de carres(g, 100, 100, 100, 2).

2. Donnez I’algorithme de la procédure carres.

Correction proposée:

]

150 ’7
0of

e 70

1.

2. Algorithme

procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)
debut
carre(g,X,y,cote)
si n>1 alors
carres(g,x-cote/2,y,cote/2,n-1)
carres(g,Xx,y-+cote,cote/2,n-1)
carres(g,x+cote,y+cote/2,cote/2,n-1)
carres(g,x+cote/2,y-cote/2,cote/2,n-1)
finsi
fin

NB : Cetexercice estinspiré de http: //www—fourier.ujf-grenoble.fr/~-parisse/giac/doc/
fr/casrouge/casrouge018.html.
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3.5 Inversion d’un tableau

25

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

J

de

Soit un tableau d’entiers ¢. Ecrire une procédure, inverserTableau, qui change de place les éléments

ce tableau de telle facon que le nouveau tableau ¢ soit une sorte de “miroir” de 1’ancien.
Exemple:1246 6421

Correction proposée:

procédure inverserTableauR (E/S t : Tableau[1..MAX] d’Entier, E debut, fin : Naturel)
debut

fin

si debut < fin alors
echanger(t[debut], t[fin])
si debut<fin-1 alors
inverserTableauR(t, debut+1, fin-1)
finsi
finsi

procédure inverserTableau (E/S t : Tableau[1..MAX] d’Entier, E n : Naturel)
debut

fin

inverserTableauR(t,1,n)
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Chapitre 4

Représentation d’un naturel

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme

— ANI102 : Décomposer logiquement un probléme

— ANI103 : Généraliser un probleme

— AN104 : Savoir si un probleme doit étre décomposé

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CDO001 : Dissocier les deux roles du développeur : concepteur et utilisateur

— CDO002 : En tant qu’utilisateur, respecter une signature

L’ objectif de cet exercice est de concevoir quatre fonctions permettant de représenter un naturel en chaine
de caracteres telles que la premiere fonction donnera une représentation binaire, la deuxieme une représentation
octale, la troisitme une représentation décimale et la derniére une représentation hexadécimale.

4.1 Analyse

L’ analyse de ce probleme nous indique que ces quatre fonctions sont des cas particuliers de représentation
d’un naturel en chaine de caracteres dans une base donnée. De plus pour construire la chalne de caracteres
résultat, il faut étre capable de concaténer des caracteres représentant des chiffres pour une base donnée.

Proposez I’analyse descendante de ce probleme.

Correction proposée:
27
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representation
Binaire

representation

. —» i
Decimale Chaine

Naturel — — Chaine Naturel —

representation

representation
Octale

Hexadecimale

Naturel —

Naturel —> — Chaine

representation .
lz\laélérel% NAire — Chaine
\ 4
naturel
222 ~—  EnChifre |~ " Caractere

4.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures identifiées précédemment.

Correction proposée:
— fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere
| précondition(s) nombre < base
— fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
— fonction representationBinaire (n : Naturel) : Chaine de caracteres
— fonction representationOctale (n : Naturel) : Chaine de caracteres
— fonction representationDecimale (n : Naturel) : Chaine de caracteres

— fonction representationHexadecimale (n : Naturel) : Chaine de caracteres

4.3 Conception détaillée

Donnez les algorithmes de ces fonctions ou procédures

Correction proposée:
fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere

| précondition(s) nombre < base

Déclaration chiffre : Caractere,
1: Naturel

debut
chiffre < °0’
pour i <1 a nombre faire
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si chiffre =9’ alors
chiffre + A’
sinon
chiffre < succ(chiffre)
finsi
finpour
retourner chiffre
fin

fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
Déclaration representation : Chaine de caracteres

debut
representation <—
repeter
representation <— naturelEnChiffre(nombre mod base, base) + representation
nombre <— nombre div base
jusqu’a ce que nombre = 0
retourner representation
fin

9999

fonction representationBinaire (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,2)
fin

fonction representationOctale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,8)
fin

fonction representationDecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,10)
fin

fonction representationHexadecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,16)
fin



30

CHAPITRE 4. REPRESENTATION D’UN NATUREL



Chapitre 5

Calculatrice

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme
— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)
— CPO0O0S5 : Choisir un passage de parametre (E, S, E/S)

J

L objectif de cet exercice est d’écrire un sous-programme, calculer, qui permet de calculer la valeur d’une
une expression arithmétique simple (opérande gauche positive, opérateur, opérande droite positive) a partir
d’une chaine de caracteres (par exemple ”875+47.5”). Ce sous-programme, outre ce résultat, permettra de savoir
si la chaine est réellement une expression arithmétique (Conseil : Créer des procédures/fonctions permettant de
reconnaitre des opérandes et opérateurs) et si elle est logiquement valide

On considere posséder le type Operateur défini de la facon suivante :

— Type Operateur = { Addition, Soustraction, Multiplication, Division}

5.1 Analyse

Remplissez I’analyse descendante présentée par la figure 5.1 sachant que la reconnaissance d’une entité
(opérateur, opérande, etc.) dans la chalne de caracteéres commencent a une certaine position et que la reconnais-
sance peut échouer.

calculer

reconnaitre
Operateur

reconnaitre
Operande

reconnaitreS
uiteChiffres

xPuissanceN

reconnaitre chaineEnNaturel
Virugle

——{ estUnChiffre }—» B

FIGURE 5.1 — Analyse descendante d’une calculatrice simple
31
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Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier ]
— La difficulté ici est d’avoir une analyse cohérente du probleme J
. Reel
Chaine—— calculer — poqigen
/ Booléen
Chaine reconnaitre Operateur
NaturelNonNul ™ Operateur ™ NaturelNonNul
Booleen ) -
Chaine reconnaitre Reel
NaturelNonNul ™ Operande NaturelNonNul

Booleen

. reconnaitre Chaine
Chaine ™ SuiteChiffre > NaturelNonNul Reel
NaturelNonNul Booleen eel | ypuissanceN —» Reel
Entier
Chaine reconnaitre NaturelNonNul . .
NaturelNonNul ™ Virugle — Booleen Chaine — chaineEnNaturel —» ’I;lg(t)lféeeln

Caractere — estUnChiffre —» Booleen

5.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures correspondant aux opérations de 1’analyse précédente.

Correction proposée:

— fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
| précondition(s) longueur(leTexte) > 0

— procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUnOperateur : Booleen, 10perateur : Operateur)

| précondition(s) debut < longueur(leTexte)

— procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneOperande : Booleen, leReel : Reel)

| précondition(s) debut < longueur(leTexte)

— procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul,
S suiteChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

| précondition(s) position < longueur(leTexte)

— procédure reconnaitreVirgule (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneVirgule : Booleen)

| précondition(s) position < longueur(leTexte)
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— fonction estUnChiffre (c : Caractere) : Booleen
— fonction XPuissanceN (x : Reel, n : Entier) : Reel

— fonction chaineEnNaturel (c : Chaine de caracteres) : Naturel, Booleen

5.3 Conception détaillée

Donnez les algorithmes des fonctions et procédures identifées.

Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier ]

— Montrer qu’une fois la conception préliminaire terminée, on peut répartir la conception détaillée
entre plusieurs personnes

procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S estU-
nOperateur : Booleen, |Operateur : Operateur, )

| précondition(s) debut < longueur(leTexte)

debut
estUnOperateur <— VRAI
position <— position+1
cas ou iemeCaractere(leTexte,position) vaut
"+

2.

1Operateur <— Addition

o,

1Operateur <— Soustraction
1Operateur <— Multiplication

7
IOperateur <— Division

autre :
estUnOperateur <— FAUX
position <— position-1

fincas
fin

fonction estUnChiffre (c : Caractere) : Booleen
debut

retourner c>’0’ et c<’9’
fin

procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S sui-
teChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

| précondition(s) position < longueur(leTexte)

debut
suiteChiffres <
estUneSuiteDeChiffres < FAUX
tant que position < longueur(texte) et estUnChiffre(iemeCaractere (leTexte, position)) faire

9999
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suiteChiffres <— suiteChiffres + iemeCaractere (leTexte, position)
position <— position + 1
fintantque
si suiteChiffres#"” alors
estUneSuiteDeChiffres <+ VRAI
finsi
fin

procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : Naturel, S estUneOpe-
rande : Booleen, leReel : Reel, prochainDebut : NaturelNonNul)

| précondition(s) debut < longueur(leTexte)

Déclaration chPartieEntiere, chPartieDecimale : Chaine de caracteres
partieEntiere, partieDecimale : Naturel
ok, ilYAUneVirgule : Booleen

debut
reconnaitreSuiteChiffres(leTexte,position,chPartieEntiere,ok)
si ok alors
chaineEnNaturel(chPartieEntiere,partieEntiere,ok)
reconnaitreVirgule(leTexte,position,il YAUneVirgule)
si ilYAUneVirgule alors
reconnaitreSuiteChiffres(leTexte,position,chPartieDecimale,ok)
si ok alors
chaineEnNaturel(chPartieDecimale,partieDecimale,ok)
leReel < partieEntiere + partieDecimale / XPuissanceN(10,longueur(chPartieDecimale))
finsi
sinon
leReel +— naturelEnReel(partieEntiere)
finsi
finsi
estUneOperande < ok
fin

fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
| précondition(s) longueur(leTexte) > 0

Déclaration i: Naturel
valeur, operandeG, operandeD : Reel
operateur : Operateur
toujoursValide, estUneExpressionSemantiquementCorrecte : Booleen

debut
valeur <— 0
i1
reconnaitreOperande(leTexte,i, toujoursValide, operandeG)
si toujours Valide et i<longueur(leTexte) alors
reconnaitreOperateur(leTexte, i, toujoursValide, operateur)
si toujoursValide et i< longueur(leTexte) alors
reconnaitreOperande(leTexte, i, toujoursValide, operandeD)
si toujoursValide et i = longueur(leTexte) + 1 alors
estUneExpressionSemantiquementCorrecte <— VRAI
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cas ou operateur vaut
Addition:
valeur < operandeG + operandeD
Soustraction:
valeur < operandeG - operandeD
Multiplication:
valeur <— operandeG * operandeD
Division:
si operandeD # 0 alors
valeur <— operandeG / operandeD
sinon
estUneExpressionSemantiquementCorrecte <— FAUX
finsi
fincas
retourner valeur, VRAI, estUneExpressionSemantiquementCorrecte
finsi
finsi
finsi
retourner 0, FAUX, FAUX
fin
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Chapitre

Un peu

6

de géométrie

Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier

— Manipuler les TAD

— Appliquer le principe d’encapsulation

Attendus d’apprentissages disciplinaires évalués

— AN201 :
— AN203:
— AN204 :
— AN205:
— AN206:
— CP003 :
— CPO004 :
— CPO005 :
— CDO003 :

Identifier les dépendances d’un TAD

Savoir si une opération identifiée fait partie du TAD a spécifier

Formaliser des opérations d’un TAD

Formaliser les préconditions d’une opération d’un TAD

Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD
Choisir entre une fonction et une procédure

Concevoir une signature (préconditions incluses)

Choisir un passage de parametre (E, S, E/S)

Utiliser le principe d’encapsulation

6.1 Le TAD Point2D

Soit le TAD Point 2D définit de la facon suivante :

Nom:
Utilise:
Opérations:

Point2D

Reel

point2D:  Reel x Reel — Point2D

obtenirX: Point2D — Reel

obtenirY: Point2D — Reel

distanceEuclidienne: Point2D x Point2D — ReelPositif
translater: Point2D x Point2D — Point2D

faireRotation: Point2D x Point2D x Reel — Point2D
37
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1. Analyse : Donnez la partie axiomes pour ce TAD (sauf pour I’opération faireRotation)
Correction proposée:

Axiomes: - obtenir X (point2D(x,y)) = x
obtenirY (point2D(z,y)) =y

distance Buclidienne(point2D(z1,y1), point2D(x2,y2)) = /(z2 — 21)2 + (y2 — y1)?
translater(point2D(x1,y1), point2D(x2,y2)) = point2D(x1 + x2,y1 + y2)

Remarque(s) :

— il ne sert a rien d’ajouter trop d’axiomes, au risque d’avoir un TAD inconsistant ou de proposer
des tautologies.

Par exemple I’axiome point2D(obtenir X (pl), obtenirY (pl)) = pl est une tautologie.
En effet si on remplace pl par point2D(x,y), on a alors :

point2D(obtenir X (point2D(z,y)), obtenirY (point2D(x,y))) = point2D(z,y)
Soit

point2D(x,y) = point2D(x,y)

qui est toujours vrai.

2. Conception préliminaire : Donnez les signatures des fonctions et procédures des opérations de ce TAD
Correction proposée:

— fonction point2D (x,y : Reel) : Point2D

— fonction obtenirX (p : Point2D) : Reel

— fonction obtenirY (p : Point2D) : Reel

— fonction distanceEuclidienne (p1,p2 : Point2D) : ReelPositif

— procédure translater (E/S p : Point2D,E vecteur : Point2D)

— procédure realiserRotation (E/S p : Point2D,E centre : Point2D, angleEnDegre : Reel)

Remarque(s) :

— 11 est important de choisir de bons identifiants pour les parametres formels. Ici il pourrait y
avoir ambiguité sur ’'unité du parametre formel de I’angle de la rotation.

6.2 Polyligne

< Une ligne polygonale, ou ligne brisée (on utilise aussi parfois polyligne par traduction de I’anglais poly-
line) est une figure géométrique formée d’une suite de segments, la seconde extrémité de chacun d’entre eux
étant la premiere du suivant.[...] Un polygone est une ligne polygonale fermée. > (Wikipédia)

La figure 6.1 présente deux polylignes composées de 5 points.

De cette définition nous pouvons faire les constats suivants :

— Tous les points d’une polyligne sont distincts ;

— Une polyligne est constituée d’au moins deux points;
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(a) polyligne ouverte (b) polyligne fermée

FIGURE 6.1 — Deux polylignes

— On peut obtenir le nombre de points d’une polyligne ;

— Une polyligne est ouverte ou fermée (qu’elle soit ouverte ou fermée ne change pas le nombre de points :
dans le cas ou elle est fermée, on consideére qu’il a une ligne entre le dernier et le premier point);

— On peut insérer, supprimer des points a une polyligne (par exemple la figure 6.2 présente la supression
du troisieme point de la polyligne ouverte de la figure 6.1).

— On peut parcourir les points d’une polyligne ;
— On peut effectuer des transformations géométriques (translation, rotation, etc.);

— On peut calculer des propriétés d’une polyligne (par exemple sa longueur totale).

FIGURE 6.2 — Supression d’un point

6.2.1 Analyse

Proposez le TAD Polyligne (sans les parties Axiome et Sémantique) avec les opérations suivantes :
— créer une polyligne ouverte a partir de deux Point2D;
— savoir si une polyligne est fermée ;
— ouvrir une polyligne ;
— fermer une polyligne ;
— connaitre le nombre de points d’un polyligne ;
— obtenir le ieme point d’une polyligne ;
— insérer le ieme point d’une polyligne ;
— supprimer le iéme point d’une polyligne (on suppose qu’elle a au moins 3 points);

— calculer la longueur d’un polyligne ;
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— translater une polyligne ;

— faire une rotation d’une polyligne.

Correction proposée:

Nom: Polyligne

Utilise: Reel,Booleen,NaturelNonNul,Point2D

Opérations:  polyligne: Point2D x Point2D - Polyligne
estFermee: Polyligne — Booleen
ouvrir: Polyligne — Polyligne
fermer: Polyligne — Polyligne
nbPoints: Polyligne — NaturelNonNul
iemePoint: Polyligne x NaturelNonNul - Point

ajouterPoint:  Polyligne x Point x NaturelNonNul - Point
supprimerPoint: Polyligne x NaturelNonNul - Polyligne
longueur: Polyligne — ReelPositif
translater: Polyligne x Point2D — Polyligne
realiserRotation: Polyligne x Point2D x Reel — Polyligne
Préconditions: polyligne(ptl, pt2): ptl # pt2
iemePoint(pl,i): i1 < nbPoints(pl)
ajouter Point(pl, pt,i): i < nbPoints(pl) et Vj € 1..nbPoints(pl),iemePoint(pl, j) #
pt
supprimer Point(pl,i): i < nbPoints(pl) et nbPoints(pl) > 3

Remarque(s) :

— Il est a noter que les trois derni¢res opérations ne sont pas obligatoires, elles pourraient étre congues
en tant qu’utilisateur du TAD Polyligne.

6.2.2 Conception préliminaire

Proposez la signature des fonctions et procédures pour le type Polyligne.

Correction proposée:

— fonction polyligne (ptl,pt2 : Point2D) : Polyligne
| précondition(s) ptl # pt2

— fonction estFermee (pl , Polyligne) : Booleen

— procédure fermer (E/S pl : Polyligne)

— procédure ouvrir (E/S pl : Polyligne)

— fonction nbPoints (pl : Polyligne) : NaturelNonNul

— fonction iemePoint (pl : Polyligne, position : NaturelNonNul) : Point2D
| précondition(s) position < nbPoints(pl)

— procédure ajouterPoint (E/S pl : Polyligne,E pt : Point2D, position : NaturelNonNul)
| précondition(s) position < nbPoints(pl) + 1 et Vi € 1..nbPoints(pl),iemePoint(pl,i) # pt



6.2. POLYLIGNE 41

— procédure supprimerPoint (E/S pl : Polyligne,E position : NaturelNonNul)
| précondition(s) position < nbPoints(pl) et nbPoints(pl) > 3
— fonction longueur (pl : Polyligne) : ReelPositif
— procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
— procédure realiserRotation (E/S pl : Polyligne,E centre : Point2D, angleEnRadian : Reel)

6.2.3 Conception détaillée

On propose de représenter le type Polyligne de la fagon suivante :
Type Polyligne = Structure
lesPts : Tableau[1.. MAX] de Point2D
nbPts : Naturel
estFermee : Booleen
finstructure
Proposez les fonctions et procédures correspondant aux opérations suivantes :

— créer une polyligne ouverte a partir de deux Point2D;
— ouvrir une polyligne ;

— translater une polyligne.

Correction proposée:
fonction polyligne (pt1,pt2 : Point2D) : Polyligne
Déclaration resultat : Polyligne

debut
resultat.nbPts < 2
resultat.lesPts[1] < ptl
resultat.lesPts[2] +— pt2
resultat.estFermee < FAUX
retourner resultat

fin

procédure ouvrir (E/S pl : Polyligne)

debut
pl.estFermee < FAUX

fin

procédure translater (E/S pl : Polyligne,E vecteur : Point2D)

Déclaration i: Naturel

debut
pour i <1 a nbPoints(pl) faire
Point2D.translater(pl.lesPts[i],vecteur)
finpour
fin

Remarque(s) :
— 1l est a noter que cette derniere procédure aurait pu €tre écrite en utilisant le principe d’encapsula-
tion :

procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
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Déclaration i : Naturel

debut
pour i <1 a nbPoints(pl) faire
temp <— iemePoint(pl,i)
Point2D.translater(temp,vecteur)
supprimerPoint(pl,i)
ajouterPoint(pl,temp,i)
finpour
fin
Mais cela met en avant le fait qu’il manque une opération remplacer non obligatoire mais qui facilite
la vie des utilisateurs du TAD.

6.3 Utilisation d’une polyligne

Dans cette partie, nous sommes utilisateur du type Polyligne et nous respectons le principe d’encapsu-
lation.

6.3.1 Point a Pintérieur

Nous supposons posséder la fonction suivante qui permet de calculer 1’angle orienté en degré formé par les
segments (ptCentre, ptl) et (ptCentre, pt2) :

— fonction angle (ptCentre,pt1,pt2 : Point2D) : Reel
| précondition(s) ptl#ptCentre et pt2+#ptCentre

Il est possible de savoir si un point pt est a I’intérieur ou a 1’extérieur d’une polyligne fermée en calculant
la somme des angles orientés formés par les segments issus de pt vers les points consécutifs de la polyligne. En
effet si cette somme en valeur absolue est égale a 360° alors le point pt est a I’intérieur de la polyligne, sinon il
est a I’extérieur.

Par exemple, sur la figure 6.3, on peut savoir algorithmiquement que pt est a I’intérieur de la polyligne car
lon + g + as + ay + as| = 360.

FIGURE 6.3 — Point a I’intérieur d’une polyligne

Proposez le code de la fonction suivante :estALInterieur
fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

| précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Correction proposée:
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fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

| précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Déclaration i : Naturel
sommeAngle : Reel

debut
sommeAngle < 0
pour i <1 a nbPoints(p)-1 faire
sommeAngle < sommeAngle+angle(pt,iemePoint(p,i),iemePoint(p,i+1))
finpour
sommeAngle < sommeAngle+angle(pt,iemePoint(p,nbPoints(p)),iemePoint(p,1))
retourner sommeAngle=360 ou sommeAngle=-360
fin

6.3.2 Surface d’une polyligne par la méthode de monté-carlo

Une des fagons d’approximer la surface d’une polyligne est d’utiliser la méthode de Monté-Carlo. Le prin-
cipe de cette méthode est de < calculer une valeur numérique en utilisant des procédés aléatoires, c’est-a-dire
des techniques probabilistes > (Wikipédia). Dans le cas du calcul d’une surface, il suffit de tirer au hasard des
points qui sont a I’intérieur du plus petit rectangle contenant la polyligne. La surface S de la polyligne pourra
alors étre approximée par la formule suivante :

Nb points dans la polyligne
Nb points total

S ~ SurfaceDuRectangle x

Par exemple, sur la figure 6.4, en supposant que le rectangle fasse 3 cm de hauteur et 4, 25 cm de largeur, et
qu’il y a 28 points sur 39 qui sont a I’intérieur de la polyligne, sa surface .S peut étre approximée par :

28
S~ 3x4,25x £:9,390m2

FIGURE 6.4 — Calcul de la surface d’une polyligne par la méthode de Monté-Carlo
On suppose posséder la procédure suivante qui permet d’obtenir un réel aléatoire entre une borne minimum
et une borne maximum :
— procédure reelAleatoire (E borneMin,bornneMax : Reel, S leReel : Reel)
1. Proposez I’analyse descendante pour le calcul d’une surface d’une polyligne a I’aide de la méthode de

Monté-Carlo.
Correction proposée:
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surfacePolyligne Polyligne x Naturel — Reel
rectangleEnglobant Polyligne — Point2D x Point2D
surfaceRectangle Point2D x Point2D — Reel
pointAleatoireDansRectangle Point2D x Point2D — Point2D

. Donnez les signatures des procédures et fonctions de votre analyse descendante.

Correction proposée:

— fonction surfacePolyligne (p : Polyligne, nbPoints : Naturel) : Reel

— fonction rectangleEnglobant (p : Polyligne) : Point2D, Point2D

— fonction surfaceRectangle (ptBasGauche,ptHautDroit : Point2D) : Reel

— procédure pointAleatoireDansRectangle (E ptBasGauche,ptHautDroit : Point2D, S lePoint : Point2D)

. Donnez I’algorithme de I’opération principale (au sommet de votre analyse descendante).

Correction proposée:

fonction surfacePolyligne (p : Polyligne, nbPoints : NaturelNonNul) : Reel

| précondition(s) estFerme(p) et not tousLesPointsAlignes(p)

Déclaration ptBasGauche, ptHautDroit, pt : Point2D
i, nbDans, nbPointsTotal : Naturel

debut
ptBasGauche,ptHautDroit < rectangleEnglobant(p)
surface <— surfaceRectangle(ptBasGauche,ptHautDroit)
nbDans < 0
nbPointsTotal < 0
tant que nbPointsTotal“nbPoints faire
pointAleatoireDansRectangle(ptBasGauche,ptHautDroit, pt)
si non estSurLaFrontiere(p, pt) alors
nbPointsTotal <— nbPointsTotal+1
si estALinterieur(p,pt) alors
nbDans < nbDans+1
finsi
finsi
fintantque
retourner surface*nbDans/nbPointsTotal
fin



