
Algorithmique avancée et programmation C
Exercices de TD

3.3.4
avec corrections

N. Delestre

2

Table des matières

1 Rappels : chaı̂ne de caractères, itérations, conditionnelles 9
1.1 estUnPrefixe . 9
1.2 Palindrome . 10
1.3 Position d’une sous-chaı̂ne . 11
1.4 Racine carrée d’un nombre : recherche par dichotomie . 13

2 Rappels : les tableaux 15
2.1 Plus petit élément . 15
2.2 Sous-séquences croissantes . 16
2.3 Recherche d’un élément en O(log(n)) . 17
2.4 Lissage de courbe . 18

3 Rappels : récursivité 21
3.1 Palindrome . 21
3.2 Puissance d’un nombre . 22
3.3 Recherche du zéro d’une fonction en O(n) . 23
3.4 Dessin récursif . 23
3.5 Inversion d’un tableau . 25

4 Représentation d’un naturel 27
4.1 Analyse . 27
4.2 Conception préliminaire . 28
4.3 Conception détaillée . 28

5 Calculatrice 31
5.1 Analyse . 31
5.2 Conception préliminaire . 32
5.3 Conception détaillée . 33

6 Un peu de géométrie 37
6.1 Le TAD Point2D . 37
6.2 Polyligne . 38

6.2.1 Analyse . 39
6.2.2 Conception préliminaire . 40
6.2.3 Conception détaillée . 41

6.3 Utilisation d’une polyligne . 42
6.3.1 Point à l’intérieur . 42
6.3.2 Surface d’une polyligne par la méthode de monté-carlo 43

3

4 TABLE DES MATIÈRES

7 Tri par tas 45
7.1 Qu’est ce qu’un tas? . 45
7.2 Fonction estUnTas . 46
7.3 Procédure faireDescendre . 47
7.4 Procédure tamiser . 48
7.5 Procédure trierParTas . 49

8 Sudoku 51
8.1 Conception préliminaire . 52
8.2 Conception détaillée . 53
8.3 Fonctions métiers . 53

9 Liste 57
9.1 SDD ListeChainee . 57

9.1.1 Type et signatures de fonction et procédure . 57
9.1.2 Utilisation . 57

9.2 Conception détaillée d’une liste ordonnée d’entiers à l’aide d’une liste chainée 59
9.3 Utilisation : Liste ordonnée d’entiers . 62

10 Arbre Binaire de Recherche (ABR) 63
10.1 Conception préliminaire et utilisation d’un ABR . 63
10.2 Une conception détaillée : ABR . 65

11 Arbres AVL 69

12 Graphes 73
12.1 Le labyrinthe . 73

12.1.1 Partie publique . 73
12.1.2 Partie privée . 76

12.2 Algorithme de Dijkstra . 76
12.3 Skynet d’après Codingame© . 77

12.3.1 Le chemin le plus court . 80
12.3.2 Skynet le virus . 81

13 Programmation dynamique 83
13.1 L’algorithme de Floyd-Warshall . 83
13.2 La distance de Levenshtein . 85

Avant propos

Évaluation par attendus d’apprentissages disciplinaires

Depuis l’année universitaire 2018-2019, la validation du cours ≪ Algorithique avancée et programmation
C ≫ utilise une évaluation par attendus d’apprentissages disciplinaires (AAD). Le référentiel des AAD est dispo-
nible sur le site Moodle de l’INSA Rouen Normandie : https://moodle.insa-rouen.fr/course/
view.php?id=60§ion=0.

Les exercices de ce document vous permettent de travailler ces AAD.
Quelque soit l’exercice les AAD suivants sont évalués :

— AN001 : Désigner les choses (identifiant significatif)

— AN002 : Être précis quant aux types de données utilisés

— AN003 : Connaı̂tre le rôle de l’analyse

— CP001 : Comprendre le paradigme de programmation impératif

— CP002 : Comprendre le paradigme de programmation structuré

— CP006 : Comprendre le rôle de la conception préliminaire

— CD004 : Écrire des algos avec le pseudo code utilisé à l’INSA

— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)

— CD006 : Choisir la bonne itération

— CD007 : Utiliser les bonnes catégories de paramètres effectifs pour un passage de paramètre donnée

— CD009 : Écrire un algorithme qui résout le problème

— CD010 : Connaı̂tre le rôle de la conception détaillée

Le tableau ci dessous croise les exercices de ce livret avec les autres compétences :

Croisement AAD - exercices

AAD Exercices
AN004 : Comprendre et appliquer des consignes al-
gorithmiques sur un exemple

3.4, 7, 12, 13

AN101 : Identifier les entrées et sorties d’un
problème

1.3, 2.4, 4, 5

AN102 : Décomposer logiquement un problème 2.4, 4
AN103 : Généraliser un problème 4
AN104 : Savoir si un problème doit être décomposé 2.4
AN201 : Identifier les dépendances d’un TAD 6, 8, 12
AN203 : Savoir si une opération identifiée fait partie
du TAD à spécifier

6, 8, 12

5

6 TABLE DES MATIÈRES

AAD Exercices
AN204 : Formaliser des opérations d’un TAD 6, 12
AN205 : Formaliser les préconditions d’une
opération d’un TAD

6, 8

AN206 : Formaliser des axiomes ou savoir définir la
sémantique d’une opération d’un TAD

6, 12

AN301 : Lister les collections usuelles 8
CP003 : Choisir entre une fonction et une procédure 1.3, 4, 5, 6, 8, 12
CP004 : Concevoir une signature (préconditions in-
cluses)

1.1, 1.2,1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.5, 4, 5, 6, 12

CP005 : Choisir un passage de paramètre (E, S, E/S) 2.2, 5, 6, 12
CD001 : Dissocier les deux rôles du développeur :
concepteur et utilisateur

6

CD002 : En tant qu’utilisateur, respecter une signa-
ture

1.1, 1.2

CD003 : Utiliser le principe d’encapsulation 6, 8
CD101 : Estimer la taille d’un problème (n) 1.4, 4
CD102 : Calculer une complexité dans le pire et le
meilleur des cas

1.4, 4, 7

CD104 : Écrire un algorithme d’une complexité
donnée

2.3, 3.2, 3.3

CD201 : Identifier et résoudre le problème des cas
non récursifs

3.1, 3.2, 3.3, 3.4, 3.5, 7, 8, 10, 12

CD202 : Identifier et résoudre le problème des cas
récursifs

3.1, 3.2, 3.3, 3.4, 3.5, 7, 8, 10, 12

CD203 : Identifier une récursivité terminale et non
terminale et ce que cela implique

3.1, 3.2, 3.3, 3.4, 3.5

CD301 : Identifier un problème qui se résout à l’aide
d’un algorithme dichotomique

2.3

CD302 : Définir l’espace de recherche d’un algorith-
mique dichotomique

1.4, 2.3

CD303 : Diviser et extraire les bornes de l’espace de
recherche d’un algorithme dichotomique (cas discret
ou continu)

1.4, 2.3

CD403 : Concevoir et utiliser des arbres (binaires,
n-aires)

10

CD501 : Comprendre les algorithmes des différents
tris et leurs complexités

7

CD601 : Concevoir des collections à l’aide de SDD 10
CD602 : Comprendre les algorithmes d’insertion et
de suppression (naı̈fs et AVL) dans un arbre binaire
de recherche

10

CD701 : Définir la programmation dynamique 13
CD702 : Appliquer la programmation dynamique
pour des cas simples

13

CD801 : Concevoir des graphes (matrice d’adja-
cence, matrice d’incidence, liste d’adjacence)

12

TABLE DES MATIÈRES 7

AAD Exercices
CD804 : Comprendre des algorithmes de recherche
du plus court chemin : Dijkstra et A*

12

CD901 : Concevoir un type de données adapté à la
situation en terme d’espace mémoire et d’efficacité

9, 10

Pseudo code

Vous écrirez vos algorithmes avec le pseudo code utilisé dans la plupart des cours d’algorithmique de
l’INSA Rouen Normandie. Voici la syntaxe des instructions disponibles :

Type de données

Les types de base sont : Entier, Naturel, NaturelNonNul, Reel, ReelPositif, ReelPositifNonNul, Reel-
Negatif, ReelNegatifNonNul, Booleen, Caractere, Chaine de caracteres.

On définit un nouveau type de la façon suivante :
Type Identifiant nouveau type = Identifiant type existant

On déclare un tableau de la façon suivante :

— Tableau à une dimension : Tableau[borne de début. . .borne de fin] de type des éléments

— Tableau à deux dimensions : Tableau[borne de début. . .borne de fin][borne de début. . .borne de fin] de
type des éléments

— . . .

On définit une structure de la façon suivante :
Type Identifiant = Structure

identifiant attribut 1 : Type 1
. . .

finstructure

Affectation

Le symbole d’affectation est ←.

Conditionnelles

Il y a trois instructions conditionnelles :

si condition alors
instruction(s)

finsi

si condition alors
instruction(s)

sinon
instruction(s)

finsi

cas où identifiant variable vaut
valeur 1:

instruction(s) 1
. . .
autre :

instruction(s)
fincas

Itérations

L’instruction de base pour les itérations déterministes est le pour :
pour identifiant ←borne de début à borne de fin faire

instruction(s)

8 TABLE DES MATIÈRES

finpour
On peut itérer sur les éléments d’une liste, d’une liste ordonnée ou d’un ensemble grâce à l’instruction pour

chaque :
pour chaque élément de collection

instruction(s)
finpour

Pour les itérations indéterministes nous avons deux instructions :

tant que condition faire
instruction(s)

fintantque

repeter
instruction(s)

jusqu’a ce que condition

Sous-programmes

Les fonctions permettent de calculer un résultat (composé d’une ou plusieurs valeurs) de manière déterministe :

fonction identifiant (paramètre(s) formel(s)) : Type(s) de retour

⌊précondition(s) expression(s) booléenne(s)

Déclaration variable(s) locale(s)

debut
instruction(s) avec au moins une fois l’instruction retourner

fin
Les procédures permettent de créer de nouvelles instructions :

procédure identifiant (paramètre(s) formel(s) avec passage de paramètres)
⌊précondition(s) expression(s) booléenne(s)

Déclaration variable(s) locale(s)

debut
instruction(s)

fin
Les passages de paramètre sont : entrée (E), sortie (S) et entrée/sortie (E/S).

Chapitre 1

Rappels : chaı̂ne de caractères, itérations,
conditionnelles

Pour certains de ces exercices on considère que l’on possède les fonctions suivantes :

— fonction longueur (uneChaine : Chaine de caracteres) : Naturel

— fonction iemeCaractere (uneChaine : Chaine de caracteres, iemePlace : Naturel) : Caractere

⌊précondition(s) 0 < iemeP lace et iemeP lace ≤ longueur(uneChaine)

1.1 estUnPrefixe

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD002 : En tant qu’utilisateur, respecter une signature

— CD006 : Choisir la bonne itération

Proposez la fonction estUnPrefixe qui permet de savoir si une première chaı̂ne de caractères est préfixe
d’une deuxième chaı̂ne de caractères (par exemple ≪ pré ≫ est un préfixe de ≪ prédire ≫ et de ≪ pré ≫).

Correction proposée:
fonction estUnPrefixe (lePrefixePotentiel,uneChaine : Chaine de caracteres) : Booleen

Déclaration i : NaturelNonNul
resultat : Booleen

debut
si longueur(lePrefixePotentiel)>longueur(uneChaine) alors

retourner FAUX
sinon

i ← 1
resultat ← VRAI
tant que resultat et i≤longueur(lePrefixePotentiel) faire

si iemeCaractere(uneChaine,i)=iemeCaractere(lePrefixePotentiel,i) alors
i ← i+1

sinon
resultat ← FAUX

finsi
9

10 CHAPITRE 1. RAPPELS : CHAÎNE DE CARACTÈRES, ITÉRATIONS, CONDITIONNELLES

fintantque
retourner resultat

finsi
fin

1.2 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD002 : En tant qu’utilisateur, respecter une signature

— CD006 : Choisir la bonne itération

Une chaı̂ne de caractères est un palindrome si la lecture de gauche à droite et de droite à gauche est iden-
tique. Par exemple “radar”, “été”, “rotor”, etc. La chaı̂ne de caractères vide est considérée comme étant un
palindrome

Écrire une fonction qui permet de savoir si une chaı̂ne est un palindrome.

Correction proposée:

fonction estUnPalindrome (ch : Chaine de caracteres) : Booleen

Déclaration g,d : NaturelNonNul
resultat : Booleen

debut
si longueur(ch)=0 alors

retourner VRAI
sinon

resultat ← VRAI
g ← 1
d ← longueur(ch)
tant que resultat et g<d faire

si iemeCaractere(ch,g) = iemeCaractere(ch,d) alors
g ← g+1
d ← d-1

sinon
resultat ← FAUX

finsi
fintantque
retourner resultat

finsi
fin

1.3. POSITION D’UNE SOUS-CHAÎNE 11

1.3 Position d’une sous-chaı̂ne

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

Soit l’analyse descendante présentée par la figure 1.1 qui permet de rechercher la position d’une chaı̂ne de
caractères dans une autre chaı̂ne indépendemment de la casse (d’où le suffixe IC à l’opération positionSousChaineIC),
c’est-à-dire que l’on ne fait pas de distinction entre majuscule et minuscule.

positionSousChaineIC

longueur

sousChaine
sontEgalesIC

minuscule

iemeCaractere

FIGURE 1.1 – Une analyse descendante

Pour résoudre ce problème il faut pouvoir :

— obtenir la longueur d’une chaı̂ne de caractères ;

— obtenir la sous-chaı̂ne d’une chaı̂ne en précisant l’indice de départ de cette sous-chaı̂ne et sa longueur (le
premier caractère d’une sous-chaı̂ne à l’indice 1) ;

— savoir si deux chaı̂nes de caractères sont égales indépendemment de la casse.

L’opération positionSousChaineIC retournera la première position de la chaı̂ne recherchée dans la
chaı̂ne si cette première est présente, 0 sinon.

Par exemple :

— positionSousChaineIC("AbCdEfGh","cDE") retournera la valeur 3 ;

— positionSousChaineIC("AbCdEfGh","abc") retournera la valeur 1 ;

— positionSousChaineIC("AbCdEfGh","xyz") retournera la valeur 0.

1. Complétez l’analyse descendante en précisant les types de données en entrée et en sortie.

2. Donnez les signatures complètes (avec préconditions si nécessaire) des sous-programmes (fonctions ou
procédures) correspondant aux opérations de l’analyse descendante.

3. Donnez l’algorithme du sous-programme correspondant à l’opération positionSousChaineIC et
sousChaine

Correction proposée:

12 CHAPITRE 1. RAPPELS : CHAÎNE DE CARACTÈRES, ITÉRATIONS, CONDITIONNELLES

positionSousChaineIC
Chaîne de caractères
Chaîne de caractères

Naturel

longueurChaîne de caractères Naturel

sousChaine
Chaîne de caractères
NaturelNonNul
Naturel

Chaîne de caractères sontEgalesIC
Chaîne de caractères
Chaîne de caractères Booléen

minusculeCaractère Caractère
iemeCaractere

Chaîne de caractères
NaturelNonNul

Caractere

Note : minuscule est sur les caractères et non chaı̂ne de caractères sinon il y aurait une autre sous boite. . .
fonction positionSousChaineIC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

⌊précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)≤longueur(chaine)

fonction longueur (chaine : Chaine de caracteres) : Naturel
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

⌊précondition(s) long≤longueur(chaine)-position+1

fonction sontEgalesIC (chaine1, chaine2 : Chaine de caracteres) : Booleen
fonction minuscule (c : Caractere) : Caractere
fonction positionSousChaineIC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

⌊précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)≤longueur(chaine)

Déclaration i : Naturel

debut
i ← 1
tant que i+longueur(chaineARechercher)-1≤longueur(chaine) et non sontEgalesIC(sousChaine(chaine,i,
longueur(chaineARechercher)),chaineARechercher) faire

i ← i+1
fintantque
si i+longueur(chaineARechercher)>longueur(chaine)+1 alors

i ← 0
finsi
retourner i

fin
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

⌊précondition(s) long≤longueur(chaine)-pos+1

Déclaration resultat : Chaine de caracteres, i : Naturel

debut
resultat ← ””
pour i ←0 à long-1 faire

resultat ← resultat + iemeCaractere(chaine,pos+i)

1.4. RACINE CARRÉE D’UN NOMBRE : RECHERCHE PAR DICHOTOMIE 13

finpour
retourner resultat

fin

1.4 Racine carrée d’un nombre : recherche par dichotomie

Attendus d’apprentissages disciplinaires évalués

— CD302 : Définir l’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de l’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

— CD101 : Estimer la taille d’un problème (n)

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

L’objectif de cet exercice est de rechercher une valeur approchée de la racine carrée d’un nombre réel positif
x (x ≥ 1) à ϵ près à l’aide d’un algorithme dichotomique.

Pour rappel :

≪ La dichotomie (“couper en deux” en grec) est, en algorithmique, un processus itératif [..]
de recherche où, à chaque étape, on coupe en deux parties (pas forcément égales) un espace de
recherche qui devient restreint à l’une de ces deux parties.

On suppose bien sûr qu’il existe un test relativement simple permettant à chaque étape de
déterminer l’une des deux parties dans laquelle se trouve une solution. Pour optimiser le nombre
d’itérations nécessaires, on s’arrangera pour choisir à chaque étape deux parties sensiblement de
la même “taille” (pour un concept de “taille” approprié au problème), le nombre total d’itérations
nécessaires à la complétion de l’algorithme étant alors logarithmique en la taille totale du problème
initial. ≫ (wikipédia).

1. Définir ≪ l’espace de recherche ≫ pour le problème de la recherche d’une racine carrée.

2. Quelle condition booléenne permet de savoir si il doit y avoir une nouvelle itération?

3. Quel test va vous permettre de savoir dans laquelle des deux parties se trouve la solution?

4. Proposez l’algorithme de la fonction suivante (on suppose que x et epsilon sont positifs et que x est
supérieur ou égal à 1) :

— fonction racineCarree (x,epsilon : ReelPositif) : ReelPositif
5. Quelle est la complexité de votre algorithme?

Correction proposée:

1. La taille de l’espace de recherche est : (d− g)/ϵ.

2. d− g > ϵ

3. m2 plus petit ou plus grand que x

4.
fonction racineCarree (x,ϵ : ReelPositif) : ReelPositif

Déclaration g,d,m : ReelPositif
debut

g ← 0
d ← x

14 CHAPITRE 1. RAPPELS : CHAÎNE DE CARACTÈRES, ITÉRATIONS, CONDITIONNELLES

tant que d-g> ϵ faire
m ← (g+d)/2
si m*m<x alors

g ← m
sinon

d ← m
finsi

fintantque
retourner g

fin
5. La taille du problème est définie par la valeur (d − g)/ϵ. Le nombre d’itérations est donc de log2((d −

g)/ϵ).
La représentation des flottants utilise un nombre fixe de bits (souvent la norme IEEE 754), Il y a donc
une borne MAX. De plus chaque opération sur les flottants (comparaison, multiplication, division par 2)
est dans ce cas supposée en temps constant, cet algorithme est O(log2((d− g)/ϵ).

Chapitre 2

Rappels : les tableaux

Dans certains exercices qui vont suivre, le tableau d’entiers t est défini par [1..MAX] et il contient n
éléments significatifs (n ≤ MAX).

2.1 Plus petit élément

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

Écrire une fonction, minTableau, qui à partir d’un tableau d’entiers t non trié de n éléments significatifs
retourne le plus petit élément du tableau.

Correction proposée:

fonction minTableau (t : Tableau[1..MAX] d’Entier, n : NaturelNonNul) : Entier

⌊précondition(s) n≤MAX

Déclaration i : Naturel,
min : Entier

debut
min ← t[1]
pour i ←2 à n faire

si t[i]<min alors
min ← t[i]

finsi
finpour
retourner min

fin
15

16 CHAPITRE 2. RAPPELS : LES TABLEAUX

2.2 Sous-séquences croissantes

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)

Écrire un sous-programme sousSequencesCroissantes, qui à partir d’un tableau d’entiers t de n
éléments, fournit le nombre de sous-séquences strictement croissantes de ce tableau, ainsi que les indices de
début et de fin de la plus grande sous-séquence. Exemple : t un tableau de 15 éléments : 1, 2, 5, 3, 12, 25, 13
, 8, 4, 7, 24, 28, 32, 11, 14. Les séquences strictement croissantes sont : < 1, 2, 5 >,< 3, 12, 25 >,< 13 >,<
8 >,< 4, 7, 24, 28, 32 >,< 11, 14 >. Le nombre de sous-séquences est : 6 et la plus grande sous-séquence
est : < 4, 7, 24, 28, 32 >. Donc dans ce cas les trois valeurs calculées seraient 6, 9 et 13.

Correction proposée:
fonction sousSequencesCroissantes (t :Tableau[1..MAX] d’Entier, n : NaturelNonNul) : NaturelNonNul,
NaturelNonNul, NaturelNonNul

⌊précondition(s) n≤MAX

Déclaration i :Naturel
debutSequenceCourante, nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeLaPlusGran-
deSsSequence : NaturelNonNul

debut
si n>1 alors

nbSsSequences ← 1
debutDeLaPlusGrandeSsSequence ← 1
finDeLaPlusGrandeSsSequence ← 1
debutSequenceCourante ← 1
pour i ←1 à n-1 faire

si t[i]>t[i+1] alors
nbSsSequences ← nbSsSequences+1
si i-debutSequenceCourante>finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence
alors

debutDeLaPlusGrandeSsSequence ← debutSequenceCourante
finDeLaPlusGrandeSsSequence ← i

finsi
debutSequenceCourante ← i+1

finsi
finpour
si n-debutSequenceCourante>finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence alors

debutDeLaPlusGrandeSsSequence ← debutSequenceCourante
finDeLaPlusGrandeSsSequence ← n

finsi
retourner nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeLaPlusGrandeSsSequence

sinon
retourner 1,1,1

2.3. RECHERCHE D’UN ÉLÉMENT EN O(log(n)) 17

finsi
fin

2.3 Recherche d’un élément en O(log(n))

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD301 : Identifier un problème qui se résout à l’aide d’un algorithme dichotomique

— CD302 : Définir l’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de l’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

Écrire une fonction, recherche, qui détermine le plus petit indice d’un élément, (dont on est sûr de
l’existence) dans un tableau d’entiers t trié dans l’ordre croissant de n éléments en O(log(n)). Il peut y avoir
des doubles (ou plus) dans le tableau.

Correction proposée:

fonction recherche (t : Tableau[1..MAX] d’Entier, n : NaturelNonNul, element : Entier) : NaturelNonNul

⌊précondition(s) n≤MAX
∃ 1 ≤ i ≤ n tel que t[i] = element
estTrieEnOrdreCroissant(t)

Déclaration g,d,m : Naturel

debut
g ← 1
d ← n
tant que g ̸= d faire

m ← (g + d) div 2
si t[m] ≥ element alors

d ← m
sinon

g ← m + 1
finsi

fintantque
retourner d

fin

Quelques remarques sur les algorithmes dichotomiques sur du discret :

— On sort du tant quand les deux indices se croisent

— Il faut savoir quand ≪ garder ≫ l’élément du milieu (et donc quand l’exclure, sinon il y a un risque de
boucle infinie). Ici, comme on cherche le plus petit indice de l’élément recherché, lorsque t[m] est cet
élément, il faut le garder (c’est peut être lui qui est recherché).

18 CHAPITRE 2. RAPPELS : LES TABLEAUX

2.4 Lissage de courbe

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— AN102 : Décomposer logiquement un problème

— AN104 : Savoir si un problème doit être décomposé

L’objectif de cet exercice est de développer un ≪ filtre non causal ≫, c’est-à-dire une fonction qui lisse
un signal en utilisant une fenêtre glissante pour moyenner les valeurs (Cf. figure 2.1). Pour les premières et
dernières valeurs, seules les valeurs dans la fenêtre sont prises en compte.

2 1 4 5 3 6 3 7

1.5 2.3 3.3 4 4.7

2 1 4 5 3 6 3 7

1.5 2.3 3.3 4 4.7 4 5.3 5

2 1 4 5 3 6 3 7

1.5

FIGURE 2.1 – Lissage d’un signal avec une fenêtre de taille 3

Soit le type Signal :
Type Signal = Structure

donnees : Tableau[1..MAX] de Reel
nbDonnees : Naturel

finstructure
Après avoir fait une analyse descendante du problème, proposez l’algorithme de la fonction filtreNonCausal

avec la signature suivante :

— fonction filtreNonCausal (signalNonLisse : Signal, tailleFenetre : NaturelNonNul) : Signal

⌊précondition(s) impair(tailleFenetre)

Correction proposée:
Analyse descencante :

— filtreNonCausal : Signal × Naturel ↛ Signal

— min : Naturel × Entier → Entier
— max : Naturel × Entier → Entier
— moyenne : Signal × Naturel × Naturel ↛ Reel

— somme : Signal × Naturel × Naturel ↛ Reel
Algorithmes :

fonction somme (unSignal : Signal, debut, fin : NaturelNonNul) : Reel
⌊précondition(s) debut≤ fin

fin≤ unSignal.nbDonnees
unSignal.nbDonnees≤ MAX

Déclaration resultat : Reel
i : Naturel

2.4. LISSAGE DE COURBE 19

debut
resultat ← 0
pour i ←debut à fin faire

resultat ← resultat+ unSignal.donnes[i]
finpour
retourner resultat

fin
fonction moyenne (unSignal : Signal, debut, fin : NaturelNonNul) : Reel

⌊précondition(s) debut≤ fin
fin≤ unSignal.nbDonnees
unSignal.nbDonnees≤ MAX

debut
retourner somme(unSignal,debut,fin)/(fin-debut+1)

fin
fonction filtreNonCausal (unSignal : Signal, tailleFenetre : NaturelNonNul) : Signal

⌊précondition(s) impaire(tailleFenetre)
unSignal.nbDonnees≤ MAX

Déclaration resultat : Signal
i : Naturel

debut
resultat.nbDonnees ← unSignal.nbDonnees
pour i ←1 à resultat.nbDonnees faire

resultat.donnes[i] ← moyenne(unSignal,entierEnNaturel(max(1,i-tailleFenetre div 2)),
entierEnNaturel(min(unSignal.nbDonnees,i+tailleFenetre div 2)))

finpour
retourner resultat

fin
Il est noté qu’il faut explicitement utiliser la fonction de transtypage entierEnNaturel qui possède la
signature suivante :

— fonction entierEnNaturel (e : Entier) : Naturel
⌊précondition(s) e≥0

20 CHAPITRE 2. RAPPELS : LES TABLEAUX

Chapitre 3

Rappels : récursivité

3.1 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction qui permet de savoir si une chaı̂ne est un palindrome. Est-ce un algorithme récursif
terminal ou non-terminal ?

Correction proposée:
fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

si longueur(uneChaine)=0 ou longueur(uneChaine)=1 alors
retourner VRAI

sinon
si iemeCaractere(uneChaine,1)̸=iemeCaractere(uneChaine,longueur(uneChaine)) alors

retourner FAUX
sinon

retourner estUnPalindrome(sousChaine(uneChaine,2,longueur(uneChaine)-2))
finsi

finsi
fin

Le problème est que c’est algorithme est en O(n2). Pour obtenir un algorithme en O(n), il faut utiliser une
fonction privée prenant en paramètre le chaine et les indices :
fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

retourner estUnPalindromeR(uneChaine,1,longueur(uneChaine)-1)
fin
fonction estUnPalindromeR (uneChaine : Chaine de caracteres, debut, fin : NaturelNonNul) : Booleen
debut

si fin≤debut alors
retourner VRAI

21

22 CHAPITRE 3. RAPPELS : RÉCURSIVITÉ

sinon
si iemeCaractere(uneChaine,debut)̸=iemeCaractere(uneChaine,fin) alors

retourner FAUX
sinon

retourner estUnPalindromeR(sousChaine(uneChaine,debut+1,fin-1))
finsi

finsi
fin

Il est noté que ces deux algorithmes sont des algorithmes récursif terminal.

3.2 Puissance d’un nombre

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction récursive, puissance, qui élève un réel a à la puissance nb (naturel) en Ω(n).
Correction proposée:

fonction puissance (a : Reel, nb : Naturel) : Reel

Déclaration temp : Reel

debut
si nb = 0 alors

retourner 1
sinon

si estPair(nb) alors
temp ← puissance(a,nb div 2)
retourner temp*temp

sinon
retourner a*puissance(a,nb-1)

finsi
finsi

fin

Pour rappel, la taille du problème n ici est le nombre de bits qu’il faut pour représenter nb. Donc nb vaut
au maximum 2n. Dans le meilleur des cas l’algorithme divise nb par 2, le nombre d’itérations dans le meilleur
des cas est donc de log2(nb) et donc la complexité de cet algorithme est en Ø(n ∗ log2(n)).

Il est noté que cet algorithme n’est pas une récursivité terminale.

3.3. RECHERCHE DU ZÉRO D’UNE FONCTION EN O(n) 23

3.3 Recherche du zéro d’une fonction en O(n)

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction récursive, zeroFonction, qui calcule le zéro d’une fonction réelle f(x) sur l’inter-
valle réel [a, b], avec une précision ϵ. La fonction f est strictement monotone sur [a, b].

Correction proposée:
fonction zeroFonction (a,b : Reel, ϵ : ReelPositif, f : FonctionRDansR) : Reel

⌊précondition(s) a ≤ b
strictementMonotone(f,a,b)

Déclaration m : Reel

debut
m ← (a + b) / 2
si (b - a)≤ ϵ alors

retourner m
sinon

si memeSigne(f(a),f(m)) alors
retourner zeroFonction(m, b, ϵ,f)

sinon
retourner zeroFonction(a, m, ϵ,f)

finsi
finsi

fin
La taille du problème est égal aux nombre de bits qu’il faut pour représenter ce (b − a)/ϵ. Si on arrondit

ce nombre au naturel le plus proche N , et si n représente le nombre de bits pour représenter N , N vaut au
maximum 2n − 1. Comme le nombre d’itérations est de log2(N) (algorithmique dichotomique), la complexité
de cet algorithme est en O(n) et en Ω(1) (dans le cas où il n’y aucune itération).

3.4 Dessin récursif

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Supposons que la procédure suivante permette de dessiner un carré sur un graphique (variable de type
Graphique) :

24 CHAPITRE 3. RAPPELS : RÉCURSIVITÉ

— procédure carre (E/S g : Graphique,E x,y,cote : Reel)

L’objectif est de concevoir une procédure carres qui permet de dessiner sur un graphique des dessins
récursifs tels que présentés par la figure 3.1. La signature de cette procédure est :

— procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

(a) carres(g, 100, 100, 100, 1)

� �� ��� ��� ��� ��� ���
�

��

���

���

���

���

���

(b) carres(g, 100, 100, 100, 3)

� �� ��� ��� ��� ��� ���
�

��

���

���

���

���

���

(c) carres(g, 100, 100, 100, 4)

FIGURE 3.1 – Résultats de différents appels de la procédure carres

1. Dessinez le résultat de l’exécution de carres(g, 100, 100, 100, 2).

2. Donnez l’algorithme de la procédure carres.

Correction proposée:

1. �� ��� ��� ��� ���

��

���

���

���

���

2. Algorithme

procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)
debut

carre(g,x,y,cote)
si n>1 alors

carres(g,x-cote/2,y,cote/2,n-1)
carres(g,x,y+cote,cote/2,n-1)
carres(g,x+cote,y+cote/2,cote/2,n-1)
carres(g,x+cote/2,y-cote/2,cote/2,n-1)

finsi
fin

NB : Cet exercice est inspiré de http://www-fourier.ujf-grenoble.fr/˜parisse/giac/doc/
fr/casrouge/casrouge018.html.

3.5. INVERSION D’UN TABLEAU 25

3.5 Inversion d’un tableau

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Soit un tableau d’entiers t. Écrire une procédure, inverserTableau, qui change de place les éléments
de ce tableau de telle façon que le nouveau tableau t soit une sorte de ”miroir” de l’ancien.

Exemple : 1 2 4 6 → 6 4 2 1

Correction proposée:
procédure inverserTableauR (E/S t : Tableau[1..MAX] d’Entier, E debut, fin : Naturel)
debut

si debut < fin alors
echanger(t[debut], t[fin])
si debut<fin-1 alors

inverserTableauR(t, debut+1, fin-1)
finsi

finsi
fin
procédure inverserTableau (E/S t : Tableau[1..MAX] d’Entier, E n : Naturel)
debut

inverserTableauR(t,1,n)
fin

26 CHAPITRE 3. RAPPELS : RÉCURSIVITÉ

Chapitre 4

Représentation d’un naturel

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— AN102 : Décomposer logiquement un problème

— AN103 : Généraliser un problème

— AN104 : Savoir si un problème doit être décomposé

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CD001 : Dissocier les deux rôles du développeur : concepteur et utilisateur

— CD002 : En tant qu’utilisateur, respecter une signature

L’objectif de cet exercice est de concevoir quatre fonctions permettant de représenter un naturel en chaı̂ne
de caractères telles que la première fonction donnera une représentation binaire, la deuxième une représentation
octale, la troisième une représentation décimale et la dernière une représentation hexadécimale.

4.1 Analyse

L’analyse de ce problème nous indique que ces quatre fonctions sont des cas particuliers de représentation
d’un naturel en chaı̂ne de caractères dans une base donnée. De plus pour construire la chaı̂ne de caractères
résultat, il faut être capable de concaténer des caractères représentant des chiffres pour une base donnée.

Proposez l’analyse descendante de ce problème.

Correction proposée:
27

28 CHAPITRE 4. REPRÉSENTATION D’UN NATUREL

representation
Binaire

Naturel Chaine

representation
Octale

Naturel Chaine

representation
Decimale

Naturel Chaine

representation
Hexadecimale

Naturel Chaine

representation
NAire

Naturel
2..36

Chaine

naturel
EnChiffre

0..35
2..36

Caractere

4.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures identifiées précédemment.

Correction proposée:

— fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere
⌊précondition(s) nombre < base

— fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
— fonction representationBinaire (n : Naturel) : Chaine de caracteres
— fonction representationOctale (n : Naturel) : Chaine de caracteres
— fonction representationDecimale (n : Naturel) : Chaine de caracteres
— fonction representationHexadecimale (n : Naturel) : Chaine de caracteres

4.3 Conception détaillée

Donnez les algorithmes de ces fonctions ou procédures

Correction proposée:
fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere

⌊précondition(s) nombre < base

Déclaration chiffre : Caractere,
i : Naturel

debut
chiffre ← ’0’
pour i ←1 à nombre faire

4.3. CONCEPTION DÉTAILLÉE 29

si chiffre = ’9’ alors
chiffre ← ’A’

sinon
chiffre ← succ(chiffre)

finsi
finpour
retourner chiffre

fin

fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
Déclaration representation : Chaine de caracteres

debut
representation ← ””
repeter

representation ← naturelEnChiffre(nombre mod base, base) + representation
nombre ← nombre div base

jusqu’a ce que nombre = 0
retourner representation

fin

fonction representationBinaire (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,2)
fin

fonction representationOctale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,8)
fin

fonction representationDecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,10)
fin

fonction representationHexadecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,16)
fin

30 CHAPITRE 4. REPRÉSENTATION D’UN NATUREL

Chapitre 5

Calculatrice

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

L’objectif de cet exercice est d’écrire un sous-programme, calculer, qui permet de calculer la valeur d’une
une expression arithmétique simple (opérande gauche positive, opérateur, opérande droite positive) à partir
d’une chaı̂ne de caractères (par exemple ”875+47.5”). Ce sous-programme, outre ce résultat, permettra de savoir
si la chaı̂ne est réellement une expression arithmétique (Conseil : Créer des procédures/fonctions permettant de
reconnaı̂tre des opérandes et opérateurs) et si elle est logiquement valide

On considère posséder le type Operateur défini de la façon suivante :

— Type Operateur = {Addition, Soustraction, Multiplication, Division}

5.1 Analyse

Remplissez l’analyse descendante présentée par la figure 5.1 sachant que la reconnaissance d’une entité
(opérateur, opérande, etc.) dans la chaı̂ne de caractères commencent à une certaine position et que la reconnais-
sance peut échouer.

calculer...
...
...
...

reconnaitre
Operateur

...

...
...
...
...

reconnaitre
Operande

...

...
...
...
...

reconnaitreS
uiteChiffres

...

...

...

...

...

reconnaitre
Virugle

...

...
...
... chaineEnNaturel... ...

...

xPuissanceN...
...

...

estUnChiffre... ...

FIGURE 5.1 – Analyse descendante d’une calculatrice simple

31

32 CHAPITRE 5. CALCULATRICE

Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— La difficulté ici est d’avoir une analyse cohérente du problème

calculerChaine
Reel
Booléen
Booléen

reconnaitre
Operateur

Chaine
NaturelNonNul

Operateur
NaturelNonNul
Booleen

reconnaitre
Operande

Chaine
NaturelNonNul

Reel
NaturelNonNul
Booleen

reconnaitre
SuiteChiffre

Chaine
NaturelNonNul

Chaine
NaturelNonNul
Booleen

reconnaitre
Virugle

Chaine
NaturelNonNul

NaturelNonNul
Booleen chaineEnNaturelChaine Naturel

Booleen

xPuissanceNReel
Entier

Reel

estUnChiffreCaractere Booleen

5.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures correspondant aux opérations de l’analyse précédente.

Correction proposée:

— fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
⌊précondition(s) longueur(leTexte) > 0

— procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUnOperateur : Booleen, lOperateur : Operateur)

⌊précondition(s) debut < longueur(leTexte)

— procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneOperande : Booleen, leReel : Reel)

⌊précondition(s) debut ≤ longueur(leTexte)

— procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul,
S suiteChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

⌊précondition(s) position ≤ longueur(leTexte)

— procédure reconnaitreVirgule (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneVirgule : Booleen)

⌊précondition(s) position ≤ longueur(leTexte)

5.3. CONCEPTION DÉTAILLÉE 33

— fonction estUnChiffre (c : Caractere) : Booleen
— fonction XPuissanceN (x : Reel, n : Entier) : Reel
— fonction chaineEnNaturel (c : Chaine de caracteres) : Naturel, Booleen

5.3 Conception détaillée

Donnez les algorithmes des fonctions et procédures identifées.

Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— Montrer qu’une fois la conception préliminaire terminée, on peut répartir la conception détaillée
entre plusieurs personnes

procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S estU-
nOperateur : Booleen, lOperateur : Operateur,)

⌊précondition(s) debut ≤ longueur(leTexte)

debut
estUnOperateur ← VRAI
position ← position+1
cas où iemeCaractere(leTexte,position) vaut

’+’:
lOperateur ← Addition

’-’:
lOperateur ← Soustraction

’*’:
lOperateur ← Multiplication

’/’:
lOperateur ← Division

autre :
estUnOperateur ← FAUX
position ← position-1

fincas
fin

fonction estUnChiffre (c : Caractere) : Booleen
debut

retourner c≥’0’ et c≤’9’
fin

procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S sui-
teChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

⌊précondition(s) position ≤ longueur(leTexte)

debut
suiteChiffres ← ””
estUneSuiteDeChiffres ← FAUX
tant que position ≤ longueur(texte) et estUnChiffre(iemeCaractere (leTexte, position)) faire

34 CHAPITRE 5. CALCULATRICE

suiteChiffres ← suiteChiffres + iemeCaractere (leTexte, position)
position ← position + 1

fintantque
si suiteChiffres̸=”” alors

estUneSuiteDeChiffres ← VRAI
finsi

fin

procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : Naturel, S estUneOpe-
rande : Booleen, leReel : Reel, prochainDebut : NaturelNonNul)

⌊précondition(s) debut ≤ longueur(leTexte)

Déclaration chPartieEntiere, chPartieDecimale : Chaine de caracteres
partieEntiere, partieDecimale : Naturel
ok, ilYAUneVirgule : Booleen

debut
reconnaitreSuiteChiffres(leTexte,position,chPartieEntiere,ok)
si ok alors

chaineEnNaturel(chPartieEntiere,partieEntiere,ok)
reconnaitreVirgule(leTexte,position,ilYAUneVirgule)
si ilYAUneVirgule alors

reconnaitreSuiteChiffres(leTexte,position,chPartieDecimale,ok)
si ok alors

chaineEnNaturel(chPartieDecimale,partieDecimale,ok)
leReel ← partieEntiere + partieDecimale / XPuissanceN(10,longueur(chPartieDecimale))

finsi
sinon

leReel ← naturelEnReel(partieEntiere)
finsi

finsi
estUneOperande ← ok

fin

fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
⌊précondition(s) longueur(leTexte) > 0

Déclaration i : Naturel
valeur, operandeG, operandeD : Reel
operateur : Operateur
toujoursValide, estUneExpressionSemantiquementCorrecte : Booleen

debut
valeur ← 0
i ← 1
reconnaitreOperande(leTexte,i, toujoursValide, operandeG)
si toujoursValide et i<longueur(leTexte) alors

reconnaitreOperateur(leTexte, i, toujoursValide, operateur)
si toujoursValide et i≤ longueur(leTexte) alors

reconnaitreOperande(leTexte, i, toujoursValide, operandeD)
si toujoursValide et i = longueur(leTexte) + 1 alors

estUneExpressionSemantiquementCorrecte ← VRAI

5.3. CONCEPTION DÉTAILLÉE 35

cas où operateur vaut
Addition:

valeur ← operandeG + operandeD
Soustraction:

valeur ← operandeG - operandeD
Multiplication:

valeur ← operandeG * operandeD
Division:

si operandeD ̸= 0 alors
valeur ← operandeG / operandeD

sinon
estUneExpressionSemantiquementCorrecte ← FAUX

finsi
fincas
retourner valeur, VRAI, estUneExpressionSemantiquementCorrecte

finsi
finsi

finsi
retourner 0, FAUX, FAUX

fin

36 CHAPITRE 5. CALCULATRICE

Chapitre 6

Un peu de géométrie

Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— Manipuler les TAD

— Appliquer le principe d’encapsulation

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier

— AN204 : Formaliser des opérations d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD003 : Utiliser le principe d’encapsulation

6.1 Le TAD Point2D

Soit le TAD Point2D définit de la façon suivante :

Nom: Point2D
Utilise: Reel
Opérations: point2D: Reel × Reel → Point2D

obtenirX: Point2D → Reel
obtenirY: Point2D → Reel
distanceEuclidienne: Point2D × Point2D → ReelPositif
translater: Point2D × Point2D → Point2D
faireRotation: Point2D × Point2D × Reel → Point2D

37

38 CHAPITRE 6. UN PEU DE GÉOMÉTRIE

1. Analyse : Donnez la partie axiomes pour ce TAD (sauf pour l’opération faireRotation)
Correction proposée:

Axiomes: - obtenirX(point2D(x, y)) = x
- obtenirY (point2D(x, y)) = y
- distanceEuclidienne(point2D(x1, y1), point2D(x2, y2)) =

p
(x2 − x1)2 + (y2 − y1)2

- translater(point2D(x1, y1), point2D(x2, y2)) = point2D(x1 + x2, y1 + y2)

Remarque(s) :

— il ne sert à rien d’ajouter trop d’axiomes, au risque d’avoir un TAD inconsistant ou de proposer
des tautologies.
Par exemple l’axiome point2D(obtenirX(p1), obtenirY (p1)) = p1 est une tautologie.
En effet si on remplace p1 par point2D(x, y), on a alors :

point2D(obtenirX(point2D(x, y)), obtenirY (point2D(x, y))) = point2D(x, y)

Soit

point2D(x, y) = point2D(x, y)

qui est toujours vrai.

2. Conception préliminaire : Donnez les signatures des fonctions et procédures des opérations de ce TAD
Correction proposée:

— fonction point2D (x,y : Reel) : Point2D
— fonction obtenirX (p : Point2D) : Reel
— fonction obtenirY (p : Point2D) : Reel
— fonction distanceEuclidienne (p1,p2 : Point2D) : ReelPositif
— procédure translater (E/S p : Point2D,E vecteur : Point2D)
— procédure realiserRotation (E/S p : Point2D,E centre : Point2D, angleEnDegre : Reel)

Remarque(s) :

— Il est important de choisir de bons identifiants pour les paramètres formels. Ici il pourrait y
avoir ambiguı̈té sur l’unité du paramètre formel de l’angle de la rotation.

6.2 Polyligne

≪ Une ligne polygonale, ou ligne brisée (on utilise aussi parfois polyligne par traduction de l’anglais poly-
line) est une figure géométrique formée d’une suite de segments, la seconde extrémité de chacun d’entre eux
étant la première du suivant.[. . .] Un polygone est une ligne polygonale fermée. ≫ (Wikipédia)

La figure 6.1 présente deux polylignes composées de 5 points.
De cette définition nous pouvons faire les constats suivants :

— Tous les points d’une polyligne sont distincts ;

— Une polyligne est constituée d’au moins deux points ;

6.2. POLYLIGNE 39

(a) polyligne ouverte (b) polyligne fermée

FIGURE 6.1 – Deux polylignes

— On peut obtenir le nombre de points d’une polyligne ;

— Une polyligne est ouverte ou fermée (qu’elle soit ouverte ou fermée ne change pas le nombre de points :
dans le cas où elle est fermée, on considère qu’il a une ligne entre le dernier et le premier point) ;

— On peut insérer, supprimer des points à une polyligne (par exemple la figure 6.2 présente la supression
du troisième point de la polyligne ouverte de la figure 6.1).

— On peut parcourir les points d’une polyligne ;

— On peut effectuer des transformations géométriques (translation, rotation, etc.) ;

— On peut calculer des propriétés d’une polyligne (par exemple sa longueur totale).

FIGURE 6.2 – Supression d’un point

6.2.1 Analyse

Proposez le TAD Polyligne (sans les parties Axiome et Sémantique) avec les opérations suivantes :

— créer une polyligne ouverte à partir de deux Point2D ;

— savoir si une polyligne est fermée ;

— ouvrir une polyligne ;

— fermer une polyligne ;

— connaitre le nombre de points d’un polyligne ;

— obtenir le ième point d’une polyligne ;

— insérer le ième point d’une polyligne ;

— supprimer le ième point d’une polyligne (on suppose qu’elle a au moins 3 points) ;

— calculer la longueur d’un polyligne ;

40 CHAPITRE 6. UN PEU DE GÉOMÉTRIE

— translater une polyligne ;

— faire une rotation d’une polyligne.

Correction proposée:

Nom: Polyligne
Utilise: Reel,Booleen,NaturelNonNul,Point2D
Opérations: polyligne: Point2D × Point2D ↛ Polyligne

estFermee: Polyligne → Booleen
ouvrir: Polyligne → Polyligne
fermer: Polyligne → Polyligne
nbPoints: Polyligne → NaturelNonNul
iemePoint: Polyligne × NaturelNonNul ↛ Point
ajouterPoint: Polyligne × Point × NaturelNonNul ↛ Point
supprimerPoint: Polyligne × NaturelNonNul ↛ Polyligne
longueur: Polyligne → ReelPositif
translater: Polyligne × Point2D → Polyligne
realiserRotation: Polyligne × Point2D × Reel → Polyligne

Préconditions: polyligne(pt1, pt2): pt1 ̸= pt2

iemePoint(pl, i): i ≤ nbPoints(pl)

ajouterPoint(pl, pt, i): i ≤ nbPoints(pl) et ∀j ∈ 1..nbPoints(pl), iemePoint(pl, j) ̸=
pt

supprimerPoint(pl, i): i ≤ nbPoints(pl) et nbPoints(pl) ≥ 3

Remarque(s) :

— Il est à noter que les trois dernières opérations ne sont pas obligatoires, elles pourraient être conçues
en tant qu’utilisateur du TAD Polyligne.

6.2.2 Conception préliminaire

Proposez la signature des fonctions et procédures pour le type Polyligne.

Correction proposée:

— fonction polyligne (pt1,pt2 : Point2D) : Polyligne

⌊précondition(s) pt1 ̸= pt2

— fonction estFermee (pl , Polyligne) : Booleen
— procédure fermer (E/S pl : Polyligne)
— procédure ouvrir (E/S pl : Polyligne)
— fonction nbPoints (pl : Polyligne) : NaturelNonNul
— fonction iemePoint (pl : Polyligne, position : NaturelNonNul) : Point2D

⌊précondition(s) position ≤ nbPoints(pl)

— procédure ajouterPoint (E/S pl : Polyligne,E pt : Point2D, position : NaturelNonNul)
⌊précondition(s) position ≤ nbPoints(pl) + 1 et ∀i ∈ 1..nbPoints(pl), iemePoint(pl, i) ̸= pt

6.2. POLYLIGNE 41

— procédure supprimerPoint (E/S pl : Polyligne,E position : NaturelNonNul)
⌊précondition(s) position ≤ nbPoints(pl) et nbPoints(pl) ≥ 3

— fonction longueur (pl : Polyligne) : ReelPositif
— procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
— procédure realiserRotation (E/S pl : Polyligne,E centre : Point2D, angleEnRadian : Reel)

6.2.3 Conception détaillée

On propose de représenter le type Polyligne de la façon suivante :
Type Polyligne = Structure

lesPts : Tableau[1..MAX] de Point2D
nbPts : Naturel
estFermee : Booleen

finstructure
Proposez les fonctions et procédures correspondant aux opérations suivantes :

— créer une polyligne ouverte à partir de deux Point2D ;

— ouvrir une polyligne ;

— translater une polyligne.

Correction proposée:
fonction polyligne (pt1,pt2 : Point2D) : Polyligne

Déclaration resultat : Polyligne

debut
resultat.nbPts ← 2
resultat.lesPts[1] ← pt1
resultat.lesPts[2] ← pt2
resultat.estFermee ← FAUX
retourner resultat

fin
procédure ouvrir (E/S pl : Polyligne)
debut

pl.estFermee ← FAUX
fin
procédure translater (E/S pl : Polyligne,E vecteur : Point2D)

Déclaration i : Naturel
debut

pour i ←1 à nbPoints(pl) faire
Point2D.translater(pl.lesPts[i],vecteur)

finpour
fin

Remarque(s) :

— Il est à noter que cette dernière procédure aurait pu être écrite en utilisant le principe d’encapsula-
tion :
procédure translater (E/S pl : Polyligne,E vecteur : Point2D)

42 CHAPITRE 6. UN PEU DE GÉOMÉTRIE

Déclaration i : Naturel
debut

pour i ←1 à nbPoints(pl) faire
temp ← iemePoint(pl,i)
Point2D.translater(temp,vecteur)
supprimerPoint(pl,i)
ajouterPoint(pl,temp,i)

finpour
fin
Mais cela met en avant le fait qu’il manque une opération remplacer non obligatoire mais qui facilite
la vie des utilisateurs du TAD.

6.3 Utilisation d’une polyligne

Dans cette partie, nous sommes utilisateur du type Polyligne et nous respectons le principe d’encapsu-
lation.

6.3.1 Point à l’intérieur

Nous supposons posséder la fonction suivante qui permet de calculer l’angle orienté en degré formé par les
segments (ptCentre, pt1) et (ptCentre, pt2) :

— fonction angle (ptCentre,pt1,pt2 : Point2D) : Reel
⌊précondition(s) pt1̸=ptCentre et pt2̸=ptCentre

Il est possible de savoir si un point pt est à l’intérieur ou à l’extérieur d’une polyligne fermée en calculant
la somme des angles orientés formés par les segments issus de pt vers les points consécutifs de la polyligne. En
effet si cette somme en valeur absolue est égale à 360◦ alors le point pt est à l’intérieur de la polyligne, sinon il
est à l’extérieur.

Par exemple, sur la figure 6.3, on peut savoir algorithmiquement que pt est à l’intérieur de la polyligne car
|α1 + α2 + α3 + α4 + α5| = 360.

pt
1

2 3

4

5

α
1

α
2

α
3

α
4

α
5

FIGURE 6.3 – Point à l’intérieur d’une polyligne

Proposez le code de la fonction suivante :estALInterieur
fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

⌊précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Correction proposée:

6.3. UTILISATION D’UNE POLYLIGNE 43

fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

⌊précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Déclaration i : Naturel
sommeAngle : Reel

debut
sommeAngle ← 0
pour i ←1 à nbPoints(p)-1 faire

sommeAngle ← sommeAngle+angle(pt,iemePoint(p,i),iemePoint(p,i+1))
finpour
sommeAngle ← sommeAngle+angle(pt,iemePoint(p,nbPoints(p)),iemePoint(p,1))
retourner sommeAngle=360 ou sommeAngle=-360

fin

6.3.2 Surface d’une polyligne par la méthode de monté-carlo

Une des façons d’approximer la surface d’une polyligne est d’utiliser la méthode de Monté-Carlo. Le prin-
cipe de cette méthode est de ≪ calculer une valeur numérique en utilisant des procédés aléatoires, c’est-à-dire
des techniques probabilistes ≫ (Wikipédia). Dans le cas du calcul d’une surface, il suffit de tirer au hasard des
points qui sont à l’intérieur du plus petit rectangle contenant la polyligne. La surface S de la polyligne pourra
alors être approximée par la formule suivante :

S ≈ SurfaceDuRectangle × Nb points dans la polyligne
Nb points total

Par exemple, sur la figure 6.4, en supposant que le rectangle fasse 3 cm de hauteur et 4, 25 cm de largeur, et
qu’il y a 28 points sur 39 qui sont à l’intérieur de la polyligne, sa surface S peut être approximée par :

S ≈ 3× 4, 25× 28

38
= 9, 39 cm2

FIGURE 6.4 – Calcul de la surface d’une polyligne par la méthode de Monté-Carlo

On suppose posséder la procédure suivante qui permet d’obtenir un réel aléatoire entre une borne minimum
et une borne maximum :

— procédure reelAleatoire (E borneMin,bornneMax : Reel, S leReel : Reel)

1. Proposez l’analyse descendante pour le calcul d’une surface d’une polyligne à l’aide de la méthode de
Monté-Carlo.
Correction proposée:

44 CHAPITRE 6. UN PEU DE GÉOMÉTRIE

surfacePolyligne Polyligne × Naturel → Reel
rectangleEnglobant Polyligne → Point2D × Point2D
surfaceRectangle Point2D × Point2D → Reel
pointAleatoireDansRectangle Point2D × Point2D → Point2D

2. Donnez les signatures des procédures et fonctions de votre analyse descendante.
Correction proposée:

— fonction surfacePolyligne (p : Polyligne, nbPoints : Naturel) : Reel
— fonction rectangleEnglobant (p : Polyligne) : Point2D, Point2D
— fonction surfaceRectangle (ptBasGauche,ptHautDroit : Point2D) : Reel
— procédure pointAleatoireDansRectangle (E ptBasGauche,ptHautDroit : Point2D, S lePoint : Point2D)

3. Donnez l’algorithme de l’opération principale (au sommet de votre analyse descendante).
Correction proposée:

fonction surfacePolyligne (p : Polyligne, nbPoints : NaturelNonNul) : Reel
⌊précondition(s) estFerme(p) et not tousLesPointsAlignes(p)

Déclaration ptBasGauche, ptHautDroit, pt : Point2D
i, nbDans, nbPointsTotal : Naturel

debut
ptBasGauche,ptHautDroit ← rectangleEnglobant(p)
surface ← surfaceRectangle(ptBasGauche,ptHautDroit)
nbDans ← 0
nbPointsTotal ← 0
tant que nbPointsTotal̸=nbPoints faire

pointAleatoireDansRectangle(ptBasGauche,ptHautDroit, pt)
si non estSurLaFrontiere(p, pt) alors

nbPointsTotal ← nbPointsTotal+1
si estALinterieur(p,pt) alors

nbDans ← nbDans+1
finsi

finsi
fintantque
retourner surface*nbDans/nbPointsTotal

fin

