
TP « Serpent »

N. Delestre

Objectif
L’objectif de ce TP est de développer une implémentation du jeu du serpent. Au lancement

du jeu on précise en paramètre la largeur (l), la hauteur (h) du terrain de jeu et la longueur
initiale du serpent. Le terrain de jeu est torique, c’est-à-dire que si le serpent sort par un côté il
réapparaît de l’autre côté. Au départ du jeu la queue du serpent se trouve au centre du terrain
de jeu et le serpent se dirige vers la droite. Le joueur peut changer la direction du serpent en
utilisant les flèches du clavier. À chaque fois que le serpent mange un fruit, il grandit de 1, il
accélère, un nouveau fruit apparaît à un endroit aléatoire et le joueur marque un point. Le jeu
s’arrête lorsque le serpent se mord la queue. La figure 1 est un exemple d’affichage du jeu en
mode texte. Les coordonnées des éléments du jeu sont des naturels tels que l’origine (0,0) est en
haut à gauche du terrain de jeu, l’abscisse augmente vers la droite et l’ordonnée. Les éléments
de la bordure du terrain ont des coordonnées du type (0, j), (l + 1, j) avec j ∈ 1..h et (i, 0) et
(i, h + 1) avec i ∈ 1..l.

Cette implémentation utilisera une interface graphique en mode texte, mais la conception
doit bien séparer logique métier et interface homme-machine.

Figure 1 – Exemple d’affichage du jeu en mode texte

Analyse
Une analyse de ce jeu fait apparaître les TAD suivants :

1



TAD Direction
Ce TAD représente la direction du déplacement du serpent.

Nom: Direction
Opérations: HAUT: → Direction

BAS: → Direction
GAUCHE: → Direction
DROITE: → Direction
directionOpposee: Direction → Direction

Axiomes: - directionOpposee(HAUT)=BAS
- directionOpposee(BAS)=HAUT
- directionOpposee(GAUCHE)=DROITE
- directionOpposee(DROITE)=GAUCHE

TAD Coordonnee
Ce TAD représente une coordonnée dans le terrain de jeu torique.

Nom: Coordonnee
Utilise: Naturel, Direction
Opérations: coordonnee: Naturel × Naturel → Coordonnee

abscisse: Coordonnee → Naturel
ordonnee: Coordonnee → Naturel
voisin: Coordonnee×Direction×NaturelNonNul×NaturelNonNul

→ Coordonnee
Axiomes: - abscisse(coordonnee(x,y))=x

- ordonnee(coordonnee(x,y))=y
- voisin(c,HAUT,l,h)=coordonnee(abscisse(c),(ordonnee(c)-2) mod h + 1)
- voisin(c,BAS,l,h)=coordonnee(abscisse(c),(ordonnee(c)+1) mod h + 1)
- voisin(c,GAUCHE,l,h)=coordonnee((abscisse(c)-2) mod l + 1,ordonnee(c))
- voisin(c,DROITE,l,h)=coordonnee((abscisse(c)+1) mod l + 1,ordonnee(c))

TAD Serpent (sans les axiomes)
Ce TAD représente le serpent, l’élément central du jeu.

Nom: Serpent
Utilise: Naturel
Opérations: serpent: Coordonnee × NaturelNonNul × Direction ×

NaturelNonNul × NaturelNonNul → Ser-
pent

positionTete: Serpent → Coordonnee
positionQueue: Serpent → Coordonnee
avancer: Serpent → Serpent
direction: Serpent → Direction
changerDirection: Serpent × Direction ↛ Serpent

2



accroissement: Serpent × Naturel → Serpent
longueur: Serpent → NaturelNonNul
seMord: Serpent → Booleen
estUneCoordonneeDuSerpent: Serpent × Coordonnee → Booleen
coordonneesDuSerpent: Serpent → Liste<Coordonnees>

Préconditions: changerDirection(s,d): d ̸= direction(s) et d ̸= directionOpposee(direction(s))

Analyse descendante
L’algorithme du jeu ne nécessite pas d’analyse descendante puisque le problème est assez

simple : après avoir initialiser le serpent, il avance dans la direction courante tant qu’il ne se
mord pas la queue. S’il mange un fruit, il grandit, le score augmente de 1 et la vitesse de jeu
augmente. Toutes ces opérations sont proposées par les TAD précédents.

Conception préliminaire

Type Direction
— fonction directionOpposee (d : Direction) : Direction

Type Coordonnee
— fonction coordonnee (x,y : NaturelNonNul) : Coordonnee
— fonction abscisse (c : Coordonnee) : Naturel
— fonction ordonnee (c : Coordonnee) : Naturel
— fonction voisin (c : Coordonnee, d : Direction, largeurTerrain, hauteurTerrain : Naturel-

NonNul) : Coordonnee

Type Serpent
— fonction serpent (

positionInitialeQueue : Coordonnee,
longueurInitiale : NaturelNonNul,
directionInitiale : Direction,
largeurTerrain : NaturelNonNul,
hauteurTerrain : NaturelNonNul

) : Serpent
— fonction positionTete (s : Serpent) : Coordonnee
— fonction positionQueue (s : Serpent) : Coordonnee
— procédure avancer (E/S s : Serpent)
— fonction direction (s : Serpent) : Direction
— procédure changerDirection (E/S s : Serpent, E d : Direction)

⌊précondition(s) d ̸= direction(s) et d ̸= directionOpposee(direction(s))
— procédure accroissement (E/S s : Serpent, E longeur : Naturel)
— fonction longueur (s : Serpent) : NaturelNonNul

3



— fonction seMord (s : Serpent) : Booleen
— fonction estUneCoordonneeDuSerpent (s : Serpent, c : Coordonnee) : Booleen
— fonction coordonneesDuSerpent (s : Serpent) : Liste<Coordonnee>

Conception détaillée

Type Direction
Puisqu’il n’y a que quatre directions possibles, on peut utiliser une énumération.

— Type Direction = {HAUT,BAS,GAUCHE,DROITE}

Type Coordonnee
Une coordonnée est un couple d’entiers naturels.

— Type Coordonnee = Structure
x : Naturel
y : Naturel

— finstructure

Type Serpent
La longueur du serpent varie au cours de l’exécution du programme. Nous allons donc utiliser

une structure dynamique de données pour le concevoir, plus exactement la liste chaînée. Nous
avons besoin de référencer la tête du serpent et la queue du serpent, nous allons donc nous
inspirer de la conception de la File vue en cours :
Type Coordonnee = Structure

tete : ListeChainee<Coordonnee>
queue : ListeChainee<Coordonnee>

finstructure
Pour avoir des opérations en O(1), le champ queue doit référencer le début de la liste chaînée

et le champ tete la fin de la liste chaînée (le dernier élément), comme l’indique la figure 2.

tete :
queue :

position : x : 7
y : 7

listeSuivante :

position : x : 7
y : 6

listeSuivante :

position : x : 7
y : 5

listeSuivante :

Figure 2 – Représentation du serpent

En effet, l’opération avancer consiste à ajouter une coordonnée à la fin de la liste et à
supprimer, ou pas, le premier élément.

4



Afin d’éviter de parcourir la liste chaînée pour obtenir sa longueur, nous pouvons ajouter
un champ longueur.

Lorsque le serpent mange un fruit, il grandit. Nous allons donc ajouter un champ accroissement
qui contiendra le nombre de fois où le serpent doit avancer sans supprimer le premier élément
de la liste chaînée.

Nous devons connaître la direction courante du serpent, nous allons donc ajouter un champ
direction.

Enfin lorsqu’il avance, le serpent ne doit pas sortir du terrain de jeu. Nous allons donc
ajouter deux champs largeurTerrain et hauteurTerrain qui contiendront les dimensions du
terrain de jeu.

Finalement le type Serpent est conçu de la manière suivante :
Type Serpent = Structure

tete : ListeChainee<Coordonnee>
queue : ListeChainee<Coordonnee>
longueur : NaturelNonNul
accroissement : Naturel
direction : Direction
largeurTerrain : NaturelNonNul
hauteurTerrain : NaturelNonNul

finstructure
La seule fonction nécessitant un algorithme est la procédure avancer :

procédure avancer (E/S serp : Serpent)
Déclaration coordTete, nelleCoordonnee : Coordonnee

nelleTete : ListeChainee<Coordonnee>

debut
coordTete ← positionTete(serp)
nelleCoordonnee← voisin(coordTete, direction(serp), serp.largeurTerrain, srp.hauteurTerrain)

nelleTete ← listeChainee()
ajouter(nelleTete, nelleCoordonnee)
fixerListeSuivante(serp.tete, nelleTete)
serp.tete ← nelleTete
si serp.accroissement = 0 alors

supprimerTete(serp.queue)
sinon

serp.accroissement ← serp.accroissement - 1
serp.longueur ← serp.longueur + 1

finsi
fin

Enfin l’initialisation du serpent au début du jeu peut être vu comme au départ un ser-
pent de longueur 1 avec un accroissement égal à la longueur initiale du serpent suivi d’autant
d’avancements.

5



Séparation logique métier et IHM
Afin de bien séparer la logique métier (le fait de jouer au jeu du serpent) et l’interface

homme machine (l’affichage du jeu et la gestion des entrées utilisateur), nous allons utiliser le
mécanisme des callback. En plus des informations nécessaires à l’initialisation du jeu, le sous
programme principal de la logique métier (procédure jouer) prendra en paramètre quatre sous
programmes :
— une procédure pour afficher le terrain de jeu ;
— une procédure pour mettre à jour l’affichage du terrain de jeu ;
— une fonction pour récupérer la direction choisie par l’utilisateur. Cette opération n’étant

pas bloquante, si l’utilisateur ne choisit pas de direction, la fonction retourne la direction
courante du serpent ;

— une procédure pour demander à accélérer le jeu.
Le premier paramètre de ces sous-programmes est l’interface (de type Interface non connu)

sur laquelle vont être effectuées les actions demandées.
Le pseudo code de ce sous programme est :

procédure jouer (
E/S interface : Interface,
E afficherTerrain : procédure(E/S Interface, Serpent, Coordonnee, Naturel),
E mettreAJour : procédure(E/S Interface, Serpent, Coordonnee, Naturel),
E obtenirDirection : procédure(E Interface, Direction, S Direction,
E accelerer : procedure(E/S Interface),
E largeurTerrain, hauteurTerrain, longueurInitialeSerpent : NaturelNonNul,
E directionInitialeSerpent : Direction,
S score : NaturelNonNul

)
Déclaration serp : Serpent,

coordFruit : Coordonnee
nelleDirection : Direction

debut
score ← 0
serp← serpent(coordonnee(largeurTerrain div 2, hauteurTerrain div 2), longueurInitialeSer-
pent, directionInitialeSerpent, largeurTerrain, hauteurTerrain)
nelleCoordonneeFruit(largeurTerrain, hauteurTerrain, serp, coordFruit)
afficherTerrain(interface, serp, coordFruit, score)
tant que non seMord(serp) faire

obtenirDirection(interface, direction(serp), nelleDirection)
si nelleDirection ̸= direction(serp) et nelleDirection ̸= directionOpposee(direction(serpent))
alors

changerDirection(serp, nelleDirection)
finsi
avancer(serp)
si positionTete(serp) = coordFruit alors

score ← score + 1
accroissement(serp, 1)
nelleCoordonneeFruit(largeurTerrain, hauteurTerrain, serp, coordFruit)

6



accelerer(interface)
finsi
mettreAJour(interface, serp, coordFruit, score)

fintantque
fin

Le programme C
Le programme est composé des fichiers suivants :

— include/direction.h et src/direction.c le module qui implante le type D_Direction ;
— include/coordonnee.h et src/coordonnee.c le module qui implante le type C_Coordonnee ;
— include/serpent.h et src/serpent.c le module qui implante le type S_Serpent ;
— include/jeu.h et src/jeu.c le module qui implante la fonction J_jeu ;
— include/interface.h et src/interface le module qui définit le type I_Interface et les

prototypes des fonctions de gestion de l’interface en mode texte en utilisant la bibliothèque
ncurses ;

— src/main.c le programme principal qui utilise les modules précédents pour faire fonctionner
le jeu.
À ces fichiers, s’ajoutent des fichiers de tests unitaires dans le répertoire src (pour les mo-

dules direction, coordonnee et serpent). Le fichier makefile permet de générer le programme
principal (make) ou les tests unitaires (make test).

Il y a quelques modifications de la conception préliminaire dû aux spécificités du langage C
— pour être indépendant du type implantant l’interface, cette dernière est passée à la logique

métier sous la forme d’un void* ;
— afin de simplifier son utilisation, la fonction S_coordonneeDuSerpent ne retourne pas une

liste mais un tableau dynamique de coordonnées.

Travail à réaliser
1. Le projet utilise le SDD liste chaînée disponible sur le gitlab du cours https://gitlab.

insa-rouen.fr/delestre/algo-exemples. Pour pouvoir l’utiliser dans ce projet et pour-
quoi pas dans d’autres projets, nous allons l’installer en local :
— clonez le projet gitlab dans un répertoire ;
— compilez le sous projet sdd (algo-exemples/CM/09-sdd) : vous obtenez une bibliothèque

statique libsdd.a ;
— si vous ne les avez pas encore, créez les répertoires suivants :

— ~/.local/include
— ~/.local/lib

— créez les liens symboliques pour tous les fichiers d’entêtes (arbreBinaire.h, listeChainee.
h, etc.) depuis ~/.local/include vers les fichiers du projet git ;

— faites de même pour le résultat de la compilation (depuis ~/.local/lib) ;
— configurez dans votre .bashrc les variables d’environnement C_INCLUDE_PATH, LIBRARY_

PATH et LD_LIBRARY_PATH pour indiquer à gcc où aller chercher des fichiers d’entête et
des bibliothèques non systèmes mais qui ne font pas partie du projet ;

2. Développez les fonctions de src/serpent.c afin que tous les tests unitaires fonctionnent ;
7



3. Développez le fichier src/jeu.c.

8


