
TP « Calculatrice »

N. Delestre

Objectif
L’objectif de ce TP est de développer un programme capable de calculer les valeurs d’expressions

arithmétiques sans prise en compte des priorités des opérateurs : ce sont l’utilisation des parenthèses
qui permet d’enlever toute ambiguïté 1. Ainsi de telles expressions arithmétiques sont des opérations
binaires où les opérandes sont des nombres (entiers ou réels) ou des expressions arithmétiques entre
parenthèses 2.

L’expression arithmétique à évaluer pourra être fournie en paramètre du programme ou bien être
lue à partir de l’entrée standard. Le programme affichera le résultat de l’évaluation de l’expression
arithmétique sur la sortie standard.

Par exemple :

$ bin/calc "2,5*((3.5*0.25)+(25.-17))"
22.187500
$ echo "2,5*((3.5*0.25)+(25.-17))" | bin/calc
22.187500

Lorsque la chaîne ne sera pas syntaxiquement correcte, le programme affichera "Erreur de
syntaxe" sur la sortie d’erreur standard. Lorsque l’expression arithmétique ne sera pas séman-
tiquement correcte, le programme affichera "Erreur de sémantique" sur la sortie d’erreur
standard.

Analyse
Nous avons précédemment étudié une analyse descendante permettant de calculer une expression

arithmétique (contenant uniquement des nombres positifs) représentée par une chaîne de caractères.
La figure 1 présente cette analyse.

Pour rappel :
— La chaîne de caractères en entrée de chaque opération représente la chaîne dans sa globalité ;
— Le naturel non nul en entrée de chaque opération représente l’indice de la chaîne où débute l’ana-

lyse effectuée par l’opération ;
— Le premier booléen en sortie de chaque opération permet de savoir si la chaîne en entrée représente

bien syntaxiquement une expression arithmétique ;
— Le deuxième booléen en sortie de certaines opérations permet de savoir si une erreur sémantique

s’est produite ou non ;

1. Nous verrons au semestre prochain, dans le cours de compilation, comment les gérer
2. Ceci est une définition récursive qui va nous amener à concevoir des algorithmes récursifs

1



calculerChaine
Reel
Booleen
Booleen

reconnaitre
Operateur

Chaine
NaturelNonNul

Operateur
NaturelNonNul
Booleen

reconnaitre
Operande

Chaine
NaturelNonNul

Reel
NaturelNonNul
Booleen
Booléen

reconnaître
SuiteChiffresChaine

NaturelNonNul

Chaine
NaturelNonNul
Booleen

reconnaitre
Virugle

Chaine
NaturelNonNul

NaturelNonNul
Booleen chaineEnNaturelChaine Naturel

Booleen

xPuissanceNReel
Entier

Reel

estUnChiffreCaractere Booleen

calculerOpe
ration

Chaine
NaturelNonNul

Reel
NaturelNonNul
Booleen
Booleen

reconnaitre
Nombre

Chaine
NaturelNonNul

Reel
NaturelNonNul
Booleen estUneParenthese

Ouvrante
Caractere Booleen

estUneParenthese
Fermante

Caractere Booleen

FIGURE 1 – Analyse descendante

— Le naturel non nul en sortie de chaque opération représente l’indice de la chaîne où commencera la
prochaine reconnaissance dans le cas où le premier booléen vaut VRAI. Si ce dernier vaut FAUX,
ce naturel non nul prend la même valeur que celle fournie en entrée.

Conception
Les différents algorithmes des fonctions et procédures correspondant aux opérations de l’analyse

descendante ont été vus en TD. Seule la procédure reconnaitreOperande a été complétée afin
de prendre en compte le fait qu’une opérande puisse être une expression arithmétique entre paren-
thèses. Voici son algorithme :
procédure reconnaitreOperande (E leTexte : Chaine de caracteres, debut : Naturel ; S leReel : Reel,
prochainDebut : NaturelNonNul, syntaxiquementOK, semantiquementOK booleen)

Déclaration debutOperation, debutParentheseFermee : NaturelNonNul
debut

semantiquementOK← VRAI
reconnaitreNombre(leTexte,debut,leReel,prochainDebut,syntaxiquementOK)
si non syntaxiquementOK alors

reconnaitreParentheseOuvrante(leTexte,debut,prochainDebut,syntaxiquementOK)
si syntaxiquementOK alors

debutOperation← prochainDebut
calculerOperation(leTexte,debutOperation,leReel,syntaxiquementOK,
semantiquementOK,prochainDebut)
si syntaxiquementOK et semantiquementOK alors

debutParentheseFermee← prochainDebut

2



reconnaitreParentheseFermee(leTexte,debutParentheseFermee,prochainDebut,syntaxiquementOK)

si non syntaxiquementOK alors
prochainDebut← debut

finsi
sinon

prochainDebut← debut
finsi

sinon
prochainDebut← debut

finsi
finsi

fin

Le programme C
Le programme est composé des fichiers suivants :

— include/stringext.h qui déclare la fonction strsubstring permettant de récupérer
la sous-chaîne d’une chaîne (à l’image des fonctions proposées par string.h, l’allocation de
l’espace permettant de stocker la chaîne demandée est à la charge de l’utilisateur) ;

— include/calc.h qui déclare la signature de la fonction C CALC_calculer ;
— src/stringext.c qui définit la fonction strsubstring ;
— src/calc.c qui définit la fonction CALC_calculer et toutes celles issues de l’analyse des-

cendante ;
— src/test_calc.c le programme des tests unitaires des fonctions de calc.c ;
— src/main.c le programme principal.

L’exécution de make générera le programme principal bin/calc et le programme des tests
unitaires test/test_calc.

Travail à réaliser
1. Expliquez chaque ligne de la fonction strsubstring ;

2. Ajoutez des tests unitaires à la suite de tests unitaires "boîte noire" pour vérifier que la fonction
CALC_calculer fonctionne correctement avec (pour chaque opération) :
— Deux entiers ;
— Deux réels ;
— Un entier et un réel ;
— Un réel et un entier ;
— Une expression arithmétique équilibrée et un nombre entier ;
— Un entier et une expression arithmétique entre parenthèses ;
— Deux expressions arithmétiques entre parenthèses.

3. Développez le corps des fonctions de calc.c pour que les tests unitaires passent ;

4. Développez le programme principal main.c pour que le programme bin/calc fonctionne
comme demandé dans le sujet.

3


