TP « Calculatrice »

N. Delestre

Objectif

L’ objectif de ce TP est de développer un programme capable de calculer les valeurs d’expressions
arithmétiques sans prise en compte des priorités des opérateurs : ce sont I’utilisation des parentheses
qui permet d’enlever toute ambiguité !. Ainsi de telles expressions arithmétiques sont des opérations
binaires ol les opérandes sont des nombres (entiers ou réels) ou des expressions arithmétiques entre
parenthéses 2.

L’expression arithmétique a évaluer pourra €tre fournie en parametre du programme ou bien &tre
lue a partir de I’entrée standard. Le programme affichera le résultat de 1’évaluation de I’expression
arithmétique sur la sortie standard.

Par exemple :

$ bin/calc "2,5%((3.5%x0.25)+(25.-17))"
22.187500

$ echo "2,5%((3.5%x0.25)+(25.-17))" | bin/calc
22.187500

Lorsque la chalne ne sera pas syntaxiquement correcte, le programme affichera "Erreur de
syntaxe" sur la sortie d’erreur standard. Lorsque I’expression arithmétique ne sera pas séman-
tiquement correcte, le programme affichera "Erreur de sémantique" sur la sortie d’erreur
standard.

Analyse

Nous avons précédemment étudié une analyse descendante permettant de calculer une expression
arithmétique (contenant uniquement des nombres positifs) représentée par une chaine de caracteres.
La figure 1 présente cette analyse.

Pour rappel :

— La chaine de caracteres en entrée de chaque opération représente la chaine dans sa globalité ;

— Le naturel non nul en entrée de chaque opération représente 1’indice de la chaine ou débute I’ ana-
lyse effectuée par 1I’opération ;

— Le premier booléen en sortie de chaque opération permet de savoir si la chaine en entrée représente
bien syntaxiquement une expression arithmétique ;

— Le deuxieme booléen en sortie de certaines opérations permet de savoir si une erreur sémantique
s’est produite ou non;

1. Nous verrons au semestre prochain, dans le cours de compilation, comment les gérer
2. Ceci est une définition récursive qui va nous amener a concevoir des algorithmes récursifs

1

. Reel
Chaine— calculer — pojeen
*'7 Booleen
Chai —Y Reel
aine calculerOpe | NaturelNonNul
NaturelNonNul ™’ ration Booleen
Booleen
Reel
Chaine reconnaitre Operateur Chaine reconnaitre | NaturelNonNul
NaturelNonNul™ Operateur | NaturelNonNul NaturelNonNul ™} Operande Booleen

estUneParenthese

Chaine reconnaitre Reel Caractere —» Formante

NaturelNonNul] Nombre ™ NaturelNonNul
Booleen

= Booleen

estUneParenthese

= Booleen
Ouvrante

Caractere —»|

reconnaitre Chaine
SuiteChiffres NaturelNonNul
Booleen

Chaine ——
NaturelNonNul

Reel | ypuissanceN —» Reel
Entier

Chaine reconnaitre NaturelNonNul
NaturelNonNul ™ Virugle ™ Booleen

Naturel
Booleen

Chaine — chaineEnNaturel

Caractere —» estUnChiffre —» Booleen

FIGURE 1 — Analyse descendante

— Le naturel non nul en sortie de chaque opération représente 1’indice de la chaine ou commencera la
prochaine reconnaissance dans le cas ou le premier booléen vaut VRALI. Si ce dernier vaut FAUX,
ce naturel non nul prend la méme valeur que celle fournie en entrée.

Conception

Les différents algorithmes des fonctions et procédures correspondant aux opérations de I’analyse
descendante ont été vus en TD. Seule la procédure reconnaitreOperande a été complétée afin
de prendre en compte le fait qu’une opérande puisse €tre une expression arithmétique entre paren-
theses. Voici son algorithme :
procédure reconnaitreOperande (E leTexte : Chaine de caracteres, debut : Naturel ; S leReel : Reel,
prochainDebut : NaturelNonNul, syntaxiquementOK, semantiquementOK booleen)

Déclaration debutOperation, debutParentheseFermee : NaturelNonNul

debut
semantiquementOK < VRAI
reconnaitreNombre(leTexte,debut,leReel,prochainDebut,syntaxiquementOK)
si non syntaxiquementOK alors
reconnaitreParentheseOuvrante(leTexte,debut,prochainDebut,syntaxiquementOK)
si syntaxiquementOK alors
debutOperation <— prochainDebut
calculerOperation(leTexte,debutOperation,leReel,syntaxiquementOK,
semantiquementOK,prochainDebut)
si syntaxiquementOK et semantiquementOK alors
debutParentheseFermee <— prochainDebut

2

reconnaitreParentheseFermee(leTexte,debutParentheseFermee,prochainDebut,syntaxiquementOK)

si non syntaxiquementOK alors
prochainDebut <— debut
finsi

sinon

prochainDebut < debut

finsi

sinon

prochainDebut <— debut

finsi
finsi
fin

Le programme C

Le programme est composé des fichiers suivants :

— include/stringext.h qui déclare la fonction strsubstring permettant de récupérer
la sous-chaine d’une chaine (a I’image des fonctions proposées par st ring.h, I’allocation de
I’espace permettant de stocker la chaine demandée est a la charge de 1’utilisateur) ;

— include/calc.h qui déclare la signature de la fonction C CALC_calculer;

— src/stringext.c qui définit la fonction st rsubstring;

— src/calc.c qui définit la fonction CALC_calculer et toutes celles issues de 1’analyse des-
cendante ;

— src/test_calc.c le programme des tests unitaires des fonctions de calc.c;

— src/main.c le programme principal.

L’exécution de make générera le programme principal bin/calc et le programme des tests
unitaires test/test_calc.

Travail

a réaliser

1. Expliquez chaque ligne de la fonction st rsubstring;

2. Ajoutez

des tests unitaires a la suite de tests unitaires "boite noire" pour vérifier que la fonction

CALC_calculer fonctionne correctement avec (pour chaque opération) :
— Deux entiers ;

— Deux réels;

— Un entier et un réel ;

— Un réel et un entier ;

— Une

expression arithmétique équilibrée et un nombre entier;

— Un entier et une expression arithmétique entre parentheses ;
— Deux expressions arithmétiques entre parentheses.

3. Développez le corps des fonctions de calc. c pour que les tests unitaires passent;

4. Développez le programme principal main.c pour que le programme bin/calc fonctionne
comme demandé dans le sujet.

