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Unconstrained optimization Formulation

Unconstrained optimization

Elements of the problem

θ ∈ Rd : vector of unknown real parameters
J : Rd → R : the function to be minimized
Assumption: J is differentiable all over its domain
domJ =

{
θ ∈ Rd | J(θ) <∞

}
Problem formulation

(P ) min
θ∈Rd

J(θ)
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Unconstrained optimization Formulation

Unconstrained optimization

Examples

J(θ) =
1

2
θ⊤Pθ + q⊤θ + r

with P a positive definite matrix
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J(θ) = cos(θ1−θ2)+sin(θ1+θ2)+
θ1
4
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Unconstrained optimization Optimality conditions

Different solutions

Global solution
θ∗ is said to be the global minimum solution of the problem if
J(θ∗) ≤ J(θ), ∀θ ∈ domJ

Local solution

θ̂ is a local minimum solution of problem (P) if it holds
J(θ̂) ≤ J(θ), ∀θ ∈ domJ such that ∥θ̂ − θ∥ ≤ ϵ, ϵ > 0

Illustration

J(θ) = cos(θ1 − θ2) + sin(θ1 + θ2) +
θ1
4
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Unconstrained optimization Optimality conditions

Optimality conditions

How to assess a solution to the problem?
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Unconstrained optimization Optimality conditions

First order necessary condition

Theorem [First order condition]

Let J : Rd → R be a differential function on its domain. A vector θ̂ is a
(local or global) solution of the problem (P), if it necessarily satisfies the
condition ∇J(θ̂) = 0.

Remarks

Any vector θ0 that verifies ∇J(θ0) = 0 is called a stationary point

∇J(θ) ∈ Rd is the gradient vector of J at θ.

The gradient is the unique vector such that the directional derivative can be
written as:

lim
t→0

J(θ + th)− J(θ)

t
= ∇J(θ)⊤h, h ∈ Rd, t ∈ R
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Unconstrained optimization Optimality conditions

Example of a first order optimality condition

J(θ) = θ41 + θ42 − 4θ1θ2

Gradient ∇J(θ) =
(

4θ31 − 4θ2
−4θ1 + 4θ32

)
Stationary points that verify ∇J(θ) = 0.

Three solutions θ(1) =

(
0
0

)
, θ(2) =

(
1
1

)
and

θ(3) =

(
−1
−1
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Remarks

θ(2) and θ(3) are local minimal but not θ(1)

every stationary point can be deemed a local extremum

We need another optimality condition
How to ensure that a stationary point is a minimum solution?
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Unconstrained optimization Optimality conditions

Hessian matrix

Twice differential function

J : Rd → R is said to be a twice differentiable function on its domain
domJ if, at every point θ ∈, there exists a unique symmetric matrix
H(θ) ∈ Rd×d called Hessian matrix such that
J(θ + h) = J(θ) +∇J(θ)⊤h+ h⊤H(θ)h+ ∥h∥2ε(h).
ε(h) is a continuous function at 0 with limh→0 ε(h) = 0

H(θ) is the second derivative matrix

H(θ) =


∂2J

∂θ1∂θ1

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θd

...
... · · ·

...
∂2J

∂θd∂θ1

∂2J
∂θd∂θ2

· · · ∂2J
∂θd∂θd


H(θ) = ∇θ⊤(∇θJ(θ)) is the Jacobian of the gradient function
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Unconstrained optimization Optimality conditions

Second order optimality condition

Theorem [Second order optimality condition]

Let J : Rd → R be a twice differentiable function on its domain. If θ̂ is a
minimum of J , then ∇J(θ̂) = 0 and H(θ̂) is a positive definite matrix.

Remarks

H is positive definite if and only if all its eigenvalues are positive

H is negative definite if and only if all its eigenvalues are negative

For θ ∈ R, this condition means that the gradient of J at the minimum is
null, J ′(θ) = 0 and its second derivative is positive i.e. J ′′(θ) > 0

If at a stationary point θ0, H(θ̂)) is negative definite, θ̂ is a local maximum
of J
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Unconstrained optimization Optimality conditions

Illustration of the second order optimality condition

J(θ) = θ41 + θ42 − 4θ1θ2

Gradient : ∇J(θ) =
(

4θ31 − 4θ2
−4θ1 + 4θ32

)
Stationary points : θ(1) =

(
0
0

)
, θ(2) =

(
1
1

)
and

θ(3) =

(
−1
−1

)
Hessian matrix H(θ) =

(
12θ21 −4
−4 12θ22

)
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Eigenvalues 4,−4 8, 16 8, 16

Type of solution Saddle point Minimum Minimum
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Unconstrained optimization Optimality conditions

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition ]

Assume the hessian matrix H(θ̂) of J(θ) at θ̂ exists and is positive
definite. Assume also the gradient ∇J(θ̂) = 0. Then θ̂ is a (local or
global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition]

Let J be a convex function. Every local solution θ̂ is a global solution θ∗.

Recall

A function J : Rd → R is convex if it verifies

J(αθ + (1− α)z) ≤ αJ(θ) + (1− α)J(z), ∀θ, z ∈ domJ, 0 ≤ α ≤ 1
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Unconstrained optimization Optimality conditions

How to find the solution(s)?

We have seen how to assess a solution to the problem

Now, how to compute a solution?
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Unconstrained optimization Descent algorithms

Principle of descent algorithms

Direction of descent

Let the function J : Rd → R. The vector h ∈ Rd is called a descent
direction in θ if there exists α > 0 such that J(θ + αh) < J(θ)

Principle of descent methods
Start from an initial point θ0

Design a sequence of points {θk} with θk+1 = θk + αkhk

Ensure that the sequence {θk} converges to a stationary point θ̂

hk: direction of descent
αk: step size
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Unconstrained optimization Descent algorithms

General approach

General algorithm
1: Let k = 0, initialize θk

2: repeat

3: Find a descent direction hk ∈ Rd

4: Line search: find a step size αk > 0 in the direction hk such that
J(θk + αkhk) decreases "enough"

5: Update: θk+1 ← θk + αkhk and k ← k + 1

6: until convergence

The methods of descent differ by the choice of:
h: gradient algorithm, Newton, Quasi-Newton algorithm

α: backtracking. . .
Gilles Gasso A short introduction to optimization 15 / 42



Unconstrained optimization Descent algorithms

Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let J(θ) be a differential function. The direction h = −∇J(θ) ∈ Rd is a
descent direction.

Proof.
J being differentiable, for any t > 0 we have
J(θ + th) = J(θ) + t∇J(θ)⊤h+ t∥h∥ϵ(th). Setting h = −∇J(θ), we get
J(θ + th)− J(θ) = −t∥∇J(θ)∥2 + t∥h∥ϵ(th). For t small enough ϵ(th)→ 0
and so J(θ + th)− J(θ) = −t∥∇J(θ)∥2 < 0. It is then a descent direction.

Characteristics of the gradient algorithm

Choice of the descent direction at θk: hk = −∇J(θk)

Complexity of the update: θk+1 ← θk − αk∇J(θk) costs O(d)
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Unconstrained optimization Descent algorithms

Newton algorithm

2nd order approximation of J at θk

J(θ + h) ≈ J(θk) +∇J(θk)
⊤h+

1

2
h⊤H(θk)h

with H(θk) the positive definite Hessian matrix
The direction hk which minimizes this approximation is obtained by

∇J(θ + hk) = 0 ⇒ hk = −H(θk)
−1∇J(θk)

Features

Descent direction at θk: hk = −H(θk)
−1∇J(θk)

Complexity of the update: θk+1 ← θk − αkH(θk)
−1∇(θk) costs

O(d3) flops
H(θk) is not always guaranteed to be positive definite matrix. Hence
we cannot always ensure that hk is a direction of descent
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Unconstrained optimization Descent algorithms

Illustration of gradient and Newton methods

Local approximation of the two methods
in 1D
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Unconstrained optimization Descent algorithms

Set up the step size αk in the update θk+1 ← θk + αkhk

Fixed step size: use a fixed value αk = α > 0 at each iteration k

Variable step size: αk is adaptative using a line search

Armijo’s rule: choose αk in order to have a sufficient decrease of J i.e.

J(θk + αkh) ≤ J(θk) + c αk∇J(θk)
⊤hk

Usually c is chosen in the range
[
10−5, 10−1

]
hk is a descent direction, we have ∇J(θk)

⊤hk < 0, thus the decrease of J

Backtracking

1: Fix an initial step ᾱ, choose 0 < ρ < 1, α← ᾱ

2: repeat
3: α← ρα

4: until J(θk + αh) > J(θk) + c α∇J(θk)
⊤hk

Interpretation: as long as J does not decrease, the
step size is decresaed

Choice of the initial step

Newton method:
ᾱ = 1

Gradient method:
ᾱ = 2

J(θk)−J(θk−1)

∇J(θk)
⊤hk
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Unconstrained optimization Descent algorithms

Gradient method

J along the iterations
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Unconstrained optimization Descent algorithms

Newton method

J along the iterations
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Constrained optimization

Constrained optimization problems

Examples and formulation
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Constrained optimization

Example 1: sparse Regression

Output to be predicted: y ∈ R
Input variables: x ∈ Rd

Linear model: f(x) = x⊤θ

θ ∈ Rd: parameters of the model

Determination of a sparse θ

Minimization of square error
Only a few paramters are non-zero

minθ∈Rd
1
2

∑N
i=1(yi − x⊤

i θ)
2

s.t. ∥θ∥p ≤ k

with ∥θ∥pp =
∑d

j=1 |θj |p
http://www.ds100.org/sp17/assets/notebooks/
linear_regression/Regularization.html
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Constrained optimization

Example 2: where to settle the firehouse?

?

MaisonCaserne House Mi: defined by its coordinates
zi = [xi, yi]

⊤

Let θ be the coordinates of the
firehouse

Minimize the distance from the
firehouse to the farthest house

Problem formulation

min
θ

max
i=1,··· ,n

∥θ − zi∥2

Equivalent problem

t∈R,θ∈R2
min t

s.t. ∥θ − zi∥2 ≤ t ∀ i = 1, · · · , n
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Constrained optimization Formulation

Formulation of constrained optimization problem

Notations and assumptions

θ ∈ Rd: vector of unknown real parameters
J : Rd → R, the function to be minimized on its domain domJ

fi and gj are differentiable functions of Rd on R

Primal problem P

minθ∈Rd J(θ) objective function
s.t. fi(θ) = 0 ∀i = 1, · · · , n n Equality Constraints

gj(θ) ≤ 0 ∀j = 1, · · · ,m m Inequality Constraints

Feasibility

Let p∗ = minθ {J(θ) such that fi(θ) = 0 ∀i and gj(θ) ≤ 0 ∀j}
If p∗ =∞ then the problem does not admit a feasible solution
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Constrained optimization Formulation

Characterization of the solutions

Feasibility domain
The feasible domain is defined by the set of constraints

Ω(θ) =
{
θ ∈ Rd ; fi(θ) = 0 ∀i and gj(θ) ≤ 0∀j

}

Feasible points

θ0 is feasible if θ0 ∈ domJ and θ0 ∈ Ω(θ) ie θ0 fulfills all the
constraints and J(θ0) has a finite value
θ∗ is a global solution of the problem if θ∗ is a feasible solution such
that J(θ∗) ≤ J(θ) for every θ

θ̂ is a local optimal solution if θ̂ is feasible and J(θ̂) ≤ J(θ) for every
∥θ − θ̂∥ ≤ ϵ
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Constrained optimization Formulation

Example 1

min
θ

0.9θ21 − 0.74θ1θ2

+0.75θ21 − 5.4θ1 − 1.2θ2

s.t. −4 ≤ θ1 ≤ −1
−3 ≤ θ2 ≤ 4
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J(θ) = c

Domaine Ω

Parameters: θ =

(
θ1
θ2

)
Objective function:

J(θ) = 0.9θ21 − 0.74θ1θ2 + 0.75θ21 − 5.4θ1 − 1.2θ2

Feasibility domain (four inequality constraints):

Ω(θ) =
{
θ ∈ R2 ; −4 ≤ θ1 ≤ −1 and − 3 ≤ θ2 ≤ 4

}
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Constrained optimization Formulation

Example 2

Example

min
θ∈R2

θ1 + θ2

s.t. θ21 + θ22 − 2 = 0
−3 −2

−2

−1

−1

−1

0

0

0

0

1

1

1

1

2

2

2

3

3

4

θ
1

θ
2

θ
*
 = (1, 1)

T

∇ h(θ
*
) = (1, 1)

T

∇ J(θ
*
) = (1, 1)

T

θ
*
 = (−1, −1)

T

∇ h(θ
*
) = (1, 1)

T

∇ J(θ
*
) = (1, 1)

T

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

An equality constraint

Domain of feasibility: a circle with center at 0 and diameter equals to 2

The optimal solution is obtained for θ∗ =
(
−1 −1

)⊤ and we have
J(θ∗) = −2
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Constrained optimization Formulation

Optimality

How to assess a solution of the primal problem?
Do we have optimality conditions similar to those of unconstrained
optimization?
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Notion of Lagrangian

Primal problem P
minθ∈Rd J(θ)

fi(θ) = 0 ∀i = 1, · · · , n n equality constraints
s.t. gj(θ) ≤ 0 ∀j = 1, · · · ,m m inequality constraints

θ is called primal variable

Principle of Lagrangian

Each constraint is associated to a scalar parameter called Lagrange
multiplier

Equality constraint fi(θ) = 0 : we associate λi ∈ R

Inequality constraint gj(θ) ≤ 0 : we associate αj ≥ 0a

Lagrangian allows to transform the problem with constraints into a problem
without constraints with additional variables: λi and αj .

aBeware of the type of inequality i.e. gj(θ) ≤ 0
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Example

min
θ∈R2

0.9θ21 − 0.74θ1θ2

+0.75θ21 − 5.4θ1 − 1.2θ2

s.t. −4 ≤ θ1 ≤ −1
−3 ≤ θ2 ≤ 4
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J(θ) = c

Domaine Ω

Constraints (inequality)

1 −4 ≤ θ1 ⇔ −θ1 − 4 ≤ 0

2 θ1 ≤ −1 ⇔ θ1 + 1 ≤ 0

3 −3 ≤ θ2 ⇔ −θ2 − 3 ≤ 0

4 θ2 ≤ 4 ⇔ −θ2 − 4 ≤ 0

Related Lagrange Parameters

1 α1 ≥ 0

2 α2 ≥ 0

3 α3 ≥ 0

4 α4 ≥ 0
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Lagrangian

Associated Lagrange parameters
minθ∈Rd J(θ) None

fi(θ) = 0 ∀i = 1, · · · , n λi any real number ∀i = 1, · · · , n
s.c. gj(θ) ≤ 0 ∀j = 1, · · · ,m αj ≥ 0 ∀j = 1, · · · ,m

Lagrangian
The Lagrangian is defined by :

L(θ,λ,α) = J(θ)+

n∑
i=1

λifi(θ)+

m∑
j=1

αjgj(θ) avec µj ≥ 0,∀j = 1, · · · ,m

Lagrange parameters λi, i = 1, · · · , n and αj , j = 1, · · · ,m are
called dual variables
Dual variables are unknown parameters to be determined
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Examples

Example 1
min
θ∈R2

0.9θ21 − 0.74θ1θ2+0.75θ21 − 5.4θ1 − 1.2θ2

s.t. −4 ≤ θ1 ≤ −1 and −3 ≤ θ2 ≤ 4

Lagrangian
L(α,θ) = 0.9θ21 − 0.74θ1θ2+0.75θ21 − 5.4θ1 − 1.2θ2

+ α1(−θ1 − 4) + α2(θ1 + 1) + α3(−θ2 − 3) + α4(−θ2 − 4)

with α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0 (because of inequality constraints)

Example 2
min
θ∈R3

1
2

(
θ21 + θ22 + θ23

)
s.t. θ1 + θ2 + 2θ3 = 1 equality constraint

θ1 + 4θ2 + 2θ3 = 3 equality constraint

Lagrangian
L(λ,θ) = 1

2

(
θ21 + θ22 + θ23

)
+ λ1(θ1 + θ2 + 2θ3 − 1) + λ2(θ1 + 4θ2 + 2θ3 − 3)

with λ1, λ2 ∈ R (equality constraints)
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Necessary optimality conditions

Assume that J, fi, gj are differentiable functions. Let θ∗ be a feasible
solution to the problem P. Then there exists dual variables
λ∗
i , i = 1, · · · , n, α∗

j , j = 1, · · · ,m such that the KKT conditions are met.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity ∇L(λ,α,θ) = 0 ie
∇J(θ) +

∑n
i=1 λi∇fi(θ) +

∑m
j=1 αj∇gj(θ) = 0

Primal feasibility fi(θ) = 0 ∀i = 1, · · · , n
gj(θ) ≤ 0 ∀j = 1, · · · ,m

Dual feasibility αj ≥ 0 ∀j = 1, · · · ,m

Complementary slackness αjgj(θ) = 0 ∀j = 1, · · · ,m
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Example

min
θ∈R2

1

2
(θ21 + θ22)

s.t. θ1 − 2θ2 + 2 ≤ 0

Lagrangian : L(α,θ) = 1
2
(θ21 + θ22) + α(θ1 − 2θ2 + 2), α ≥ 0

KKT Conditions

Stationarity: ∇θL(α,θ) = 0 ⇒
{

θ1 = −α
θ2 = −2α

Primal feasibility : θ1 − 2θ2 + 2 ≤ 0

Dual feasibility : α ≥ 0

Complementary slackness : α(θ1 − 2θ2 + 2) = 0

Remarks on the complementary slackness

If θ1 − 2θ2 + 2 < 0 (inactive constraint) ⇒ α = 0 (no penalty required
as the constraint is satisfied)

If µ > 0 ⇒ θ1 − 2θ2 + 2 = 0 (active constraint)
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Duality

Dual function
Let L(θ,λ,α) be the lagrangian of the primal problem P with αj ≥ 0.
The corresponding dual function is defined as

D(λ,α) = min
θ
L(θ,λ,µ)

Theorem [Weak duality]

Let p∗ = minθ {J(θ) such that fi(θ) = 0 ∀i and gj(θ) ≤ 0 ∀j} be the
optimum value (supposed finite) of the problem P. Then, for any value of
αj ≥ 0,∀j and λi,∀i, we have

D(λ,µ) ≤ p∗
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Dual problem

The weak duality indicates that the dual function
D(λ,α) = minθ L(θ,λ,α) is a lower bound of p∗

Bridge the gap: maximize the dual w.r.t. dual variables λ and µ to make
this lower bound close to p∗

Dual problem

max
λ,α

D(λ,µ)

s.t. αj ≥ 0 ∀ j = 1, · · · ,m

http://www.onmyphd.com/?p=duality.theory
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Interest of the dual problem

Remarks

Transform the primal problem into an equivalent dual problem possibly
much simpler to solve

Solving the dual problem can lead to the solution of the primal problem

Solving the dual problem gives the optimal values of the Lagrange multipliers
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Constrained optimization Concept of Lagrangian and duality, condition of optimality

Example : inequality constraints

min
θ∈R2

1

2
(θ21 + θ22)

s.t. θ1 − 2θ2 + 2 ≤ 0

Lagrangian : L(θ, α) = 1
2
(θ21 + θ22) + α(θ1 − 2θ2 + 2), α ≥ 0

Stationarity of the KKT Condition :

∇θL(µ,θ) = 0 ⇒
{

θ1 = −α
θ2 = 2α

(1)

Dual function D(α) = minθ L(θ, α) : by substituting (1) in L we obtain

D(α) = −5

2
α2 + 2α

Dual problem : maxα D(α) s.c. α ≥ 0

Dual solution

∇D(α) = 0 ⇒ α =
2

5
(that satisfies α ≥ 0) (2)

Primal solution : (2) and (1) lead to θ =
(
− 2

5
4
5

)⊤
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Constrained optimization Specific constrained optimization problems

Convex constrained optimization

Convexity condition
minθ∈Rd J(θ) J is a convex function

fi(θ) = 0 ∀i = 1, · · · , n fi are linear ∀i = 1, n
s.t. gj(θ) ≤ 0 ∀j = 1, · · · ,m gj are convex functions ∀j = 1,m

Problems of interest

Linear Programming (LP)

Quadratic Programming (QP)

Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX . . . )
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Constrained optimization Specific constrained optimization problems

QP convex problem

Standard form

min
θ∈Rd

1
2θ

⊤Gθ + q⊤θ + r

s.t. a⊤i θ = bi ∀i = 1, · · · , n affine equality constraint
c⊤j θ ≥ dj ∀j = 1, · · · ,m linear inequality constraints

with q,ai, cj ∈ Rd, di and dj real scalar values and G ∈ Rd×d a positive
definite matrix

Examples

min
θ∈R2

1

2
(θ21 + θ22)

s.t. θ1 − 2θ2 + 2 ≤ 0

SVM Problem

minθ,bR
1
2∥θ∥

2

s.t. yi(θ
⊤xi + b) ≥ 1 ∀i = 1, N
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Conclusion

Conclusion

Unconstrained optimization of smooth objective function

Characterization of the solution(s) requires checking the optimality
conditions
Computation of a solution using descent methods

Gradient descent method
Newton method

Optimization under constraints
Lagrangian: allows to reduce to an unconstrained problem via Lagrange
multipliers
To each constraint corresponds a multiplier ⇒ Lagrange parameters
act as a penalty if the corresponding constraints are violated

Optimally (KKT conditions): Stationary condition + feasibility
conditions + Complementary conditions
Duality: provides lower bound on the primal problem. Dual problem
sometimes easier to solve than primal.
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