A short introduction to optimization From unconstrained to constrained optimization

Gilles Gasso

INSA Rouen - ITI Departement LITIS Laboratory

September 21, 2025

Plan

- Unconstrained optimization
 - Formulation
 - Optimality conditions
 - Descent algorithms
 - Main methods
 - Determination of the step size
 - Illustration of descent methods
- Constrained optimization
 - Formulation
 - Concept of Lagrangian and duality, condition of optimality
 - Lagrangian formulation
 - Optimality conditions
 - Duality and dual problem
 - Specific constrained optimization problems
- Conclusion

Unconstrained optimization

Elements of the problem

- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^d$: vector of unknown real parameters
- \bullet $J: \mathbb{R}^d \to \mathbb{R}$: the function to be minimized
- Assumption: J is differentiable all over its domain $\operatorname{dom} J = \{ m{\theta} \in \mathbb{R}^d \, | \, J(m{\theta}) < \infty \}$

Problem formulation

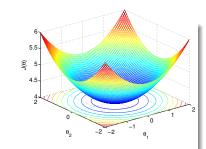
$$(P) \quad \min_{\boldsymbol{\theta} \in \mathbb{R}^d} J(\boldsymbol{\theta})$$

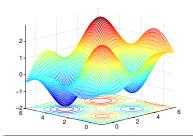
Unconstrained optimization

Examples

$$J(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^{\top} \boldsymbol{P} \boldsymbol{\theta} + q^{\top} \boldsymbol{\theta} + r$$

with $oldsymbol{P}$ a positive definite matrix





$$J(\boldsymbol{\theta}) = \cos(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2) + \frac{\theta_1}{4}$$

Different solutions

Global solution

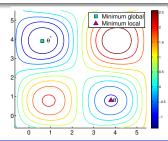
 $m{ heta}^*$ is said to be the global minimum solution of the problem if $J(m{ heta}^*) \leq J(m{ heta}), \quad orall m{ heta} \in dom J$

Local solution

 $\hat{\boldsymbol{\theta}}$ is a local minimum solution of problem (P) if it holds $J(\hat{\boldsymbol{\theta}}) \leq J(\boldsymbol{\theta}), \ \forall \boldsymbol{\theta} \in \text{dom}J \ \text{such that} \ \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \leq \epsilon, \ \epsilon > 0$

Illustration

$$J(\boldsymbol{\theta}) = \cos(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2) + \frac{\theta_1}{4}$$



Optimality conditions

• How to assess a solution to the problem?

First order necessary condition

Theorem [First order condition]

Let $J: \mathbb{R}^d \to \mathbb{R}$ be a differential function on its domain. A vector $\hat{\boldsymbol{\theta}}$ is a (local or global) solution of the problem (P), if it necessarily satisfies the condition $\nabla J(\hat{\boldsymbol{\theta}}) = 0$.

Remarks

- Any vector θ_0 that verifies $\nabla J(\theta_0) = 0$ is called a stationary point
- $\nabla J(\theta) \in \mathbb{R}^d$ is the gradient vector of J at θ .
- The gradient is the unique vector such that the directional derivative can be written as:

$$\lim_{t\to 0} \frac{J(\boldsymbol{\theta} + t\mathbf{h}) - J(\boldsymbol{\theta})}{t} = \nabla J(\boldsymbol{\theta})^{\top} \mathbf{h}, \quad \mathbf{h} \in \mathbb{R}^d, \quad t \in \mathbb{R}$$

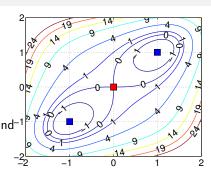
Example of a first order optimality condition

$$\bullet \ J(\boldsymbol{\theta}) = \theta_1^4 + \theta_2^4 - 4\theta_1\theta_2$$

• Gradient
$$\nabla J(\boldsymbol{\theta}) = \begin{pmatrix} 4\theta_1^3 - 4\theta_2 \\ -4\theta_1 + 4\theta_2^3 \end{pmatrix}$$

• Stationary points that verify $\nabla J(\theta) = 0$.

• Three solutions $\boldsymbol{\theta}^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\boldsymbol{\theta}^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\boldsymbol{\theta}^{(3)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$



Remarks

- $m{ heta}^{(2)}$ and $m{ heta}^{(3)}$ are local minimal but not $m{ heta}^{(1)}$
- every stationary point can be deemed a local extremum

We need another optimality condition

How to ensure that a stationary point is a minimum solution?

Hessian matrix

Twice differential function

 $J: \mathbb{R}^d \to \mathbb{R}$ is said to be a twice differentiable function on its domain domJ if, at every point $\theta \in$, there exists a unique symmetric matrix $H(\theta) \in \mathbb{R}^{d \times d}$ called Hessian matrix such that $J(\theta + \mathbf{h}) = J(\theta) + \nabla J(\theta)^{\top} \mathbf{h} + \mathbf{h}^{\top} H(\theta) \mathbf{h} + \|\mathbf{h}\|^2 \varepsilon(\mathbf{h})$. $\varepsilon(\mathbf{h})$ is a continuous function at $\mathbf{0}$ with $\lim_{\mathbf{h} \to \mathbf{0}} \varepsilon(\mathbf{h}) = \mathbf{0}$

• $H(\theta)$ is the second derivative matrix

$$\boldsymbol{H}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_1}} & \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_2}} & \cdots & \frac{\partial^2 J}{\partial_{\theta_1} \partial_{\theta_d}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_1}} & \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_2}} & \cdots & \frac{\partial^2 J}{\partial_{\theta_d} \partial_{\theta_d}} \end{pmatrix}$$

 $m{m{\Theta}} = m{H}(m{ heta}) =
abla_{m{ heta}^ op}(
abla_{m{ heta}} J(m{ heta}))$ is the Jacobian of the gradient function

Second order optimality condition

Theorem [Second order optimality condition]

Let $J: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function on its domain. If $\hat{\boldsymbol{\theta}}$ is a minimum of J, then $\nabla J(\hat{\boldsymbol{\theta}}) = 0$ and $\boldsymbol{H}(\hat{\boldsymbol{\theta}})$ is a positive definite matrix.

Remarks

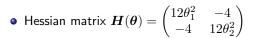
- ullet H is positive definite if and only if all its eigenvalues are positive
- ullet H is negative definite if and only if all its eigenvalues are negative
- For $\theta \in \mathbb{R}$, this condition means that the gradient of J at the minimum is null, $J'(\theta) = 0$ and its second derivative is positive i.e. $J''(\theta) > 0$
- If at a stationary point $heta_0$, $H(\hat{ heta})$ is negative definite, $\hat{ heta}$ is a local maximum of J

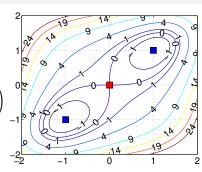
Illustration of the second order optimality condition

•
$$J(\theta) = \theta_1^4 + \theta_2^4 - 4\theta_1\theta_2$$

• Gradient :
$$\nabla J(\boldsymbol{\theta}) = \begin{pmatrix} 4\theta_1^3 - 4\theta_2 \\ -4\theta_1 + 4\theta_2^3 \end{pmatrix}$$

• Stationary points :
$$\pmb{\theta}^{(1)}=\begin{pmatrix}0\\0\end{pmatrix}$$
, $\pmb{\theta}^{(2)}=\begin{pmatrix}1\\1\end{pmatrix}$ $\pmb{\theta}^{(3)}=\begin{pmatrix}-1\\-1\end{pmatrix}$





	$oldsymbol{ heta}^{(1)}$	$oldsymbol{ heta}^{(2)}$	$\boldsymbol{ heta}^{(3)}$
Hessian	$\begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix}$	$ \begin{pmatrix} 12 & -4 \\ -4 & 12 \end{pmatrix} $	$ \begin{pmatrix} 12 & -4 \\ -4 & 12 \end{pmatrix} $
Eigenvalues	4, -4	8, 16	8, 16
Type of solution	Saddle point	Minimum	Minimum

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition]

Assume the hessian matrix $\mathbf{H}(\hat{\boldsymbol{\theta}})$ of $J(\boldsymbol{\theta})$ at $\hat{\boldsymbol{\theta}}$ exists and is positive definite. Assume also the gradient $\nabla J(\hat{\boldsymbol{\theta}}) = 0$. Then $\hat{\boldsymbol{\theta}}$ is a (local or global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition]

Let J be a convex function. Every local solution $\hat{\theta}$ is a global solution θ^* .

Recall

A function $J: \mathbb{R}^d \to \mathbb{R}$ is convex if it verifies

$$J(\alpha \theta + (1 - \alpha)\mathbf{z}) < \alpha J(\theta) + (1 - \alpha)J(\mathbf{z}), \quad \forall \theta, \mathbf{z} \in \text{dom}J, \quad 0 < \alpha < 1$$

How to find the solution(s)?

- We have seen how to assess a solution to the problem
- Now, how to compute a solution?

Principle of descent algorithms

Direction of descent

Let the function $J: \mathbb{R}^d \to \mathbb{R}$. The vector $\mathbf{h} \in \mathbb{R}^d$ is called a descent direction in $\boldsymbol{\theta}$ if there exists $\alpha > 0$ such that $J(\boldsymbol{\theta} + \alpha \mathbf{h}) < J(\boldsymbol{\theta})$

Principle of descent methods

- ullet Start from an initial point $oldsymbol{ heta}_0$
- Design a sequence of points $\{ {m{ heta}}_k \}$ with ${m{ heta}}_{k+1} = {m{ heta}}_k + lpha_k {m{h}}_k$
- ullet Ensure that the sequence $\{oldsymbol{ heta}_k\}$ converges to a stationary point $\hat{oldsymbol{ heta}}$

- h_k: direction of descent
- α_k : step size

General approach

General algorithm

- 1: Let k=0, initialize $\boldsymbol{\theta}_k$
- 2: repeat
- 3: Find a descent direction $\mathbf{h}_k \in \mathbb{R}^d$
- 4: Line search: find a step size $\alpha_k > 0$ in the direction \mathbf{h}_k such that $J(\boldsymbol{\theta}_k + \alpha_k \mathbf{h}_k)$ decreases "enough"
- 5: Update: $\theta_{k+1} \leftarrow \theta_k + \alpha_k \mathbf{h}_k$ and $k \leftarrow k+1$
- 6: until convergence
 - The methods of descent differ by the choice of:
 - h: gradient algorithm, Newton, Quasi-Newton algorithm
 - α : backtracking...

Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let $J(\theta)$ be a differential function. The direction $\mathbf{h} = -\nabla J(\theta) \in \mathbb{R}^d$ is a descent direction.

Proof.

J being differentiable, for any t>0 we have $J(\boldsymbol{\theta}+t\mathbf{h})=J(\boldsymbol{\theta})+t\nabla J(\boldsymbol{\theta})^{\top}\mathbf{h}+t\|\mathbf{h}\|\epsilon(t\mathbf{h}).$ Setting $\mathbf{h}=-\nabla J(\boldsymbol{\theta}),$ we get $J(\boldsymbol{\theta}+t\mathbf{h})-J(\boldsymbol{\theta})=-t\|\nabla J(\boldsymbol{\theta})\|^2+t\|\mathbf{h}\|\epsilon(th).$ For t small enough $\epsilon(t\mathbf{h})\to 0$ and so $J(\boldsymbol{\theta}+t\mathbf{h})-J(\boldsymbol{\theta})=-t\|\nabla J(\boldsymbol{\theta})\|^2<0.$ It is then a descent direction.

Characteristics of the gradient algorithm

- Choice of the descent direction at θ_k : $\mathbf{h}_k = -\nabla J(\theta_k)$
- Complexity of the update: $\theta_{k+1} \leftarrow \theta_k \alpha_k \nabla J(\theta_k)$ costs $\mathcal{O}(d)$

Newton algorithm

ullet 2nd order approximation of J at $oldsymbol{ heta}_k$

$$J(\boldsymbol{\theta} + \mathbf{h}) \approx J(\boldsymbol{\theta}_k) + \nabla J(\boldsymbol{\theta}_k)^{\top} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} \boldsymbol{H}(\boldsymbol{\theta}_k) \mathbf{h}$$

with $H(\theta_k)$ the positive definite Hessian matrix

ullet The direction ${f h}_k$ which minimizes this approximation is obtained by

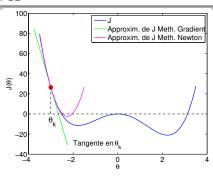
$$\nabla J(\boldsymbol{\theta} + \mathbf{h}_k) = 0 \quad \Rightarrow \quad \mathbf{h}_k = -\boldsymbol{H}(\boldsymbol{\theta}_k)^{-1} \nabla J(\boldsymbol{\theta}_k)$$

Features

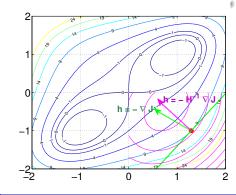
- Descent direction at θ_k : $\mathbf{h}_k = -\mathbf{H}(\theta_k)^{-1} \nabla J(\theta_k)$
- Complexity of the update: $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k \alpha_k \boldsymbol{H}(\boldsymbol{\theta}_k)^{-1} \nabla(\boldsymbol{\theta}_k)$ costs $\mathcal{O}(d^3)$ flops
- $H(\theta_k)$ is not always guaranteed to be positive definite matrix. Hence we cannot always ensure that \mathbf{h}_k is a direction of descent

Illustration of gradient and Newton methods

Local approximation of the two methods in $1\mbox{D}$



Directions of descent in 2D



Set up the step size α_k in the update $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \mathbf{h}_k$

- Fixed step size: use a fixed value $\alpha_k = \alpha > 0$ at each iteration k
- ullet Variable step size: α_k is adaptative using a line search

Armijo's rule: choose α_k in order to have a sufficient decrease of J i.e.

$$J(\boldsymbol{\theta}_k + \alpha_k \mathbf{h}) \le J(\boldsymbol{\theta}_k) + c \, \alpha_k \nabla J(\boldsymbol{\theta}_k)^{\top} \mathbf{h}_k$$

- \bullet Usually c is chosen in the range $\left[10^{-5},10^{-1}\right]$
- ullet \mathbf{h}_k is a descent direction, we have $\nabla J(\boldsymbol{\theta}_k)^{\top}\mathbf{h}_k < 0$, thus the decrease of J

Backtracking

- 1: Fix an initial step $\bar{\alpha}$, choose $0 < \rho < 1$, $\alpha \leftarrow \bar{\alpha}$
- 2: repeat
- 3: $\alpha \leftarrow \rho \alpha$
- 4: until $J(\boldsymbol{\theta}_k + \alpha \mathbf{h}) > J(\boldsymbol{\theta}_k) + c \, \alpha \nabla J(\boldsymbol{\theta}_k)^{\top} \mathbf{h}_k$

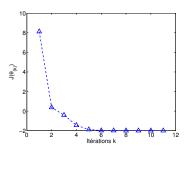
Interpretation: as long as J does not decrease, the step size is decressed

Choice of the initial step

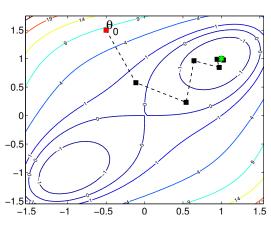
- Newton method: $\bar{\alpha} = 1$
- Gradient method: $\bar{\alpha} = 2 \frac{J(\theta_k) J(\theta_{k-1})}{\nabla J(\theta_k)^{\top} \mathbf{h}_k}$

Gradient method

J along the iterations

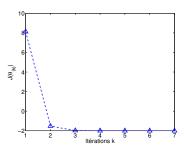


Evolution of the iterates



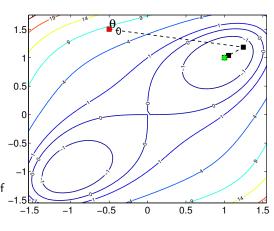
Newton method

J along the iterations



• At each iteration we considered the matrix $H(\theta) + \lambda I$ instead of H to guarantee the positive definite property of Hessian

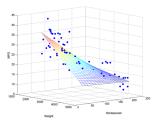
Evolution of the iterates



Constrained optimization problems

Examples and formulation

Example 1: sparse Regression



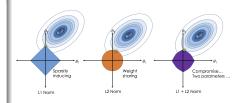
- Output to be predicted: $y \in \mathbb{R}$
- ullet Input variables: $\mathbf{x} \in \mathbb{R}^d$
- Linear model: $f(\mathbf{x}) = \mathbf{x}^{\top} \boldsymbol{\theta}$
- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^d$: parameters of the model

Determination of a sparse heta

- Minimization of square error
- Only a few paramters are non-zero

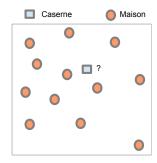
$$\begin{aligned} \min_{\pmb{\theta} \in \mathbb{R}^d} \ & \frac{1}{2} \sum_{i=1}^N (y_i - \mathbf{x}_i^\top \pmb{\theta})^2 \\ \text{s.t.} \ & \| \pmb{\theta} \|_p \leq k \end{aligned}$$

with
$$\|oldsymbol{ heta}\|_p^p = \sum_{j=1}^d | heta_j|^p$$



http://www.ds100.org/sp17/assets/notebooks/ linear_regression/Regularization.html

Example 2: where to settle the firehouse?



Problem formulation

$$\min_{\boldsymbol{\theta}} \max_{i=1,\cdots,n} \|\boldsymbol{\theta} - \mathbf{z}_i\|^2$$

- House M_i : defined by its coordinates $\mathbf{z}_i = [x_i, \ y_i]^{\top}$
- Let θ be the coordinates of the firehouse
- Minimize the distance from the firehouse to the farthest house

Equivalent problem

$$\min_{t \in \mathbb{R}, \theta \in \mathbb{R}^2} t$$
 s.t. $\| \theta - \mathbf{z}_i \|^2 \leq t \quad \forall \, i = 1, \cdots, n$

Formulation of constrained optimization problem

Notations and assumptions

- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^d$: vector of unknown real parameters
- ullet $J:\mathbb{R}^d o \mathbb{R}$, the function to be minimized on its domain $\mathrm{dom} J$
- ullet f_i and g_j are differentiable functions of \mathbb{R}^d on \mathbb{R}

Primal problem \mathcal{P}

$$\min_{m{ heta} \in \mathbb{R}^d} \quad J(m{ heta})$$
 objective function s.t. $f_i(m{ heta}) = 0 \quad \forall i = 1, \cdots, n \quad n$ Equality Constraints $g_i(m{ heta}) \leq 0 \quad \forall j = 1, \cdots, m \quad m$ Inequality Constraints

Feasibility

Let $p^* = \min_{\theta} \{ J(\theta) \text{ such that } f_i(\theta) = 0 \ \forall i \text{ and } g_i(\theta) \leq 0 \ \forall j \}$

• If $p^* = \infty$ then the problem does not admit a feasible solution

Characterization of the solutions

Feasibility domain

The feasible domain is defined by the set of constraints

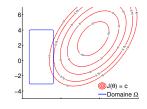
$$\Omega(oldsymbol{ heta}) = \left\{oldsymbol{ heta} \in \mathbb{R}^d \, ; \; f_i(oldsymbol{ heta}) = 0 \; orall i \; ext{and} \; g_j(oldsymbol{ heta}) \leq 0 \, orall j
ight\}$$

Feasible points

- θ_0 is feasible if $\theta_0 \in domJ$ and $\theta_0 \in \Omega(\theta)$ ie θ_0 fulfills all the constraints and $J(\theta_0)$ has a finite value
- θ^* is a global solution of the problem if θ^* is a feasible solution such that $J(\theta^*) \leq J(\theta)$ for every θ
- $\hat{\theta}$ is a local optimal solution if $\hat{\theta}$ is feasible and $J(\hat{\theta}) \leq J(\theta)$ for every $\|\theta \hat{\theta}\| \leq \epsilon$

Example 1

$$\begin{aligned} \min_{\pmb{\theta}} & & 0.9\theta_1^2 - 0.74\theta_1\theta_2 \\ & & +0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2 \\ \text{s.t.} & & -4 \leq \theta_1 \leq -1 \\ & & & -3 < \theta_2 < 4 \end{aligned}$$



- Parameters: $\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$
- Objective function:

$$J(\boldsymbol{\theta}) = 0.9\theta_1^2 - 0.74\theta_1\theta_2 + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2$$

• Feasibility domain (four inequality constraints):

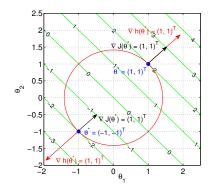
$$\Omega(\boldsymbol{\theta}) = \left\{ \boldsymbol{\theta} \in \mathbb{R}^2 \, ; \, -4 \le \boldsymbol{\theta}_1 \le -1 \text{ and } -3 \le \boldsymbol{\theta}_2 \le 4 \right\}$$

Example 2

Example

$$\begin{aligned} & \min_{\boldsymbol{\theta} \in \mathbb{R}^2} & \theta_1 + \theta_2 \\ & \text{s.t.} & \theta_1^2 + \theta_2^2 - 2 = 0 \end{aligned}$$

s.t.
$$\theta_1 + \theta_2 - z = 0$$



- An equality constraint
- Domain of feasibility: a circle with center at 0 and diameter equals to 2
- The optimal solution is obtained for $\pmb{\theta}^* = \begin{pmatrix} -1 & -1 \end{pmatrix}^{\top}$ and we have $J(\pmb{\theta}^*) = -2$

Optimality

- How to assess a solution of the primal problem?
- Do we have optimality conditions similar to those of unconstrained optimization?

Notion of Lagrangian

Primal problem \mathcal{P}

```
\begin{aligned} \min_{\pmb{\theta} \in \mathbb{R}^d} & J(\pmb{\theta}) \\ & f_i(\pmb{\theta}) = 0 & \forall i = 1, \cdots, n \\ \text{s.t.} & g_j(\pmb{\theta}) \leq 0 & \forall j = 1, \cdots, m \end{aligned} \qquad \begin{array}{l} n \text{ equality constraints} \\ m \text{ inequality constraints} \end{aligned}
```

 $oldsymbol{ heta}$ is called primal variable

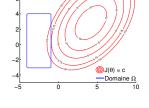
Principle of Lagrangian

- Each constraint is associated to a scalar parameter called Lagrange multiplier
- Equality constraint $f_i(\boldsymbol{\theta}) = 0$: we associate $\lambda_i \in \mathbb{R}$
- Inequality constraint $g_j(\boldsymbol{\theta}) \leq 0$: we associate $\alpha_j \geq 0^a$
- Lagrangian allows to transform the problem with constraints into a problem without constraints with additional variables: λ_i and α_j .

^aBeware of the type of inequality i.e. $g_i(\theta) \leq 0$

Example

$$\begin{split} \min_{\theta \in \mathbb{R}^2} & \quad 0.9\theta_1^2 - 0.74\theta_1\theta_2 \\ & \quad + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2 \\ \text{s.t.} & \quad -4 \leq \theta_1 \leq -1 \\ & \quad -3 < \theta_2 < 4 \end{split}$$



Constraints (inequality)

2
$$\theta_1 < -1 \Leftrightarrow \theta_1 + 1 < 0$$

3
$$-3 < \theta_2 \Leftrightarrow -\theta_2 - 3 < 0$$

$$\bullet \theta_2 < 4 \Leftrightarrow -\theta_2 - 4 < 0$$

Related Lagrange Parameters

1
$$\alpha_1 > 0$$

2
$$\alpha_2 > 0$$

3
$$\alpha_3 \ge 0$$

Lagrangian

$$\begin{aligned} \min_{\pmb{\theta} \in \mathbb{R}^d} \quad J(\pmb{\theta}) \\ f_i(\pmb{\theta}) &= 0 \quad \forall i = 1, \cdots, n \\ \text{s.c.} \quad g_i(\pmb{\theta}) &\leq 0 \quad \forall j = 1, \cdots, m \end{aligned}$$

Associated Lagrange parameters None

$$\lambda_i$$
 any real number $\forall i = 1, \dots, n$
 $\alpha_i \geq 0$ $\forall j = 1, \dots, m$

Lagrangian

The Lagrangian is defined by:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = J(\boldsymbol{\theta}) + \sum_{i=1}^{n} \lambda_i f_i(\boldsymbol{\theta}) + \sum_{j=1}^{m} \alpha_j g_j(\boldsymbol{\theta}) \quad \text{avec} \quad \mu_j \geq 0, \forall j = 1, \cdots, m$$

- Lagrange parameters $\lambda_i, i=1,\cdots,n$ and $\alpha_j, j=1,\cdots,m$ are called dual variables
- Dual variables are unknown parameters to be determined

Examples

Example 1

$$\begin{split} \min_{\theta \in \mathbb{R}^2} \quad & 0.9\theta_1^2 - 0.74\theta_1\theta_2 + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2 \\ \text{s.t.} \quad & -4 \leq \theta_1 \leq -1 \quad \text{and} \quad -3 \leq \theta_2 \leq 4 \end{split}$$

Lagrangian

$$\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{\theta}) = 0.9\theta_1^2 - 0.74\theta_1\theta_2 + 0.75\theta_1^2 - 5.4\theta_1 - 1.2\theta_2 + \alpha_1(-\theta_1 - 4) + \alpha_2(\theta_1 + 1) + \alpha_3(-\theta_2 - 3) + \alpha_4(-\theta_2 - 4)$$

with $\alpha_1 \ge 0, \alpha_2 \ge 0, \alpha_3 \ge 0, \alpha_4 \ge 0$ (because of inequality constraints)

Example 2

$$\begin{array}{ll} \min_{\boldsymbol{\theta} \in \mathbb{R}^3} & \quad \frac{1}{2} \left(\theta_1^2 + \theta_2^2 + \theta_3^2 \right) \\ \text{s.t.} & \quad \theta_1 + \theta_2 + 2\theta_3 = 1 \quad \text{ equality constraint} \\ & \quad \theta_1 + 4\theta_2 + 2\theta_3 = 3 \quad \text{ equality constraint} \end{array}$$

Lagrangian

Eagliangian
$$\mathcal{L}(\lambda, \boldsymbol{\theta}) = \frac{1}{2} \left(\theta_1^2 + \theta_2^2 + \theta_3^2 \right) + \lambda_1 (\theta_1 + \theta_2 + 2\theta_3 - 1) + \lambda_2 (\theta_1 + 4\theta_2 + 2\theta_3 - 3)$$
 with $\lambda_1, \lambda_2 \in \mathbb{R}$ (equality constraints)

Necessary optimality conditions

Assume that J, f_i, g_j are differentiable functions. Let θ^* be a feasible solution to the problem \mathcal{P} . Then there exists dual variables $\lambda_i^*, i=1,\cdots,n$, $\alpha_i^*, j=1,\cdots,m$ such that the KKT conditions are met.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity
$$\nabla \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\alpha}, \boldsymbol{\theta}) = 0 \quad \text{ie} \\ \nabla J(\boldsymbol{\theta}) + \sum_{i=1}^{n} \lambda_i \nabla f_i(\boldsymbol{\theta}) + \sum_{j=1}^{m} \alpha_j \nabla g_j(\boldsymbol{\theta}) = 0$$

Primal feasibility
$$f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \dots, n$$
 $g_j(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \dots, m$

Dual feasibility
$$\alpha_j \geq 0 \qquad \forall j=1,\cdots,m$$

Complementary slackness
$$\alpha_j g_j(\boldsymbol{\theta}) = 0$$
 $\forall j = 1, \dots, m$

Example

$$\begin{aligned} & \min_{\theta \in \mathbb{R}^2} & & \frac{1}{2}(\theta_1^2 + \theta_2^2) \\ & \text{s.t.} & & \theta_1 - 2\theta_2 + 2 \leq 0 \end{aligned}$$

- Lagrangian : $\mathcal{L}(\alpha, \boldsymbol{\theta}) = \frac{1}{2}(\theta_1^2 + \theta_2^2) + \alpha(\theta_1 2\theta_2 + 2), \quad \alpha \geq 0$
- KKT Conditions
 - Stationarity: $\nabla_{\theta} \mathcal{L}(\alpha, \theta) = 0$ \Rightarrow $\begin{cases} \theta_1 = -\alpha \\ \theta_2 = -2\alpha \end{cases}$
 - Primal feasibility : $\theta_1 2\theta_2 + 2 \le 0$
 - Dual feasibility : $\alpha \ge 0$
 - Complementary slackness : $\alpha(\theta_1 2\theta_2 + 2) = 0$
- Remarks on the complementary slackness
 - If $\theta_1 2\theta_2 + 2 < 0$ (inactive constraint) $\Rightarrow \alpha = 0$ (no penalty required as the constraint is satisfied)
 - If $\mu > 0 \Rightarrow \theta_1 2\theta_2 + 2 = 0$ (active constraint)

Duality

Dual function

Let $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\alpha})$ be the lagrangian of the primal problem \mathcal{P} with $\alpha_j \geq 0$. The corresponding dual function is defined as

$$\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\alpha}) = \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

Theorem [Weak duality]

Let $p^* = \min_{\theta} \{J(\theta) \text{ such that } f_i(\theta) = 0 \ \forall i \text{ and } g_j(\theta) \leq 0 \ \forall j\}$ be the optimum value (supposed finite) of the problem \mathcal{P} . Then, for any value of $\alpha_j \geq 0, \forall j$ and $\lambda_i, \forall i$, we have

$$\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\mu}) < p^*$$

Dual problem

- The weak duality indicates that the dual function $\mathcal{D}(\lambda, \alpha) = \min_{\theta} \mathcal{L}(\theta, \lambda, \alpha)$ is a lower bound of p^*
- Bridge the gap: maximize the dual w.r.t. dual variables λ and μ to make this lower bound close to p^*

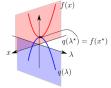
Dual problem

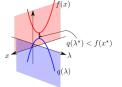
 $\max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}}$

$$\mathcal{D}(\pmb{\lambda}, \pmb{\mu})$$

s.t. $\alpha_j \geq 0$

$$\alpha_j \ge 0 \qquad \forall j = 1, \cdots, m$$





strong duality

weak duality

http://www.onmyphd.com/?p=duality.theory

Interest of the dual problem

Remarks

- Transform the primal problem into an equivalent dual problem possibly much simpler to solve
- Solving the dual problem can lead to the solution of the primal problem
- Solving the dual problem gives the optimal values of the Lagrange multipliers

Example: inequality constraints

$$\begin{aligned} \min_{\theta \in \mathbb{R}^2} & & \frac{1}{2}(\theta_1^2 + \theta_2^2) \\ \text{s.t.} & & \theta_1 - 2\theta_2 + 2 \leq 0 \end{aligned}$$

- Lagrangian : $\mathcal{L}(\boldsymbol{\theta}, \alpha) = \frac{1}{2}(\theta_1^2 + \theta_2^2) + \alpha(\theta_1 2\theta_2 + 2), \quad \alpha \geq 0$
- Stationarity of the KKT Condition :

$$\nabla_{\theta} \mathcal{L}(\mu, \boldsymbol{\theta}) = 0 \qquad \Rightarrow \qquad \left\{ \begin{array}{l} \theta_1 = -\alpha \\ \theta_2 = 2\alpha \end{array} \right.$$
 (1)

• Dual function $\mathcal{D}(\alpha) = \min_{\theta} L(\theta, \alpha)$: by substituting (1) in \mathcal{L} we obtain

$$\mathcal{D}(\alpha) = -\frac{5}{2}\alpha^2 + 2\alpha$$

- Dual problem : $\max_{\alpha} \mathcal{D}(\alpha)$ s.c. $\alpha \geq 0$
- Dual solution

$$\nabla \mathcal{D}(\alpha) = 0 \Rightarrow \alpha = \frac{2}{5} \quad \text{(that satisfies } \alpha \geq 0) \qquad (2)$$

• Primal solution : (2) and (1) lead to $\theta = \begin{pmatrix} -\frac{2}{5} & \frac{4}{5} \end{pmatrix}^{\top}$

Convex constrained optimization

$$\begin{aligned} \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \quad & J(\boldsymbol{\theta}) \\ & f_i(\boldsymbol{\theta}) = 0 \quad \forall i = 1, \cdots, n \\ \text{s.t.} \quad & g_i(\boldsymbol{\theta}) \leq 0 \quad \forall j = 1, \cdots, m \end{aligned}$$

Convexity condition

J is a convex function f_i are linear $\forall i = 1, n$ g_i are convex functions $\forall j = 1, m$

Problems of interest

- Linear Programming (LP)
- Quadratic Programming (QP)
- Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX . . .

QP convex problem

Standard form

$$\begin{array}{ll} \min\limits_{\boldsymbol{\theta} \in \mathbb{R}^d} & \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{G} \boldsymbol{\theta} + \mathbf{q}^{\top} \boldsymbol{\theta} + r \\ \text{s.t.} & \mathbf{a}_i^{\top} \boldsymbol{\theta} = b_i & \forall i = 1, \cdots, n \quad \text{affine equality constraint} \\ & \mathbf{c}_j^{\top} \boldsymbol{\theta} \geq d_j & \forall j = 1, \cdots, m \quad \text{linear inequality constraints} \end{array}$$

with $\mathbf{q}, \mathbf{a}_i, \mathbf{c}_j \in \mathbb{R}^d$, \mathbf{d}_i and d_j real scalar values and $\mathbf{G} \in \mathbb{R}^{d \times d}$ a positive definite matrix

Examples

SVM Problem

$$\begin{aligned} \min_{\boldsymbol{\theta} \in \mathbb{R}^2} & \quad \frac{1}{2}(\theta_1^2 + \theta_2^2) & \quad \min_{\boldsymbol{\theta}, b \mathbb{R}} & \quad \frac{1}{2}\|\boldsymbol{\theta}\|^2 \\ \text{s.t.} & \quad y_i(\boldsymbol{\theta}^\top x_i + b) \geq 1 \quad \forall i = 1, N \end{aligned}$$

Conclusion

- Unconstrained optimization of smooth objective function
 - Characterization of the solution(s) requires checking the optimality conditions
 - Computation of a solution using descent methods
 - Gradient descent method
 - Newton method
 - Optimization under constraints
 - Lagrangian: allows to reduce to an unconstrained problem via Lagrange multipliers
 - To each constraint corresponds a multiplier

 Lagrange parameters act as a penalty if the corresponding constraints are violated
 - Optimally (KKT conditions): Stationary condition + feasibility conditions + Complementary conditions
 - Duality: provides lower bound on the primal problem. Dual problem sometimes easier to solve than primal.