A short introduction to optimization

From unconstrained to constrained optimization

Gilles Gasso

INSA Rouen - ITI Departement
LITIS Laboratory

September 21, 2025

Gilles Gasso A short introduction to optimization 1/42



N
Plan

0 Unconstrained optimization
@ Formulation
@ Optimality conditions
@ Descent algorithms
@ Main methods
@ Determination of the step size
@ lllustration of descent methods

© Constrained optimization
@ Formulation

@ Concept of Lagrangian and duality, condition of optimality
@ Lagrangian formulation
@ Optimality conditions
@ Duality and dual problem

@ Specific constrained optimization problems
© Conclusion

Gilles Gasso A short introduction to optimization 2/42



Unconstrained optimization EIITIEATT

Unconstrained optimization

Elements of the problem
@ 0 € R? : vector of unknown real parameters
e J:R% — R : the function to be minimized

@ Assumption: J is differentiable all over its domain
domJ = {6 € RY| J(6) < oo}

Problem formulation

(P)  min J(6)
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Unconstrained optimization

Unconstrained optimization

Examples

1
J(6) 5¢9TP(9 +q'0+r

with P a positive definite matrix
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(WIS BTN Rl [PEV i Optimality conditions

Different solutions

Global solution

0% is said to be the global minimum solution of the problem if
J(0*) < J(0), VO € domJ

Local solution

0 is a local minimum solution of problem (P) if it holds
J(0) < J(6), VO € domJ such that ||@ — 0| <¢€, ¢>0

= Minimum global
A Minimum local

[llustration

J(0) = cos(01 — 02) + sin(01 + 62) + & J

0 1 2 3 4 5
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Optimality conditions

@ How to assess a solution to the problem?
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(WIS BTN Rl [PEV i Optimality conditions

First order necessary condition

Theorem [First order condition]

Let J : R? — R be a differential function on its domain. A vector 6 is a
(local or global) solution of the problem (P), if it necessarily satisfies the

A

condition V.J(6) = 0.

Remarks

@ Any vector 6 that verifies V.J(0y) = 0 is called a stationary point
@ VJ(0) € R? is the gradient vector of J at 0.

@ The gradient is the unique vector such that the directional derivative can be
written as:

iy J(0+ th) — 7(6)
t—0 t

=VJ@ '™, hecR? teR
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Sty ol
Example of a first order optimality condition

2

-] J(0)20%+0§—40192 /
Q
3 _ 7
@ Gradient V.J(6) = < 407 — 40 ) 1r

—4601 + 49%

og

@ Stationary points that verify V.J(0) = 0.

@ Three solutions 1) = (8) 0 = (}) and-17 T

- () <

Remarks

e 0@ and 89 are local minimal but not 8™

@ every stationary point can be deemed a local extremum

We need another optimality condition

How to ensure that a stationary point is a minimum solution?
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(WIS BTN Rl [PEV i Optimality conditions

Hessian matrix

Twice differential function

J : R = R is said to be a twice differentiable function on its domain
dom.J if, at every point 0 €, there exists a unique symmetric matrix
H(0) € R called Hessian matrix such that
J(@+h)=J(0)+VJ(@) 'h+h"H(O)h+ |h|?c(h).

e(h) is a continuous function at 0 with limy_,0e(h) =0

e H(0) is the second derivative matrix

82J a2y 8%2J
99,09, Do, Oa, 9, 0a,
H(0) = : : :
99,09, o,00, 99,00,

e H(0) =V,t(VyJ(0)) is the Jacobian of the gradient function
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(WIS BTN Rl [PEV i Optimality conditions

Second order optimality condition

Theorem [Second order optimality condition]

Let J : RY = R be a twice differentiable function on its domain. If 0 is a

N A~

minimum of J, then V.J(0) = 0 and H(0) is a positive definite matrix.

Remarks
@ H is positive definite if and only if all its eigenvalues are positive
@ H is negative definite if and only if all its eigenvalues are negative

@ For 6 € R, this condition means that the gradient of J at the minimum is
null, J'(0) = 0 and its second derivative is positive i.e. J"”(8) >0

o If at a stationary point 8, H(0)) is negative definite, 8 is a local maximum
of J

v
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(WIS BTN Rl [PEV i Optimality conditions

[llustration of the second order optimality condition

) J(G) = 011 —|—0§ — 46,05

o Gradient : V.J(6) = <

e Stationary points : 8 = (8) 02 = (1

@ _ (—1
o= (3)

4603 — 46,
—461 + 493

2

1

. . 1202 —4
@ Hessian matrix H(6) = ( 4 12%)
oW 0@ o®)
Hessi 0 —4 12 —4 12 —4
esstan —4 0 —4 12 -4 12
Eigenvalues 4,—4 8,16 8,16
Type of solution | Saddle point | Minimum Minimum
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(WIS BTN Rl [PEV i Optimality conditions

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition ]

Assume the hessian matrix H (8) of .J (6) at 0 exists and is positive
definite. Assume also the gradient V.J(0) = 0. Then 0 is a (local or
global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition]

Let J be a convex function. Every local solution 6 is a global solution 6*.

v

Recall

A function J : R% — R is convex if it verifies

J(@@+ (1—-a)z) <aJ@)+ (1—a)J(z), VO,zcdomJ, 0<a<l

v
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Optimality conditions
How to find the solution(s)?

@ We have seen how to assess a solution to the problem

@ Now, how to compute a solution?
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(VT BT ROl P2Vl Descent algorithms

Principle of descent algorithms

Direction of descent

Let the function J : R% — R. The vector h € R? is called a descent
direction in @ if there exists o > 0 such that J(6 + oh) < J(6)

Principle of descent methods
@ Start from an initial point 6
@ Design a sequence of points {0y} with 011 = 0y + a;hy,

e Ensure that the sequence {0} } converges to a stationary point 6

@ hy: direction of descent

@ oy step size
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(VT BT ROl P2Vl Descent algorithms

General approach

General algorithm
1: Let k£ = 0, initialize 6;,
2: repeat
3:  Find a descent direction hy, € R?

4:  Line search: find a step size az > 0 in the direction hy such that
J(0x + arhy) decreases "enough"

5. Update: 011 < 0 + aphy and b+ k+ 1

6: until convergence

@ The methods of descent differ by the choice of:
e h: gradient algorithm, Newton, Quasi-Newton algorithm

e «: backtracking. ..
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Rl
Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let J(8) be a differential function. The directionh = —V.J(0) € R? is a
descent direction.

Proof.

J being differentiable, for any ¢ > 0 we have

J(0 +th) = J(0) +tVJ(0) Th + t||h|e(th). Setting h = —V.J(0), we get

J(6 + th) — J(0) = —t||VJ(0)]]* + t||h|le(th). For t small enough e(th) — 0
and so J(6 +th) — J(0) = —t||[VJ(0)||? < 0. It is then a descent direction. [

Characteristics of the gradient algorithm
@ Choice of the descent direction at 0y: hy, = —V.J(0y)
o Complexity of the update: Oy1 « 0 — a,V.J(6y) costs O(d)
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(VT BT ROl P2Vl Descent algorithms

Newton algorithm

@ 2nd order approximation of J at 6
1
J(0+h)~ J(6;)+VJO) h+ §hTH(0k)h

with H (6y) the positive definite Hessian matrix
@ The direction hy which minimizes this approximation is obtained by

VJ@O+h)=0 = h,=—H(6;) 'VJ(O;)

Features
@ Descent direction at 8;: hy = —H (0,)"'V.J(0;)
o Complexity of the update: 0,1 < 0y — a, H(0;) 1V (0y) costs
O(d?) flops
e H(6y) is not always guaranteed to be positive definite matrix. Hence
we cannot always ensure that hy, is a direction of descent
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(VT BT ROl P2Vl Descent algorithms

lllustration of gradient and Newton methods

Local approximation of the two methods

)

in 1D
100
—J
8ok —— Approxim. de J Meth. Gradient
—— Approxim. de J Meth. Newton
60} Directions of descent in 2D
[
__ 4or 2
&=
=
20
0 1r
-201
Tangente en 0,
-40 0y
"4 -2 0 2 4
0
1t
-2
-2
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Dizct el
Set up the step size ay. in the update 0.1 < 6. + a;h;

@ Fixed step size: use a fixed value a, = o > 0 at each iteration k

@ Variable step size: «ay, is adaptative using a line search

Armijo's rule: choose «y in order to have a sufficient decrease of J i.e. J

J(0y + aih) < J(8y) + capVJ(0) 'hy

@ Usually ¢ is chosen in the range [107°,107!]

@ hy is a descent direction, we have V.J(8;) "hy, < 0, thus the decrease of .J

Backtracking

1: Fix an initial step @, choose 0 < p < 1, a < @& Choice of the initial step

2: repeat @ Newton method:

3 a¢ pa a=1

4: until J(0;, + ah) > J(0) +caVJ(0;) Thy ° grid;e%
N VJ(6r) T hy

Interpretation: as long as J does not decrease, the

step size is decresaed
Gilles Gasso A short introduction to optimization 19 /42



(VT BT ROl P2Vl Descent algorithms

Gradient method

along the iterations

Evolution of the iterates

10,

s 4

of
24

4

0| A&A\

. B

0 2 4

6 8 10 12
Itérations k
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(VT BT ROl P2Vl Descent algorithms

Newton method

J along the iterations

S
o

Itérations k

@ At each iteration we considered
the matrix H(0) + AI instead of
H to guarantee the positive
definite property of Hessian

Gilles Gasso

Evolution of the iterates

N

e ;7//"_\\0

-1.5
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Constrained optimization

Constrained optimization problems

Examples and formulation
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Constrained optimization

Example 1: sparse Regression

Determination of a sparse 6

@ Minimization of square error

@ Only a few paramters are non-zero

. N
MmiNgeRd % Zi:l(yi - XzT 9)2
s.tt. |6, <k

with [|0]p = S0 |67

o Output to be predicted: y € R
o Input variables: x € R?
@ Linear model: f(x)=x'80

e 6 € R%: parameters of the model

Spanity
inducing

Weight
sharing

Compromise...
Two parameters ...

L1 Nom 12Nom L1 +12 Nom

http://www.ds100.org/spl7/assets/notebooks/
linear_regression/Regularization.html

v
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Constrained optimization

Example 2: where to settle the firehouse?

O] cCaserne © Maison
o © o
© _ o
o o o
o
o
o

Problem formulation

min max || — z;]||?
0 =1,

)

Gilles Gasso

Z; = [951‘, yi]T

@ Let @ be the coordinates of the

firehouse

@ Minimize the distance from the

firehouse to the farthest house

Equivalent problem

mint
tER,OER2

st [|0—z|?><t Vi=1,-

@ House M;: defined by its coordinates

.-,n
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Constrained optimization REIIHITIEVTT

Formulation of constrained optimization problem

Notations and assumptions

e 0 € R%: vector of unknown real parameters

e J:R?Y - R, the function to be minimized on its domain dom.J
o f; and g; are differentiable functions of R? on R

Primal problem P

mingcra  J(6)

objective function
s.t. fi(@)=0 Vi=1,---,n n Equality Constraints
gj(0) <0 Vj=1,---,m m Inequality Constraints
Feasibility

Let p* = mingy {J(#) such that f;(#) =0 Vi and g;(6) < 0V}

o If p* = oo then the problem does not admit a feasible solution

Gilles Gasso
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Constrained optimization REIIHITIEVTT

Characterization of the solutions

Feasibility domain

The feasible domain is defined by the set of constraints

0(0) = {6 € RY; i(6) = 0 i and 4;(6) < 0 }

Feasible points

e 0Oy is feasible if 8y € dom.J and 6y € Q(0) ie Oy fulfills all the
constraints and J(0y) has a finite value

e 0% is a global solution of the problem if " is a feasible solution such

that J(0*) < J(0) for every 0

e 0 is a local optimal solution if @ is feasible and .J(0) < J(8) for every

16— 6] <e

v
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Example 1

6
min 0.96% — 0.740,0, 4
2
+0.750% — 5.46, — 1.20, ,
s.t. —4 <6, <-1 -2
_3 < 0() < 4 -4 —Domaine Q
01
@ Parameters: 0 =
B2

@ Objective function:
J(0) = 0.907 — 0.740,05 + 0.7560% — 5.46; — 1.26,
e Feasibility domain (four inequality constraints):

QO)={0€cR’; —4<6;<—-1land —3< 6, <4}
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Constrained optimization REIIHITIEVTT

Example 2
2.5
By N el hER (N
15 R 2 () IO P >
Example ki
X
L 05 ’
min 01 + 62 S
OcR2 o5 e
2, p2 _ -
s.t. 01 + 62 —2= 0 -1k
-1.5F A o ”
N TYC VTR
= -1 0 1 2

@ An equality constraint
@ Domain of feasibility: a circle with center at 0 and diameter equals to 2

@ The optimal solution is obtained for 8% = (—1 —1)T and we have
J(0%) = —2
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(el
Optimality

@ How to assess a solution of the primal problem?

@ Do we have optimality conditions similar to those of unconstrained
optimization?
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Notion of Lagrangian

Primal problem P

mingegrae  J(60)
fi(@)=0 Vi=1,---,n n equality constraints
s.t. gij(0) <0 Vi=1,---,m m inequality constraints

0 s called primal variable

Principle of Lagrangian

@ Each constraint is associated to a scalar parameter called Lagrange
multiplier

@ Equality constraint f;(6) =0 : we associate \; € R
@ Inequality constraint g;(@) < 0 : we associate c; > 02

@ Lagrangian allows to transform the problem with constraints into a problem
without constraints with additional variables: \; and «;.

“Beware of the type of inequality i.e. g;(0) <0
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Constrained optimization

Example

min 099% - 0749192
0€R?

+0.7562 — 5.40, — 1.20,
s.t. —4 < 01 < -1
—-3<0,<4

Constraints (inequality)
Q@ 4<b, e -0,—-4<0
Q@0 <-160+1<0
Q 3<0,&—-0,-3<0
Q 0:<4& —0,—4<0

—Domaine

-5 0 5 10

Related Lagrange Parameters
Qa; >0
Q@ x>0
Q a3 >0
Q a,>0

Gilles Gasso
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Lagrangian

mingeRd J(@)

fi(0)=0 Vi=1,--,n

Lagrangian

The Lagrangian is defined by :

L£(6,\, ) +Z>\ (6

—I—Z ozjgj

Associated Lagrange parameters
None
A; any real number Vi=1,--- n
a; >0 Vj=1,---,m

avec pu; >0,Vj=1,---,m

o Lagrange parameters )\;,i =1,---

called dual variables

;nand o, 7 =1,---,m are

@ Dual variables are unknown parameters to be determined

Gilles Gasso
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Examples

Example 1
;n]iRg 0.90% — 0.746010240.750%? — 5.46, — 1.26
€
s.t. —4<6; <-1 and -3<6:<4
Lagrangian
L(a,0) = 0.907 —0.740,0540.7507 — 5.40, — 1.260,

+ ai(—01 —4)+ (01 + 1) + as(—02 — 3) + asa(—02 — 4)

with a1 > 0,02 > 0,a3 > 0,a4 > 0 (because of inequality constraints)

Example 2
. 1 (p2 2 2
s (01 + 02+ 6
;Ié]lRIé 3 ( 1+ 02+ 3)
s.t. 01+ 02+ 205 =1  equality constraint
01 + 462 + 205 = 3 equality constraint
Lagrangian

E()\, 9) = % (0% —+ 0% + 9%) —+ )\1(01 + 0y + 205 — 1) + )\2(01 + 405 + 263 — 3)
with A1, A2 € R (equality constraints)
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Necessary optimality conditions

Assume that J, f;, g; are differentiable functions. Let 6" be a feasible
solution to the problem P. Then there exists dual variables

* g * g
ALi=1,---,n,0f,j=1,--

,m such that the KKT conditions are met.

Karush-Kuhn-Tucker (KKT) Conditions

Stationarity

Primal feasibility

Dual feasibility

VLA, @, 0) =0 e
VJ(0) + 320 AV £i(0) + 307 i Vg;(0) =

fi(@) =0 Vi=1,---,n
g;(0) <0 Vi=1,---,m

a; >0 Vi=1,---,m

Complementary slackness c;jg;(0) =0 Vi=1,---,m

(@)

Gilles Gasso
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Example

min %(9? +63)
s.t. 01 —20:+2<0

@ Lagrangian : L(a,0) = 3(67 +63) + (61 — 202 +2), o >0

@ KKT Conditions

Stationarity: VoL («,0) =0 = {

o Primal feasibility : 6; — 26, +2 <0

91 = —«
92 = 2«

e Dual feasibility : o >0
o Complementary slackness : a(6; — 202 +2) =0

@ Remarks on the complementary slackness
o If 61 — 202 + 2 < 0 (inactive constraint) = a = 0 (no penalty required
as the constraint is satisfied)
o If >0 = 60, —20, +2 =0 (active constraint)
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Duality

Dual function

Let £L(6, X, o) be the lagrangian of the primal problem P with o; > 0.
The corresponding dual function is defined as

D(A, @) = min £(6, A, 1)

Theorem [Weak duality]
Let p* = ming {J(0) such that f;(6) =0 Vi and g;(0) < 0Vj} be the

optimum value (supposed finite) of the problem P. Then, for any value of
a; > 0,Vj and \;, Vi, we have

D(A, p) < p*

Gilles Gasso
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Dual problem

@ The weak duality indicates that the dual function
D(\, @) = ming L(O, A, ) is a lower bound of p*

@ Bridge the gap: maximize the dual w.r.t. dual variables A and g to make
this lower bound close to p*

Dual problem @) #(2)
a(N) = fl@*) a(\) < fla*)
nax D(A, p) . A . !
st. ;20 Vji=1Ll--,m a0 40
strong duality weak duality

http://www.onmyphd.com/?p=duality.theory
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Interest of the dual problem

Remarks

@ Transform the primal problem into an equivalent dual problem possibly
much simpler to solve

@ Solving the dual problem can lead to the solution of the primal problem

@ Solving the dual problem gives the optimal values of the Lagrange multipliers
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Example : inequality constraints

. 1 2 2

~(01 +0

min o (61 +65)
s.t. 91—292+2§0

@ Lagrangian : £(6,a) = 3(67 +63) + a(61 — 202 +2), o >0

@ Stationarity of the KKT Condition :

_ 01 = —«
viewo =0 = {pTor W
@ Dual function D(a)) = ming L(0, «) : by substituting (1) in £ we obtain
D(a) = —gaz + 2
@ Dual problem : max, D(a) s.c. a>0

@ Dual solution

VD(a)=0=a=

[S1N )

(that satisfies @ > 0) (2)

@ Primal solution : (2) and (1) lead to @ = (=2 )"
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(O EIETEC RN IPEL M Specific constrained optimization problems

Convex constrained optimization

Convexity condition

mingegre  J(0) J is a convex function
fi(@)=0 Vi=1,---,n fi arelinear Vi=1,n
s.t. g;(0) <0 Vj=1,---,m g; are convex functions Vj=1,nm

Problems of interest
@ Linear Programming (LP)
@ Quadratic Programming (QP)

@ Off-the-shelves toolboxes exist for those problems (Gurobi, Mosek, CVX .. .)

D2 mosek ‘%Mé
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(O EIETEC RN IPEL M Specific constrained optimization problems

QP convex problem

Standard form

min %BTGB—I-C]TO—I—’I“
feRd
s.t. aZTG =b; Vi=1,---,n affine equality constraint

ch0 > d; Vj=1,---,m linear inequality constraints

with q,a;,¢; € R%, d; and d; real scalar values and G € R?*¢ a positive

definite matrix )
Examples
SVM Problem
min = (02 4+ 62) ming sz 36])”
feR2 2 s.t. yi(@ Tz +b)>1 Vi=1,N

s.t. 01 —205+2<0
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Conclusion

Conclusion

@ Unconstrained optimization of smooth objective function

o Characterization of the solution(s) requires checking the optimality
conditions
o Computation of a solution using descent methods

o Gradient descent method
@ Newton method
e Optimization under constraints

o Lagrangian: allows to reduce to an unconstrained problem via Lagrange
multipliers

@ To each constraint corresponds a multiplier = Lagrange parameters
act as a penalty if the corresponding constraints are violated

e Optimally (KKT conditions): Stationary condition + feasibility
conditions + Complementary conditions

o Duality: provides lower bound on the primal problem. Dual problem
sometimes easier to solve than primal.
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