
Machine Learning
Boosting

Simon BERNARD
simon.bernard@univ-rouen.fr

Outline

Chapters :

1. From decision trees to decision forests

2. Random Forests
3. Boosting

• Introduction to boosting
• Adaboost
• Gradient Boosting Machine

2/33

Introduction to boosting

Introduction to boosting

• f : X → Y is the relation we want to learn

• We seek to find a model h ∈ H that ”explain” f , H being a hypothesis space

• ` : Y × Y → R is a loss function to measure the effectiveness of a given h ∈ H

• The (generalization) error, also called the true risk, of a given h is :

R(h) = E(x,y)∼D [`(y, h(x))]

• Here, we make the realizability assumption : f ∈ H meaning ∃h? ∈ H s.t. R(h?) = 0

• For simplicity, consider binary classification tasks only

4/33

Introduction to boosting

Strong learnability
A problem is strongly PAC-learnable if there exists an algorithm A such that, ∀f , ∀ε > 0,
∀δ > 0, if A is given n = poly(1

ε
, 1
δ
) instances, then it outputs h such that :

P(R(h) ≤ ε) ≥ 1− δ

Weak learnability
A problem is weakly PAC-learnable if ∃γ > 0 and there exists an algorithm A such that, ∀f ,
∀δ > 0, if A is given n = poly(1

δ
) instances, then it outputs h such that :

P(R(h) ≤
1
2
− γ) ≥ 1− δ

• Weak learnability only requires A to supply a h better than a purely random prediction

• By extension, We call A a weak learner and h a weak classifier

5/33

Introduction to boosting

• A key question : can we transform any weak learner A into a strong learner A′ ?

• Long story short, the best answers are Boosting algorithms

• Key idea : since A gives a weak h for a given D, create several different Dk to obtain several
different weak hk and combine them afterward

• Difference with bagging is that Dk are created to focus on the errors of hk−1

6/33

Introduction to boosting

• Init. : all instances have the same weight (∼ same importance for learning)

• Learn a stump classifier : 1 red instance wrongly classified

7/33

Introduction to boosting

• Increase the weight of this red instance so that it has a greater impact on learning

• Learn a stump classifier : a different red instance wrongly classified

8/33

Introduction to boosting

• Update weights to incorporate this new error for learning the next classifier

• Learn a stump classifier : 1 blue instance wrongly classified

9/33

Introduction to boosting

• Update weights : 3 (difficult) instances with a higher weight

• Learn a stump classifier : 1 new blue instance wrongly classified

10/33

Introduction to boosting

• Update weights

• Learn a stump classifier : back to the first classifier

11/33

Introduction to boosting

• Combine the classifiers by weighted voting

• Diversity is created by having classifiers focus on different instances

12/33

AdaBoost

AdaBoost

• Initially for two-class classification tasks where y ∈ {−1, 1}

• Requires a weak learner A that can take instance weights into account (e.g. decision tree)

• Each training instance xi is assigned a weight wi ∈ [0, 1], with

n∑
i=1

wi = 1

• The empirical error rate of a classifier h is thus :

ε̂ =
n∑
i=1

wi1yi 6=h(xi)

14/33

AdaBoost

• AdaBoost is designed to minimize the exponential loss (for y ∈ {−1, 1}}) :

`(y, h(x)) = e−yh(x)

• At iteration k, a new hk is learnt and added to the combination s.t. it minimizes the loss :

Hk(x) = Hk−1(x) + αkhk(x)

L =
n∑
i=1

`(yi,Hk(xi)) =
n∑
i=1

e−yiHk(xi)

=
n∑
i=1

e−yiHk−1(xi)e−yiαkhk(xi)

15/33

AdaBoost

• At iteration k, we focus on finding hk :

L =
n∑
i=1

w(k)
i e−yiαkhk(xi)

where
w(k)
i = e−yiHk−1(xi)

• We can split this summation between correct and incorrect predictions :

L =
∑

yi=hk(xi)
w(k)
i e−αk +

∑
yi 6=hk(xi)

w(k)
i eαk

=
n∑
i=1

w(k)
i e−αk +

∑
yi 6=hk(xi)

w(k)
i
(
eαk − e−αk

)

16/33

AdaBoost

• In this equation

L =
n∑
i=1

w(k)
i e−αk +

∑
yi 6=hk(xi)

w(k)
i
(
eαk − e−αk

)
for a fixed αk > 0, the only term that depends on hk is

∑
yi 6=hk(xi)

w(k)
i

• Thus, the hk that minimizes L is the one that minimizes
∑

yi 6=hk(xi)
w(k)
i

• This is the weighted error of hk with weights :

w(k)
i = e−yiHk−1(xi)

17/33

AdaBoost

• Input : a training set D, a weak learner A, a number L of iterations

• Output : a combining classifier

HL(x) = sign
(L∑
k=1

αkhk(x)
)

• Initialization :
W(1) =

(
w(1)
1 ,w(1)

2 , . . . ,w(1)
n

)
with

w(1)
i =

1
n
, ∀i = 1, . . . , n

18/33

AdaBoost

• Loop : for k = 1 to L
1. Learn the kth classifier hk = A(D,W(k))

2. Compute its weighted error rate :

ε̂k =
∑

yi 6=hk(xi)
w(k)
i

3. Compute αk
4. Update the instance weights for the next iteration (W(k+1)) :

w(k+1)
i = w(k)

i .
1
Zk
e(−αkyihk(xi)) ∀i = 1, . . . , n

= w(k)
i .

1
Zk

{
e−αk if hk(xi) = yi
eαk else

where Zk is a normalization coefficient

19/33

AdaBoost

• To determine the αk that minimizes L with the chosen hk , we differentiate :

∂L
∂αk

=
∂

∂αk

 ∑
yi=hk(xi)

w(k)
i e−αk +

∑
yi 6=hk(xi)

w(k)
i eαk

= −

∑
yi=hk(xi)

w(k)
i e−αk +

∑
yi 6=hk(xi)

w(k)
i eαk

• Setting this to zero lead to :

αk =
1
2
ln

∑yi=hk(xi)
w(k)
i∑

yi 6=hk(xi)
w(k)
i

 =
1
2
ln

(
1− ε̂k
ε̂k

)

20/33

AdaBoost

Discussion

• Theoretical results shows that there is a risk of overfitting if :
• L is too big compared to n
• accentuated if the weak classifiers are complex

• In practice, overfitting is quite rare with boosting because even if the resulting classifier is
more and more complex, it is also more and more confident in its prediction 1

1. Can be explained through the margin maximization perspective, but we won’t go into these details here
21/33

AdaBoost

(Note : for multi-class problems, the variant called Adaboost.SAMME has been used)
22/33

Gradient boosting

Gradient boosting

• Many ML models can be written as a linear combination of simpler models :

H(x) =
L∑
k=1

αkh(x, θk)

• E.g., h(x, θk) is the k-th decision trees which gives output ∈ [−1, 1]

• The (αk, θk) are to be estimated by minimizing a loss function ` :

(
α∗
k , θ

∗
k
)L
1 = argmin

{αk,θk}L1

n∑
i=1

`

(
yi,

L∑
k=1

αkhk(xi, θk)
)

• However, directly optimizing this loss function is often difficult

24/33

Gradient boosting

• Instead, we usually use a method called Forward Stagewise Additive Modeling (FSAM) :
• Initialize H0(x) = 0
• for k = 1 to L :

1. Compute

(αk, θk) = argmin
α,θ

n∑
i=1

`
(
yi,Hk−1(xi) + αh(xi, θ)

)
2. Set

Hk(x) = Hk−1(x) + αkh(x, θk)

• Adaboost is a special case with `(y, h) = e−yh

25/33

Gradient boosting

• This is somehow similar to gradient descent :

θk = θk−1 − η∇θk−1`
(
yi, h(xi, θk−1)

)
• search in the parameter space
• update to the opposite direction of the gradient (w.r.t. the parameters)

• Forward Stagewise Additive Modeling :

Hk(x) = Hk−1(x)− η∇Hk−1(xi)`
(
yi,Hk−1(xi)

)
= Hk−1(x)− η

[
∂`(y, h)

∂h

]
y=yi,h=Hk−1(xi)

• search in the hypothesis space
• update to the opposite direction of the gradient (w.r.t. the model)

26/33

Gradient boosting

• Gradient boosting :

Hk(x) = Hk−1(x)− η∇Hk−1(xi)`
(
yi,Hk−1(xi)

)
= Hk−1(x) + ηh(x, θk)

where h(x, θk) is learned to approximate the negative gradient

• h(x, θk) is a regressor (even for classification tasks), most often small regression trees

• Reasons are that it leads to simplifications 2 3 and that it gives good performances

2. J.H. Friedman, ’Greedy function approximation : a Gradient Boosting Machine’, The Annals of Statistics, 2001”
3. https://xgboost.readthedocs.io/en/stable/tutorials/model.html

27/33

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Gradient Boosting

• Inputs : D, A, L and η

• Output : HL(x) for regression or sign(HL(x)) for classification

• Initialization : H0(x) = argminγ
∑n

i=1 ` (yi, γ) 4

• For k = 1 to L :
1. Compute :

ỹi = −
[
∂`(y, h)

∂h

]
y=yi,h=Hk−1(xi)

∀(xi, yi) ∈ D

2. Build D′ = {(xi, ỹi)}, from all (xi, yi) ∈ D
3. hk(x) = A(D′)

4. Hk(x) = Hk−1(x) + ηhk(x)

4. In practice, H0(x) is set to ȳ for regression and to log
(
n+/n−

)
for classification, where n+ (resp. n−) is the number of

training instances that belong to the positive class (resp. negative class).
28/33

Gradient Boosting

• One can use any loss provided that we can compute ∂`(y,h)
∂h

• For example :
• squared-error loss (regression) :

`(y, h) = (y − h)2 →
∂`(y, h)

∂h
= y − h

• two-class log loss (classification) :

`(y, h) = log(1+ exp(−2yh)) →
∂`(y, h)

∂h
= −

2y
1+ exp(2yh)

(multiclass variant also available 5)

5. ”J.H. Friedman, ’Greedy function approximation : a Gradient Boosting Machine’, The Annals of Statistics, 2001”
29/33

Gradient Boosting

Discussion

• The learning rate η allows to control the overfitting risk :
• when η is small, error convergence is slower but overfitting is limited
• the lower η, the higher L should be

• Number of weak classifiers
• Depend on η and on the problem
• No theoretical, nor empirical rules, but the more the better usually

• Decision tree depth
• stump may be too simple (too weak), but deeper tree tends to overfit
• Usually, AdaBoost uses small trees (depth=1,3) and GBM slightly deeper trees

30/33

Gradient Boosting

Famous implementations

• XGBoost 6 : the most famous and most often winning ML technique in Kaggle competitions

• LightGBM 7 : designed for larger datasets

• CatBoost 8 : designed to handle categorical features

• Most of them are based on specific optimization tricks to make the learning procedure
faster and more efficient

6. https://xgboost.ai/
7. https://lightgbm.readthedocs.io/en/stable/
8. https://catboost.ai/

31/33

Gradient Boosting

32/33

Gradient Boosting

Takeaways

Pros :

• Very solid theoretical framework and numerous theoretical results/guarantees

• AdaBoost is a baseline with some interesting variants (e.g. LogitBoost)

• Gradient Boosting Machines are much more accurate and versatil

• State-of-the-art performances for tabular data

Cons :

• Computational and memory complexity

• Hyper-parameter tuning is hell

• Overfitting is still a concerns (regulation strategies may interact with each other)

33/33

	Introduction to boosting
	AdaBoost
	Gradient boosting

