

Machine Learning

Boosting

Simon BERNARD simon.bernard@univ-rouen.fr

Chapters :

- 1. From decision trees to decision forests
- 2. Random Forests
- 3. Boosting
 - Introduction to boosting
 - Adaboost
 - Gradient Boosting Machine

Introduction to boosting

- $\cdot f: \mathcal{X} \to \mathcal{Y}$ is the relation we want to learn
- We seek to find a model $h \in \mathcal{H}$ that "explain" f, \mathcal{H} being a hypothesis space
- $\cdot \ \ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a loss function to measure the effectiveness of a given $h \in \mathcal{H}$
- The (generalization) error, also called the true risk, of a given h is :

 $R(h) = E_{(\mathbf{x},y)\sim\mathcal{D}}\left[\ell(y,h(\mathbf{x}))\right]$

- Here, we make the *realizability assumption* : $f \in \mathcal{H}$ meaning $\exists h^* \in \mathcal{H}$ s.t. $R(h^*) = 0$
- For simplicity, consider binary classification tasks only

Strong learnability

A problem is strongly PAC-learnable if there exists an algorithm \mathcal{A} such that, $\forall f, \forall \epsilon > 0$, $\forall \delta > 0$, if \mathcal{A} is given $n = poly(\frac{1}{\epsilon}, \frac{1}{\delta})$ instances, then it outputs h such that :

 $P(R(h) \leq \epsilon) \geq 1 - \delta$

Weak learnability

A problem is weakly PAC-learnable if $\exists \gamma > 0$ and there exists an algorithm \mathcal{A} such that, $\forall f$, $\forall \delta > 0$, if \mathcal{A} is given $n = poly(\frac{1}{\delta})$ instances, then it outputs h such that :

$$P(R(h) \leq \frac{1}{2} - \gamma) \geq 1 - \delta$$

- Weak learnability only requires A to supply a h better than a purely random prediction
- \cdot By extension, We call $\mathcal A$ a weak learner and h a weak classifier

- A key question : can we transform any weak learner \mathcal{A} into a strong learner \mathcal{A}' ?
- Long story short, the best answers are Boosting algorithms
- Key idea : since A gives a weak h for a given D, create several different D_k to obtain several different weak h_k and combine them afterward
- Difference with bagging is that \mathcal{D}_k are created to focus on the errors of h_{k-1}

- \cdot Init. : all instances have the same weight (\sim same importance for learning)
- Learn a stump classifier : 1 red instance wrongly classified

- Increase the weight of this red instance so that it has a greater impact on learning
- · Learn a stump classifier : a different red instance wrongly classified

- Update weights to incorporate this new error for learning the next classifier
- Learn a stump classifier : 1 blue instance wrongly classified

- Update weights : 3 (difficult) instances with a higher weight
- Learn a stump classifier : 1 new blue instance wrongly classified

- Update weights
- Learn a stump classifier : back to the first classifier

- Combine the classifiers by weighted voting
- Diversity is created by having classifiers focus on different instances

AdaBoost

- · Initially for two-class classification tasks where $y \in \{-1, 1\}$
- \cdot Requires a weak learner $\mathcal A$ that can take instance weights into account (e.g. decision tree)
- Each training instance \mathbf{x}_i is assigned a weight $w_i \in [0, 1]$, with

$$\sum_{i=1}^{n} w_i = 1$$

• The empirical error rate of a classifier *h* is thus :

$$\hat{\epsilon} = \sum_{i=1}^{n} w_i \mathbb{1}_{y_i \neq h(\mathbf{x}_i)}$$

• AdaBoost is designed to minimize the exponential loss (for $y \in \{-1, 1\}\}$):

$$\ell(y,h(\mathbf{x})) = e^{-yh(\mathbf{x})}$$

• At iteration k, a new h_k is learnt and added to the combination s.t. it minimizes the loss :

$$H_{k}(\mathbf{x}) = H_{k-1}(\mathbf{x}) + \alpha_{k}h_{k}(\mathbf{x})$$
$$\mathcal{L} = \sum_{i=1}^{n} \ell(y_{i}, H_{k}(\mathbf{x}_{i})) = \sum_{i=1}^{n} e^{-y_{i}H_{k}(\mathbf{x}_{i})}$$
$$= \sum_{i=1}^{n} e^{-y_{i}H_{k-1}(\mathbf{x}_{i})}e^{-y_{i}\alpha_{k}h_{k}(\mathbf{x}_{i})}$$

AdaBoost

• At iteration k, we focus on finding h_k :

$$\mathcal{L} = \sum_{i=1}^{n} w_i^{(k)} e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

where

$$w_i^{(k)} = e^{-y_i H_{k-1}(\mathbf{x}_i)}$$

 \cdot We can split this summation between correct and incorrect predictions :

$$\begin{aligned} \mathcal{L} &= \sum_{y_i = h_k(\mathbf{x}_i)} w_i^{(k)} e^{-\alpha_k} + \sum_{y_i \neq h_k(\mathbf{x}_i)} w_i^{(k)} e^{\alpha_k} \\ &= \sum_{i=1}^n w_i^{(k)} e^{-\alpha_k} + \sum_{y_i \neq h_k(\mathbf{x}_i)} w_i^{(k)} \left(e^{\alpha_k} - e^{-\alpha_k} \right) \end{aligned}$$

• In this equation

$$\mathcal{L} = \sum_{i=1}^{n} w_i^{(k)} e^{-\alpha_k} + \sum_{y_i \neq h_k(\mathbf{x}_i)} w_i^{(k)} \left(e^{\alpha_k} - e^{-\alpha_k} \right)$$

for a fixed $\alpha_k > 0$, the only term that depends on h_k is $\sum_{y_i \neq h_k(\mathbf{x}_i)} w_i^{(k)}$

- Thus, the h_k that minimizes \mathcal{L} is the one that minimizes $\sum_{y_i \neq h_k(\mathbf{x}_i)} w_i^{(k)}$
- This is the weighted error of h_k with weights :

$$w_i^{(k)} = e^{-y_i H_{k-1}(\mathbf{x}_i)}$$

- \cdot Input : a training set \mathcal{D} , a weak learner \mathcal{A} , a number L of iterations
- Output : a combining classifier

$$H_{L}(\mathbf{x}) = sign\left(\sum_{k=1}^{L} \alpha_{k} h_{k}(\mathbf{x})\right)$$

$$W^{(1)} = \left(w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)} \right)$$

with

$$w_i^{(1)} = \frac{1}{n}, \ \forall i = 1, \dots, n$$

AdaBoost

- Loop : for k = 1 to L
 - 1. Learn the k^{th} classifier $h_k = \mathcal{A}(\mathcal{D}, W^{(k)})$
 - 2. Compute its weighted error rate :

$$\hat{\epsilon}_{k} = \sum_{y_{i} \neq h_{k}(\mathbf{x}_{i})} W_{i}^{(k)}$$

- 3. Compute α_k
- 4. Update the instance weights for the next iteration $(W^{(k+1)})$:

$$w_i^{(k+1)} = w_i^{(k)} \cdot \frac{1}{Z_k} \frac{e^{(-\alpha_k y_i h_k(\mathbf{x}_i))}}{e^{\alpha_k} \quad \text{if } h_k(\mathbf{x}_i) = y_i}$$
$$= w_i^{(k)} \cdot \frac{1}{Z_k} \begin{cases} e^{-\alpha_k} & \text{if } h_k(\mathbf{x}_i) = y_i \\ e^{\alpha_k} & \text{else} \end{cases}$$

where Z_k is a normalization coefficient

AdaBoost

• To determine the α_k that minimizes \mathcal{L} with the chosen h_k , we differentiate :

$$\frac{\partial \mathcal{L}}{\partial \alpha_{k}} = \frac{\partial}{\partial \alpha_{k}} \left(\sum_{y_{i}=h_{k}(\mathbf{x}_{i})} w_{i}^{(k)} e^{-\alpha_{k}} + \sum_{y_{i}\neq h_{k}(\mathbf{x}_{i})} w_{i}^{(k)} e^{\alpha_{k}} \right)$$
$$= -\sum_{y_{i}=h_{k}(\mathbf{x}_{i})} w_{i}^{(k)} e^{-\alpha_{k}} + \sum_{y_{i}\neq h_{k}(\mathbf{x}_{i})} w_{i}^{(k)} e^{\alpha_{k}}$$

• Setting this to zero lead to :

$$\alpha_{k} = \frac{1}{2} \ln \left(\frac{\sum_{y_{i}=h_{k}(\mathbf{x}_{i})} W_{i}^{(k)}}{\sum_{y_{i}\neq h_{k}(\mathbf{x}_{i})} W_{i}^{(k)}} \right) = \frac{1}{2} \ln \left(\frac{1-\hat{\boldsymbol{\epsilon}}_{k}}{\hat{\boldsymbol{\epsilon}}_{k}} \right)$$

Discussion

- Theoretical results shows that there is a risk of overfitting if :
 - L is too big compared to n
 - \cdot accentuated if the weak classifiers are complex
- In practice, overfitting is quite rare with boosting because even if the resulting classifier is more and more complex, it is also more and more confident in its prediction¹

^{1.} Can be explained through the margin maximization perspective, but we won't go into these details here

AdaBoost

(Note : for multi-class problems, the variant called Adaboost.SAMME has been used)

Gradient boosting

• Many ML models can be written as a linear combination of simpler models :

$$H(\mathbf{x}) = \sum_{k=1}^{L} \alpha_k h(\mathbf{x}, \theta_k)$$

- E.g., $h(\mathbf{x}, \theta_k)$ is the *k*-th decision trees which gives output $\in [-1, 1]$
- The (α_k, θ_k) are to be estimated by minimizing a loss function ℓ :

$$\left(\alpha_{k}^{*},\theta_{k}^{*}\right)_{1}^{L} = \arg\min_{\left\{\alpha_{k},\theta_{k}\right\}_{1}^{L}} \sum_{i=1}^{n} \ell\left(y_{i},\sum_{k=1}^{L} \alpha_{k}h_{k}(\mathbf{x}_{i},\theta_{k})\right)$$

· However, directly optimizing this loss function is often difficult

- Instead, we usually use a method called Forward Stagewise Additive Modeling (FSAM) :
 - Initialize $H_0(\mathbf{x}) = 0$
 - for k = 1 to L:
 - 1. Compute

$$(\alpha_k, \theta_k) = \operatorname*{arg\,min}_{\alpha, \theta} \sum_{i=1}^n \ell \left(y_i, H_{k-1}(\mathbf{x}_i) + \alpha h(\mathbf{x}_i, \theta) \right)$$

2. Set

$$H_k(\mathbf{x}) = H_{k-1}(\mathbf{x}) + \alpha_k h(\mathbf{x}, \theta_k)$$

• Adaboost is a special case with $\ell(y, h) = e^{-yh}$

• This is somehow similar to gradient descent :

$$\theta_{k} = \theta_{k-1} - \eta \nabla_{\theta_{k-1}} \ell \left(y_{i}, h(\mathbf{x}_{i}, \theta_{k-1}) \right)$$

- search in the parameter space
- update to the opposite direction of the gradient (w.r.t. the parameters)
- Forward Stagewise Additive Modeling :

$$\begin{aligned} H_{k}(\mathbf{x}) &= H_{k-1}(\mathbf{x}) - \eta \nabla_{H_{k-1}(\mathbf{x}_{i})\ell} \left(y_{i}, H_{k-1}(\mathbf{x}_{i}) \right) \\ &= H_{k-1}(\mathbf{x}) - \eta \left[\frac{\partial \ell(y, h)}{\partial h} \right]_{y=y_{i}, h=H_{k-1}(\mathbf{x}_{i})} \end{aligned}$$

- search in the hypothesis space
- update to the opposite direction of the gradient (w.r.t. the model)

• Gradient boosting :

$$H_{k}(\mathbf{x}) = H_{k-1}(\mathbf{x}) - \eta \nabla_{H_{k-1}(\mathbf{x}_{i})} \ell \left(y_{i}, H_{k-1}(\mathbf{x}_{i}) \right)$$
$$= H_{k-1}(\mathbf{x}) + \eta h(\mathbf{x}, \theta_{k})$$

where $h(\mathbf{x}, \theta_k)$ is learned to approximate the negative gradient

- $h(\mathbf{x}, \theta_k)$ is a regressor (even for classification tasks), most often small regression trees
- $\cdot\,$ Reasons are that it leads to simplifications $^{2\,3}$ and that it gives good performances

3. https://xgboost.readthedocs.io/en/stable/tutorials/model.html

^{2.} J.H. Friedman, 'Greedy function approximation : a Gradient Boosting Machine', The Annals of Statistics, 2001"

- \cdot Inputs : \mathcal{D} , \mathcal{A} , L and η
- Output : $H_L(\mathbf{x})$ for regression or $sign(H_L(\mathbf{x}))$ for classification
- Initialization : $H_0(\mathbf{x}) = \arg \min_{\gamma} \sum_{i=1}^n \ell(y_i, \gamma)^4$
- For k = 1 to L:
 - 1. Compute :

$$\tilde{y}_{i} = -\left[\frac{\partial \ell(y,h)}{\partial h}\right]_{y=y_{i},h=H_{k-1}(\mathbf{x}_{i})} \quad \forall (\mathbf{x}_{i},y_{i}) \in \mathcal{D}$$

2. Build $\mathcal{D}' = \{(\mathbf{x}_i, \tilde{y}_i)\}$, from all $(\mathbf{x}_i, y_i) \in \mathcal{D}$ 3. $h_k(\mathbf{x}) = \mathcal{A}(\mathcal{D}')$ 4. $H_k(\mathbf{x}) = H_{k-1}(\mathbf{x}) + \eta h_k(\mathbf{x})$

^{4.} In practice, $H_0(\mathbf{x})$ is set to $\bar{\mathbf{y}}$ for regression and to log (n_+/n_-) for classification, where n_+ (resp. n_-) is the number of training instances that belong to the positive class (resp. negative class).

- One can use any loss provided that we can compute $\frac{\partial \ell(y,h)}{\partial h}$
- For example :
 - squared-error loss (regression) :

$$\ell(y,h) = (y-h)^2 \rightarrow \frac{\partial \ell(y,h)}{\partial h} = y-h$$

• two-class log loss (classification) :

$$\ell(y,h) = \log(1 + \exp(-2yh)) \rightarrow \frac{\partial \ell(y,h)}{\partial h} = -\frac{2y}{1 + \exp(2yh)}$$

(multiclass variant also available⁵)

^{5. &}quot;J.H. Friedman, 'Greedy function approximation : a Gradient Boosting Machine', The Annals of Statistics, 2001"

Discussion

- The learning rate η allows to control the overfitting risk :
 - \cdot when η is small, error convergence is slower but overfitting is limited
 - \cdot the lower η , the higher *L* should be
- Number of weak classifiers
 - \cdot Depend on η and on the problem
 - No theoretical, nor empirical rules, but the more the better usually
- Decision tree depth
 - stump may be too simple (too weak), but deeper tree tends to overfit
 - Usually, AdaBoost uses small trees (depth=1,3) and GBM slightly deeper trees

Famous implementations

- XGBoost⁶ : the most famous and most often winning ML technique in Kaggle competitions
- LightGBM⁷ : designed for larger datasets
- CatBoost⁸ : designed to handle categorical features
- Most of them are based on specific optimization tricks to make the learning procedure faster and more efficient

^{6.} https://xgboost.ai/

^{7.} https://lightgbm.readthedocs.io/en/stable/

^{8.} https://catboost.ai/

Gradient Boosting

Takeaways

Pros :

- Very solid theoretical framework and numerous theoretical results/guarantees
- AdaBoost is a baseline with some interesting variants (e.g. LogitBoost)
- Gradient Boosting Machines are much more accurate and versatil
- State-of-the-art performances for tabular data

Cons :

- Computational and memory complexity
- Hyper-parameter tuning is hell
- Overfitting is still a concerns (regulation strategies may interact with each other)