

Machine Learning

Random Forests

Simon BERNARD simon.bernard@univ-rouen.fr

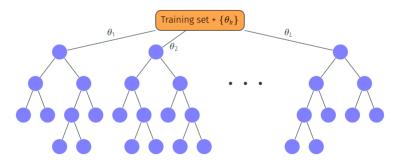
Chapters :

- 1. From decision trees to decision forests
- 2. Random Forests
 - Random forests
 - Random forests in practice
 - The Swiss knife of machine learning
 - Some successful applications
- 3. Boosted Forests

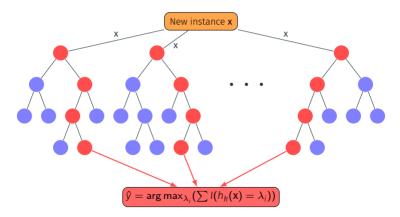
Random Forest

A Random Forest (RF) is an ensemble of DT, each of which is "randomized"

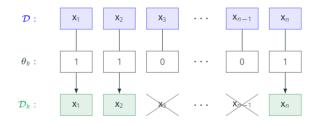
- Collection of *L* decision trees $\{h_k = h(\mathbf{x}, \theta_k), k = 1, ..., L\}$
- $\{\theta_k\}$ are i.i.d. random vectors



- A Random Forest (RF) is an ensemble of DT, each of which is "randomized"
 - Each tree casts a unit vote for the most popular class at input **x**

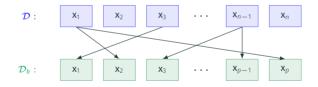


- θ_k : vector of *n* random values in {0, 1} (coin flip)
- For each θ_k , build a replicate \mathcal{D}_k of the training set \mathcal{D} using θ_k as a mask :

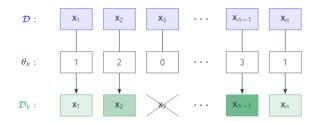


- Train the k^{th} decision tree on \mathcal{D}_k
- The L trees are different due to instability (cf. end of previous chapter)

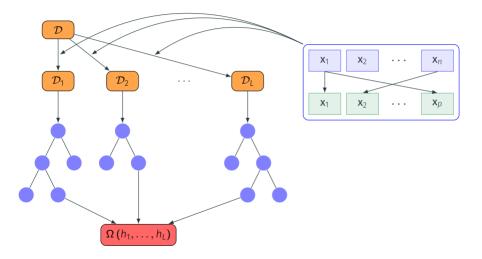
- Problem : we do not control the size of \mathcal{D}_k
- Solution : randomly draw p instances from \mathcal{D} , with p < n
- Problem : diversity is inversely proportional to p
- Solution : randomly draw with replacement p instances from \mathcal{D}

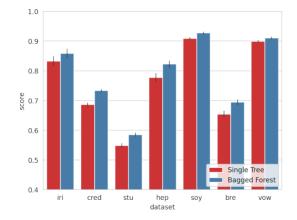


- Problem : we do not control the size of \mathcal{D}_k
- Solution : randomly draw p instances from \mathcal{D} , with p < n
- Problem : diversity is inversely proportional to p
- Solution : randomly draw with replacement p instances from \mathcal{D}



This is called Bagging!

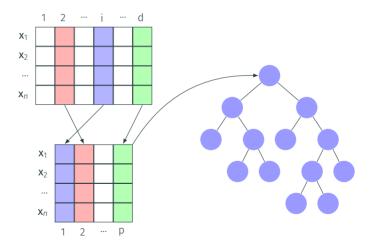


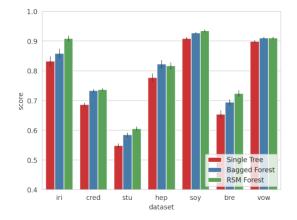


Note : *p* set equal to *n* (good results in general)

Random Forest

The Random Subspaces Method (RSM)

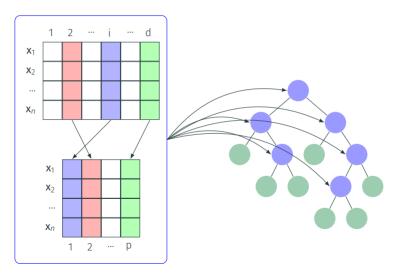


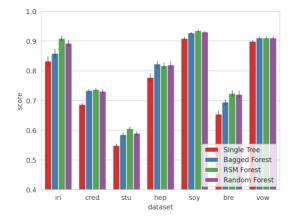


Note : the number p of features to be drawn is more complex to set (here p = d/2)

Random Forest

Random Feature Selection

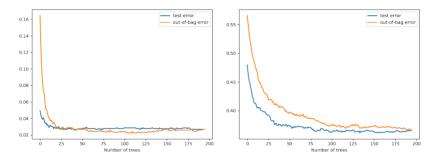




Note : In softwares, Random Forest stands for Bagging + Random Feature Selection

Random forest in practice

L : the number of random trees



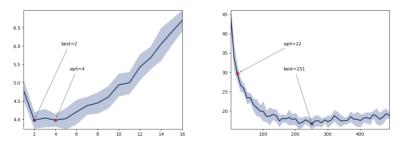
L : the number of random trees

- · Analysis : convergence is reached for different amounts of trees from a dataset to another
- Problem : How many trees is enough for a given dataset?
- Solutions :
 - Empirical : several hundreds
 - ightarrow no guarantee but computational times being low, the most popular solution
 - Validation (or *out-of-bag*) error to detect convergence
 - ightarrow Parallelizing is not possible anymore, and sometimes over-optimistic

p : the number of random features at each node

<i>p</i> =	1	2		d — 1	d
Randomness	тах		$\leftarrow \oplus \ominus \rightarrow$		Ø

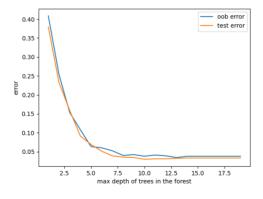
Popular values : 1, \sqrt{d} , $\lceil log_2(d) \rceil$



p : the number of random features at each node

- · Analysis : best value depends on irrelevant features
 - few irrelevant features $\Rightarrow p \text{ low } (\approx \sqrt{d})$
 - many irrelevant features $\Rightarrow p$ high, but difficult to set a priori
- Problem : How to set this value without a priori knowledge on the features
- Solutions : Know your dataset, feature analysis, feature selection, cross-validation

In most cases, it is best to use unpruned trees

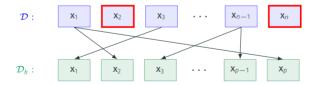


Note : digits dataset, $p = \sqrt{d}$, L = 100

The Swiss knife of machine learning

One of the main reasons to use Bagging is the out-of-bag mechanism

- When p = n, 36.8% of \mathcal{D} are NOT present in \mathcal{D}_k in average (provable)¹
- These instances are called *out-of-bag* (oob)
- $\cdot\,$ The oob instances are different from one \mathcal{D}_k to another

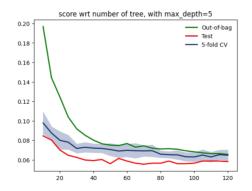


^{1.} Note : when p > n, there is less oob instances and the diversity is limited

The *out-of-bag* instances can be used to estimate generalization capabilities

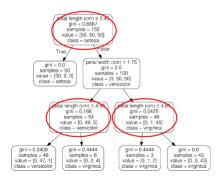
- Validation dataset required for :
 - tuning hyperparameters
 - estimating generalization performance
 - · estimating diversity and individual accuracies
 - · learning/optimizing combination operators
 - etc.
- · Alternative : using oob instances instead of an independant dataset
- Oob estimates are reliable estimates for generalization capabilities, although they tend to underestimate some of them.

Example : generalization error



Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :



For a given feature $x^{(i)}$:

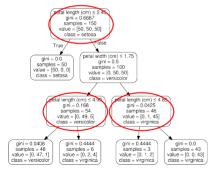
- Consider each node N_k for which $x^{(i)}$ is used in S_{N_k}
- Cumulate their impurity gain values

$$I_{MDI}(x^{(i)}) = \frac{1}{|\mathcal{N}_i|} \sum_{N_k \in \mathcal{N}_i} \frac{|\mathcal{D}_k|}{|\mathcal{D}|} \Delta(\mathcal{D}_k, S_{N_k})$$

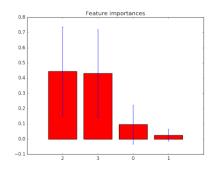
where \mathcal{N}_i is the set of nodes, all trees considered, that uses $x^{(i)}$ for splitting

Forests embed 2 feature importance measures

Mean Decrease Impurity (MDI) :



For example, for Iris :



Forests embed 2 feature importance measures

Mean Decrease Accuracy (MDA) : based on out-of-bag votes

- 1. For each h_k , record the correct *out-of-bag* votes, noted V_k
- 2. For each feature $x^{(i)}$:
 - (a) Randomly permute all the values of $x^{(i)}$ in \mathcal{D}
 - (b) For all trees h_k
 - (i) Counts the new *out-of-bag* correct votes from h_k , noted $V_k^{(i)}$
 - (ii) Compute $S_k^{(i)} = V_k V_k^{(i)}$

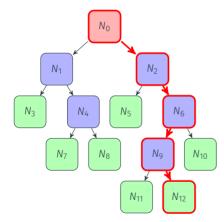
(c) The importance measure for $x^{(i)}$ is

$$I_{MDA}(x^{(i)}) = \frac{1}{L} \sum_{k=1}^{L} S_k^{(i)}$$

- Similarity = measure the resemblance between 2 instances \mathbf{x}_i and \mathbf{x}_j .
- Takes the class membership into account, contrary to distance measure Example : Euclidean distance (no y_i , y_i in the equation)

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{k=1}^d \left(x_i^{(k)} - x_j^{(k)}\right)^2}$$

- \mathbf{x}_i , \mathbf{x}_j similar if "close" to each other but also if they belong to the same class
- Key idea : x_i and x_j are similar if they follow the same path down the trees



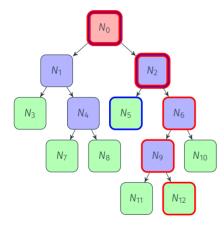
• Let \mathcal{L}_k bet the set of leaves in the k^{th} tree

• Let

$$l_k:\mathcal{X}\to\mathcal{L}_k$$

be a function that maps all \mathbf{x} to the leaf from \mathcal{L}_{b} in which it lands

• Here,
$$l_k(\mathbf{x}_i) = N_{12}$$

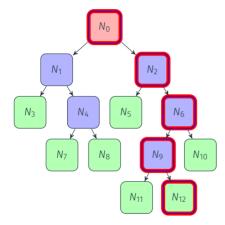


• The similarity $d_k(\mathbf{x}_i, \mathbf{x}_j)$ between \mathbf{x}_i and \mathbf{x}_j , given by the k^{th} tree, is

$$d_{k}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \begin{cases} 1 & \text{if } f_{k}(\mathbf{x}_{i}) = f_{k}(\mathbf{x}_{j}) \\ 0 & \text{otherwise} \end{cases}$$

• Here, \mathbf{x}_i and \mathbf{x}_i don't land in the same leaf:

 $d_k(\mathbf{x}_i,\mathbf{x}_j)=0$



• The similarity $d_k(\mathbf{x}_i, \mathbf{x}_j)$ between \mathbf{x}_i and \mathbf{x}_j , given by the k^{th} tree, is

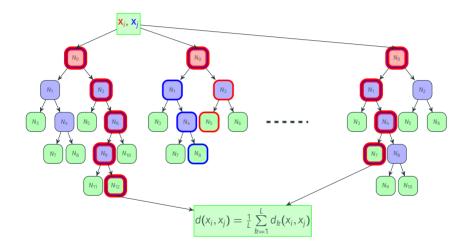
$$d_{k}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \begin{cases} 1 & \text{if } f_{k}(\mathbf{x}_{i}) = f_{k}(\mathbf{x}_{j}) \\ 0 & \text{otherwise} \end{cases}$$

• Here, \mathbf{x}_i and \mathbf{x}_j land in the same leaf:

 $d_k(\mathbf{x}_i, \mathbf{x}_j) = 1$

The Swiss knife of machine learning

Random Forests embed a similarity measure on pairs of instances



Some other tools (not detailed here)

- · Unsupervised learning
 - · Generation of artificial of negative samples to simulate a second class
 - Use the tree structure to perform **clustering** tasks
- \cdot Outliers detection
- \cdot Novelty detection
- Missing values and labels
- · Prototypes selection

Random Forest methods...

- \cdot are easy to understand and easy to use
- $\cdot\,$ are among the most accurate methods for "tabular" data
- are robust to many machine learning settings (e.g. high dimension, imbalanced classes, etc.)
- \cdot are very versatile with many embedded tools for interpretability
- $\cdot\,$ have been successfully used for many applications, to name a few :
 - Giga-pixel image segmentation (biomedical imaging)
 - Real-time tracking in videos
 - Real-time body part recognition (Kinect)
 - Intelligent/autonomous vehicle
 - Medical diagnosis/prognosis

Fernandez-Delgado et al., "Do we Need Hundreds of Classifiers to Solve Real World Classification Problems ?", Journal of Machine Learning Research, 2014

• Huge comparison of many classifiers : 179 different classifiers and 121 public datasets

Rank	Acc.	κ	Classifier	
32.9	82.0	63.5	parRF_t (RF)	
33.1	82.3	63.6	rf_t (RF)	
36.8	81.8	62.2	svm_C (SVM)	
38.0	81.2	60.1	svmPoly_t (SVM)	
39.4	81.9	62.5	$rforest_R (RF)$	
39.6	82.0	62.0	elm_kernel_m (NNET)	
40.3	81.4	61.1	svmRadialCost_t (SVM)	
42.5	81.0	60.0	svmRadial_t (SVM)	
42.9	80.6	61.0	C5.0_t (BST)	
44.1	79.4	60.5	avNNet_t (NNET)	
45.5	79.5	61.0	nnet_t (NNET)	
47.0	78.7	59.4	pcaNNet_t (NNET)	
47.1	80.8	53.0	BG_LibSVM_w (BAG)	

"The classifiers most likely to be the bests are the random forest (RF) versions [...]. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel [...]"