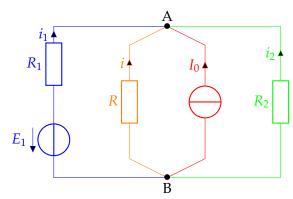
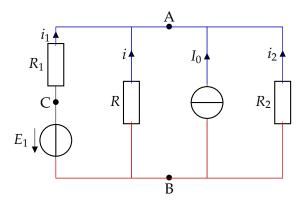

Correction - Exercice C1 - Etude d'un circuit comportant plusieurs générateurs

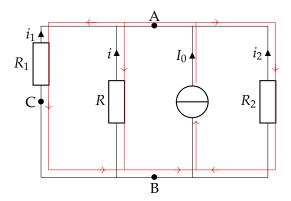

Le circuit ci-dessus est constitué d'une source de tension de force électromotrice E_1 , d'une source de courant de courant électromoteur I_0 et de trois résistances.

Analyse qualitative (sans calculs):

- 1. Combien y-a-t-il de valeurs d'intensité?
- 2. Combien y-a-t-il de valeurs de potentiel?
- 3. Déterminer, si possible, les sens conventionnels des différents courants.
- 4. Classer (autant que possible) les différents potentiels. *Analyse quantitative* :
- 5. Combien d'inconnues peut-on identifier dans ce circuit?
- 6. Ecrire un système d'équations avec un nombre suffisant de lois de Kirchhoff.
- 7. Déterminer l'expression de l'intensité circulant dans la résistance R
- 8. Retrouver la même expression en utilisant l'équivalence Thévenin-Norton.
- 9. Les résultats de l'analyse qualitative sont-ils vérifiés?
- 10. Déterminer le caractère générateur ou récepteur de la source de courant en fonction des données du problème.

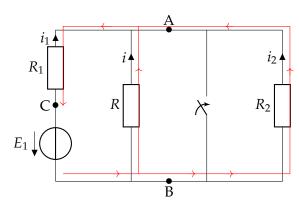
Analyse qualitative (sans calculs):


1. On peut redessiner le circuit pour identifier deux noeuds A et B et 4 branches identifiées par quatre couleurs sur le schéma ci-dessous :


On identifie autant d'intensités que de branches, soit : i_1 , i_2 , I_0 et i. On choisit **arbitrairement** le sens des intensités inconnues : i_1 , i_2 et i.

On peut aussi définir une cinquième intensité si on prend en compte le fil qui relie les deux branches du milieu.

2. On identifie sur le schéma précédent 3 valeurs de potentiels : V_A (bleu), V_B (rouge) et V_C (noir).



3. On éteint le générateur de tension, on le remplace par un fil et on indique le sens du courant en rouge :

On trouve $i_1 < 0$, $i_2 < 0$ et i < 0.

On éteint le générateur de courant, on le remplace par un interrupteur ouvert et on indique le sens du courant en rouge :

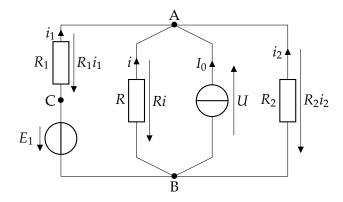
On trouve $i_1 < 0$, $i_2 > 0$ et i > 0.

Conclusion:

On en conclut que $i_1 < 0$, le courant va de A vers C vers B.

On ne peut pas conclure pour i et i_2 .

4. Le courant descend les potentiels à l'extérieur des générateurs.


On sait que le courant va de A vers C, donc, $V_A > V_C$.

On a aussi
$$E = V_B - V_C > 0$$
, donc $V_B > V_C$.

On ne peut pas conclure pour V_A et V_B .

Analyse quantitative:

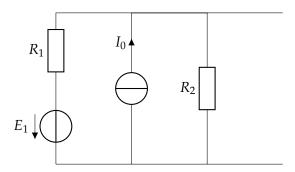
5. On identifie 4 inconnues dans le circuit : trois intensités i, i₁, i₂ et U la tension aux bornes de la source de courant.

6. Pour écrire les lois des noeuds et les lois des mailles, on choisit **arbitrairement** le sens de l'intensité et on flèche les tensions aux bornes des résistances **en convention récepteur** pour pouvoir écrire facilement la loi d'Ohm pour chacune d'elles (schéma ci-dessus). On a aussi choisi de flécher la tension aux bornes de la source de courant en convention générateur (ce n'est pas obligatoire).

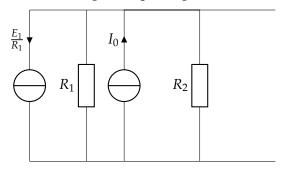
On a besoin de quatre équations. On écrit une loi des noeuds et trois lois des mailles (au choix) :

- noeud B : $I_0 + i_2 + i_1 + i = 0$ (1)
- maille de gauche (sens trigonométrique) : $R_1 i_1 + E_1 R i = 0$ (2)
- maille du milieu (sens trigonométrique) : U + Ri = 0 (3)
- maille de gauche (sens trigonométrique) : $-U R_2 i_2 = 0$ (4)
- 7. On résout le système de ces quatre équations pour trouver i. Il faut exprimer les inconnues i_1 et i_2 .

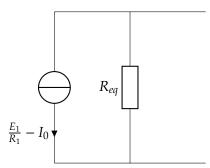
(2)
$$\Rightarrow i_1 = \frac{-E_1 + Ri}{R_1}$$

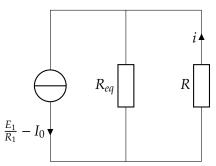

(3) et 4)
$$\Rightarrow U = -Ri = -R_2 i_2$$
 ce qui donne $i_2 = \frac{R}{R_2}i$.

On réinjecte les expressions de i_1 et i_2 dans (1) : $I_0 + i + \frac{R}{R_2}i + \frac{-E_1 + Ri}{R_1} = 0$.


ce qui donne

$$i = \frac{1}{1 + \frac{R}{R_1} + \frac{R}{R_2}} \left(\frac{E_1}{R_1} - I_0 \right)$$


8. Pour utiliser l'équivalence Thévenin-Norton, on isole la branche avec la résistance *R* et on trouve le générateur de Norton équivalent des autres composants :


On remplace le générateur de Thévenin à gauche par le générateur de Norton équivalent :

On simplifie en additionnant les deux courants des générateurs en parallèle (attention au sens) et en remplaçant les deux résistances en parallèle par leur résistance équivalente : $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$.

On a trouvé le générateur de Norton équivalent : $I_N = \frac{E_1}{R_1} - I_0$ et $R_N = R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$. On peut reconnecter la résistance R.

On peut maintenant utiliser un pont diviseur de courant :

$$i = \frac{\frac{1}{R}}{\frac{1}{R} + \frac{1}{R_{eq}}} \left(\frac{E_1}{R_1} - I_0 \right)$$

On remplace $\frac{1}{R_{eq}}$.

$$i = \frac{\frac{1}{R}}{\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2}} \left(\frac{E_1}{R_1} - I_0 \right)$$

On multiplie par R.

$$i = \frac{1}{1 + \frac{R}{R_1} + \frac{R}{R_2}} \left(\frac{E_1}{R_1} - I_0 \right)$$

On retrouve bien la même expression qu'avec les lois de Kirchhoff.

9. On trouve bien que le courant i est négatif si on éteint le générateur de tension (en prenant $E_1 = 0$ dans l'expression analytique) et positif si on éteint le générateur de courant (en prenant $I_0 = 0$ dans l'expression analytique) comme dans l'analyse qualitative.

Pour complétement vérifier l'analyse qualitative, on doit calculer i_1 . Pour cela, on utilise la relation trouvée précedemment : $i_1 = \frac{-E_1 + Ri}{R_1}$

$$i_{1} = -\frac{E_{1}}{R_{1}} + \frac{R}{R_{1}} \frac{1}{1 + \frac{R}{R_{1}} + \frac{R}{R_{2}}} \left(\frac{E_{1}}{R_{1}} - I_{0}\right)$$

$$i_{1} = -\frac{E_{1}}{R_{1}} + \frac{RR_{2}}{R_{1}R_{2} + RR_{1} + RR_{2}} \left(\frac{E_{1}}{R_{1}} - I_{0}\right)$$

$$i_{1} = \frac{-\frac{E_{1}}{R_{1}} (R_{1}R_{2} + RR_{1}) - RR_{2}I_{0}}{R_{1}R_{2} + RR_{1} + RR_{2}}$$

On trouve bien $i_1 < 0$, ce qui est cohérent avec l'analyse qualitative.

10. Pour le générateur de tension, placé en convention récepteur, on calcule la puissance absorbée : $\mathcal{P}_{abs} = E \times i_1$. Comme $i_1 < 0$, la puissance absorbée est négative et le générateur de tension a un comportement générateur.

Pour le générateur de courant, placé en convention générateur, on calcule la puissance fournie : $\mathcal{P}_{fournie} = U \times I_0 = (-Ri) \times I_0$.

Le comportement de ce générateur dépend du signe de i.

- si $\frac{E}{R_1} > I_0$, alors i > 0, $\mathcal{P}_{fournie} < 0$ et le générateur de courant a un comportement récepteur.
- si $\frac{E}{R_1}$ < I_0 , alors i < 0, $\mathcal{P}_{fournie}$ > 0 et le générateur de courant a un comportement générateur.