
INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 1/30

Web Technologies 1
Lecture 1. Introduction to back-end web development with Node.js

Maxime Guériau & Alexandre Pauchet

INSA Rouen - Département ASI

BO.B.RC.18, pauchet@insa-rouen.fr

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 2/30

Plan

1 Back end, front end, full stack?

2 Node.js

3 Your first Node.js (back-end) server

4 Your first Express.js (back-end) server (app)

5 Your first Express.js (back-end) server (app)

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 3/30

Back end, front end, full stack?
Traditional client-server architecture (back to old-fashioned TW1)

Client Web
(navigateur) Serveur Web

Requête (URL)

Réponse

Ressource ?

Ressource

Client Web Serveur Web
Apache Http

requête

ressource

(LAMP)
MySQL

PostgreSQL
(LAPP)

PHP + SQLite
 (LASP)

Javascript,
jQuery
Applet,

...

Source: [1]

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 4/30

Back end, front end, full stack?
Front-end vs. back-end

Back endFront end

HTTP Request

HTTP Response
SQL query

Web client(s)Web client(s) Web server Database

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 5/30

Back end, front end, full stack?
Full stack web development

Source: [2]

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 6/30

Node.js
What is Node.js?

Node.js

Node.js is an asynchronous event-driven JavaScript
runtime;

Designed to build scalable network applications;
Particularly suited for server-side scripting.
Provides an open-source and cross-platform
environment based on V8 JavaScript engine [3].
Comes with npm [4, 5], the world’s largest
software registry, a powerful package manager
and installer.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 7/30

Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGI or ASP

1 Sends the task to the
computer’s file system.

2 Waits while the file system
opens and reads the file.

3 Returns the content to the
client.

4 Ready to handle the next
request.

Node.js

1 Sends the task to the
computer’s file system.

2 Ready to handle the next
request.

3 When the file system has
opened and read the file, the
server returns the content to
the client.

✓ Node.js eliminates the waiting, and simply continues with the next
request, and runs (memory efficient) single-threaded, non-blocking,
asynchronous programming.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 7/30

Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGI or ASP

1 Sends the task to the
computer’s file system.

2 Waits while the file system
opens and reads the file.

3 Returns the content to the
client.

4 Ready to handle the next
request.

Node.js

1 Sends the task to the
computer’s file system.

2 Ready to handle the next
request.

3 When the file system has
opened and read the file, the
server returns the content to
the client.

✓ Node.js eliminates the waiting, and simply continues with the next
request, and runs (memory efficient) single-threaded, non-blocking,
asynchronous programming.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 8/30

Node.js
What can Node.js do? [6]

Node.js can:
✓ generate dynamic page content;
✓ create, open, read, write, delete, and close files on the server;
✓ collect form data;
✓ add, delete, modify data in a database;

through the use of Node.js files that:
have extension .js;
contain tasks that will be executed on certain events (typically
someone trying to access a port on the server);
must be initiated on the server before having any effect;

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 9/30

Node.js
How it works

Source: [7]

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 10/30

Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8]).

Solution: Offloading operations to the system kernel whenever
possible:

most modern kernels are multi-threaded;
callbacks can be executed asynchronously.

https://youtu.be/sRWE5tnaxlI

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 10/30

Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8]).

Solution: Offloading operations to the system kernel whenever
possible:

most modern kernels are multi-threaded;
callbacks can be executed asynchronously.

https://youtu.be/sRWE5tnaxlI

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 11/30

Node.js
Phases of the Event loop [9]

┌───────────────────────────┐
┌─>│ timers │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
│ │ pending callbacks │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
│ │ idle, prepare │
│ └─────────────┬─────────────┘ ┌───────────────┐
│ ┌─────────────┴─────────────┐ │ incoming: │
│ │ poll │<─────┤ connections, │
│ └─────────────┬─────────────┘ │ data, etc. │
│ ┌─────────────┴─────────────┐ └───────────────┘
│ │ check │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
└──┤ close callbacks │

└───────────────────────────┘

Source: [9]

1 timers: executes callbacks scheduled by
setTimeout() and setInterval().

2 pending callbacks: executes I/O
callbacks deferred to the next loop
iteration.

3 idle, prepare: only used internally.
4 poll: retrieve new I/O events; execute I/O

related callbacks (except immediate,
close callbacks, and timers).

5 check: invoke setImmediate()
callbacks.

6 close callbacks:
e.g. socket.on(’close’).

Between each run of the event loop, Node.js checks if it is waiting for
any asynchronous I/O or timers and shuts down cleanly if there are
not any.

https://youtu.be/8aGhZQkoFbQ

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 12/30

Node.js
Wait, what’s a callback again?

Quick reminder:

Javascript callbacks [10]
A callback is a function passed as an argument to another
function.
This technique allows a function to call another function.
A callback function can run after another function has finished.

Asynchronous JavaScript [11])
Functions running in parallel with other functions are called
asynchronous.
In the real world, callbacks are most often used with
asynchronous functions.
A typical example is JavaScript setTimeout().

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 13/30

Your first Node.js (back-end) server
Installation (on your own setup)

Install Node.js:

sudo apt install nodejs

Check installed version:

node -v or node --version

Install npm:

sudo apt install npm

Check installed version:

npm -v or npm --version

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 14/30

Your first Node.js (back-end) server
Get started

Create a directory:
mkdir backend
cd backend

Initialize a new Node.js project in this folder:
npm init

Choose the name of your main entry point file (example:
server.js)
(optional) Initialize a git repository
git init

Important: add the node modules directory to your
.gitignore file!
Finally, create your main entry point file:
touch server.js

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 15/30

Your first Node.js (back-end) server
Server example: NodeJSMini/server.js (adapted from [12])

1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’http’);
3

4 // set the server host and port
5 const hostname = ’127.0.0.1’;
6 const port = 3000;
7

8 // create a http server endpoint
9 const server = http.createServer((req, res) => {

10 // set the response of your endpoint
11 res.end(’Hello World!’);
12 });
13

14 // run the server
15 server.listen(port, hostname, () => {
16 // callback executed when the server is launched
17 console.log(‘Server running at http://${hostname}:${port}/‘);
18 });

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 16/30

Your first Node.js (back-end) server
Start your server!

To start your server, simply run:

node server or node server.js

output:

Server running at http
://127.0.0.1:3000/

alternatively you can also install nodemon module [13]:
globally:

npm install -g
nodemon

or

as a development dependency:

npm install --save-dev
nodemon

to restart your server automatically.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 17/30

Your first Node.js (back-end) server
Node.js Globals

Node.js Globals
Node.js uses objects that are available everywhere; they are called
the Globals:

dirname: stores the path of the current folder.

filename: returns the name of the file being executed.

require(): function that allows to load modules.

module: returns info on the current module.

process: returns info about the current environment.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 18/30

Your first Node.js (back-end) server
HTML server example: NodeJSHTML/server.js

...
8 // create a http server endpoint
9 const server = http.createServer((req, res) => {

10 // response status code (200 = OK)
11 res.statusCode = 200;
12 // response header
13 res.setHeader(’Content−Type’, ’text/html’);
14 // set the response of your endpoint
15 res.end(‘<!DOCTYPE html>
16 <html>
17 <body>
18 <h1>Hello World! (but it’s in HTML)</h1>
19 </body>
20 </html>‘);
21 });

...

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 19/30

Your first Node.js (back-end) server
Handling GET requests: NodeJSGET/server.js (adapted from [14])

3 // import url module; documentation: https://nodejs.org/api/url.html
4 const url = require(’url’);

...
11 const server = http.createServer((req, res) => {
12

13 // read and parse the URL
14 const queryObject = url.parse(req.url, true).query;

...
21 // set the response of your endpoint
22 if (’name’ in queryObject) {
23 res.end(‘Hey ${queryObject.name}!‘);
24 } else {
25 res.end(”Hey you!”);
26 }
27 });

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 20/30

Your first Express.js (back-end) server (app)
NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require(’http’);
3

4 // set the server host and port
5 const hostname = ’127.0.0.1’;
6 const port = 3000;
7

8 // create a http server endpoint
9 const server = http.createServer((req, res) =>

{
10 // set the response of your endpoint
11 res.end(’Hello World!’);
12 });
13

14 // run the server
15 server.listen(port, hostname, () => {
16 // callback executed when the server is

launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
18 });

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 20/30

Your first Express.js (back-end) server (app)
NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require(’http’);
3

4 // set the server host and port
5 const hostname = ’127.0.0.1’;
6 const port = 3000;
7

8 // create a http server endpoint
9 const server = http.createServer((req, res) =>

{
10 // set the response of your endpoint
11 res.end(’Hello World!’);
12 });
13

14 // run the server
15 server.listen(port, hostname, () => {
16 // callback executed when the server is

launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
18 });

ExpressJSMini/server.js (from [?
])

1 // import express module and create your
express app

2 const express = require(’express’);
3 const app = express();
4

5 // set the server host and port
6 const port = 3000;
7

8 // create your express server endpoint
9 app.get(’/’, function (req, res) {

10 // set the response of your endpoint
11 res.send(’Hello World!’);
12 });
13

14 // run the server
15 app.listen(port, () => {
16 // callback executed when the server is

launched
17 console.log(‘Express app listening on port

${port}‘);
18 });

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 21/30

Your first Express.js (back-end) server (app)
Installation [?]ExpressJS

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 22/30

Your first Express.js (back-end) server (app)
Installation

To install Express, simply run:

npm install express

and then run your (express app) server:

node server.js

output:

Express app listening on
port 3000

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 23/30

Your first Express.js (back-end) server (app)
Hello world example [?]ExpressJS

require()

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 23/30

Your first Express.js (back-end) server (app)
Hello world example [?]ExpressJS

listen()

listen()

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 24/30

Your first Express.js (back-end) server (app)
Serving static files [?]Solution 2: Statically served files

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 25/30

Your first Express.js (back-end) server (app)
Example: ExpressJSstatic

/ExpressJSstatic
/node modules
package.json
/public

index.html
resource.txt

server.js

ExpressJSstatic/server.js
...

5 // enable your express app to serve static files located in
”public” directory

6 app.use(express.static(’public’));

...

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 26/30

Your first Express.js (back-end) server (app)
Managing dependencies [?]Uploading server code

node_modules

node_modules

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 26/30

Your first Express.js (back-end) server (app)
Managing dependencies [?]Managing dependencies

node_modules

npm

npm package.json

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 26/30

Your first Express.js (back-end) server (app)
Managing dependencies [?]package.json

package.json

package.json

$ npm init

package.json

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 27/30

Your first Express.js (back-end) server (app)
Managing dependencies

Example of an auto-generated package.json:
{

"name": "expressjsstatic",
"version": "1.0.0",
"description": "",
"main": "server.js",
"scripts": {

"test": "echo \"Error: no test specified\" &&
exit 1",

"start": "node server.js"
},
"author": "Alexandre Pauchet",
"license": "ISC",
"dependencies": {

"express": "ˆ4.18.1"
}

}

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 28/30

Your first Express.js (back-end) server (app)
1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’http’);
3 // import url module; documentation: https://nodejs.org/api/url.html
4 const url = require(’url’);
5

6 // set the server host and port
7 const hostname = ’127.0.0.1’;
8 const port = 3000;

...
1 // run the first server
2 server.listen(port, hostname, () => {
3 // callback executed when the server is launched
4 console.log(‘Server running at http://${hostname}:${port}/‘);
5 });
6

7 // import express module and create your express app
8 const express = require(’express’);
9 const app = express();

10 // enable your express app to serve static files located in ”public” directory
11 app.use(express.static(’public’));
12 app.listen(3030);
13 console.log(‘Express running at http://${hostname}:3030/‘);

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 29/30

Conclusion
Key takeaways:

✓ A full-stack web developer is a person who can develop both client and
server software.

✓ This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

✓ The back end is the data access layer and the software infrastructure hosted
on the web server.

✓ Node.js provides an asynchronous runtime able to answer to multiple
requests

✓ ... while performing non-blocking I/O operations.
✓ Node.js takes advantages of JavaScript callbacks and asynchronous

functions.
✓ Running a simple Node.js server is a piece of cake ...
✓ ... but the use of frameworks is highly recommended for large-scale

applications/services.

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

Conclusion
This is the plan:

Back endFront end

HTTP Request

HTTP Response
SQL query

Questions?

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

References and further reading/watching I

[1] Alexandre Pauchet. Techologies Web 2 – AJAX/JQuery. INSA
Rouen - Département ITI, 2021.

[2] What hiring managers look for in a full stack developer. URL
https://www.cybercoders.com/insights/
what-hiring-managers-look-for-in-a-full-stack-developer/.

[3] What is v8? URL https://v8.dev/.
[4] What is npm? (w3c), . URL

https://www.w3schools.com/whatis/whatis_npm.asp.
[5] What is npm? (node.js), . URL https://nodejs.org/en/

knowledge/getting-started/npm/what-is-npm/.
[6] Node.js introduction, . URL https:

//www.w3schools.com/nodejs/nodejs_intro.asp.

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://v8.dev/
https://www.w3schools.com/whatis/whatis_npm.asp
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.w3schools.com/nodejs/nodejs_intro.asp

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

References and further reading/watching II

[7] How javascript is quickly becoming the market leader. URL
https://www.mobilelive.ca/blog/
javascript-leader#:˜:text=According%20to%20the%
20latest%20survey,integrated%20with%20other%
20frameworks%2Flanguages.

[8] Javascript is weird (extreme edition). URL
https://youtu.be/sRWE5tnaxlI.

[9] The node.js event loop, timers, and process.nexttick(). URL
https://nodejs.org/en/docs/guides/
event-loop-timers-and-nexttick/#:˜:
text=The%20event%20loop%20is%20what,operations%
20executing%20in%20the%20background.

[10] Javascript callbacks, . URL
https://www.w3schools.com/js/js_callback.asp.

https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://youtu.be/sRWE5tnaxlI
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://www.w3schools.com/js/js_callback.asp

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

References and further reading/watching III

[11] Asynchronous javascript, . URL https:
//www.w3schools.com/js/js_asynchronous.asp.

[12] Go full-stack with node.js, express, and mongodb. URL
https://openclassrooms.com/fr/courses/
5614116-go-full-stack-with-node-js-express-and-mongodb.

[13] nodemon, . URL
https://www.npmjs.com/package/nodemon.

[14] How to access query string parameters, . URL
https://nodejs.org/en/knowledge/HTTP/clients/
how-to-access-query-string-parameters/.

[15] Node.js official documentation, . URL
https://nodejs.org/en/docs/.

[16] Introduction to node.js, . URL https://nodejs.dev/learn.

https://www.w3schools.com/js/js_asynchronous.asp
https://www.w3schools.com/js/js_asynchronous.asp
https://openclassrooms.com/fr/courses/5614116-go-full-stack-with-node-js-express-and-mongodb
https://openclassrooms.com/fr/courses/5614116-go-full-stack-with-node-js-express-and-mongodb
https://www.npmjs.com/package/nodemon
https://nodejs.org/en/knowledge/HTTP/clients/how-to-access-query-string-parameters/
https://nodejs.org/en/knowledge/HTTP/clients/how-to-access-query-string-parameters/
https://nodejs.org/en/docs/
https://nodejs.dev/learn

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

References and further reading/watching IV

[17] Most popular backend frameworks 2012-2022. URL
https://statisticsanddata.org/data/
most-popular-backend-frameworks-2012-2022/.

[18] Most used programming languages among developers
worldwide as of 2021. URL
https://www.statista.com/statistics/793628/
worldwide-developer-survey-most-used-languages/.

[19] June 2022 web server survey. URL
https://news.netcraft.com/archives/2022/06/30/
june-2022-web-server-survey.html.

[20] Rethinking atwood’s law. URL https://jayaprabhakar.
medium.com/rethinking-atwoods-law-64a894b54aa4.

[21] Top languages over the years (github). URL
https://octoverse.github.com/
#top-languages-over-the-years.

https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://news.netcraft.com/archives/2022/06/30/june-2022-web-server-survey.html
https://news.netcraft.com/archives/2022/06/30/june-2022-web-server-survey.html
https://jayaprabhakar.medium.com/rethinking-atwoods-law-64a894b54aa4
https://jayaprabhakar.medium.com/rethinking-atwoods-law-64a894b54aa4
https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years

INSA - ASI
TW1 – Lecture 1. Introduction to back-end web development with Node.js :

Lecture 1. Introduction to back-end web development with Node.js 30/30

References and further reading/watching V

[22] Front end vs back end. URL
https://xyzcoding.com/course/the-internet/
how-the-internet-works/front-end-vs-back-end/.

[23] Philip roberts: What the heck is the event loop anyway?). URL
https://youtu.be/8aGhZQkoFbQ.

[24] Getting post parameters in node.js. URL https://
usefulangle.com/post/93/nodejs-post-parameters.

[25] Routing in node.js. URL https:
//www.geeksforgeeks.org/routing-in-node-js/.

[26] The node.js fs module. URL
https://nodejs.dev/learn/the-nodejs-fs-module.

[27] Reading files with node.js, . URL https:
//nodejs.dev/learn/reading-files-with-nodejs.

[28] Writing files with node.js, . URL https:
//nodejs.dev/learn/writing-files-with-nodejs.

https://xyzcoding.com/course/the-internet/how-the-internet-works/front-end-vs-back-end/
https://xyzcoding.com/course/the-internet/how-the-internet-works/front-end-vs-back-end/
https://youtu.be/8aGhZQkoFbQ
https://usefulangle.com/post/93/nodejs-post-parameters
https://usefulangle.com/post/93/nodejs-post-parameters
https://www.geeksforgeeks.org/routing-in-node-js/
https://www.geeksforgeeks.org/routing-in-node-js/
https://nodejs.dev/learn/the-nodejs-fs-module
https://nodejs.dev/learn/reading-files-with-nodejs
https://nodejs.dev/learn/reading-files-with-nodejs
https://nodejs.dev/learn/writing-files-with-nodejs
https://nodejs.dev/learn/writing-files-with-nodejs

	Node.js
	Back end, front end, full stack?
	Traditional client-server architecture (back to old-fashioned TW1)
	Front-end vs. back-end
	Full stack web development

	Node.js
	What is Node.js?
	Why Node.js?
	What can Node.js do?
	How it works
	Event loop
	Asynchronous JavaScript and callbacks

	Your first Node.js (back-end) server
	Installation
	Get started
	Minimal example
	Start your server!
	Node.js Globals
	HTML server example
	Reading GET data with Node.js

	Your first Express.js (back-end) server (app)
	NodeJS vs. ExpressJS
	Installation
	Hello world example
	Serving static files
	Managing dependencies

	Your first Express.js (back-end) server (app)
	ExpressJS with static repository

	Conclusion

	Appendix
	References

