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Back end, front end, full stack?

Traditional client-server architecture (back to old-fashioned TW1)
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Back end, front end, full stack?

Front-end vs. back-end
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Back end, front end, full stack?

Full stack web development
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Node.js

What is Node.js?

Node.js

@ Node.js is an asynchronous event-driven JavaScript
runtime;

@ Designed to build scalable network applications;

@ Particularly suited for server-side scripting.

@ Provides an open-source and cross-platform
environment based on V8 JavaScript engine [3].

@ Comes with npm [4, 5], the world’s largest
software registry, a powerful package manager
and installer.

¢ -
©
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Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGl or ASP

@ Sends the task to the
computer’s file system.

©@ Waits while the file system
opens and reads the file.

© Returns the content to the
client.

© Ready to handle the next
request.

Lecture 1. Introduction to back-end web development with Node.js

Node.js

@ Sends the task to the
computer’s file system.

© Ready to handle the next
request.

© When the file system has
opened and read the file, the
server returns the content to
the client.
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Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGI or ASP Node.js
@ Sends the task to the @ Sends the task to the
computer’s file system. computer’s file system.
© Waits while the file system @ Ready to handle the next
opens and reads the file. request.
© Returns the content to the @ When the file system has
client. opened and read the file, the
© Ready to handle the next server returns the content to
request. the client.

v Node.js eliminates the waiting, and simply continues with the next
request, and runs (memory efficient) single-threaded, non-blocking,
asvnchronous proarammind.
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Node.js

What can Node.js do? [6]

Node.js can:
v/ generate dynamic page content;
v create, open, read, write, delete, and close files on the server;
v collect form data;
v/ add, delete, modify data in a database;

through the use of Node.js files that:
@ have extension . js;

@ contain tasks that will be executed on certain events (typically
someone trying to access a port on the server);

@ must be initiated on the server before having any effect;
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Node.js

How it works
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Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8] f>B).


https://youtu.be/sRWE5tnaxlI
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Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8] f>B).

Solution: Offloading operations to the system kernel whenever
possible:

@ most modern kernels are multi-threaded;
@ callbacks can be executed asynchronously.


https://youtu.be/sRWE5tnaxlI
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Node.js
Phases of the Event loop [9]

@ timers: executes callbacks scheduled by
setTimeout () and setIn > Tl ().

@ pending callbacks: executesT
callbacks deferred to the next loop
iteration.

idle, prepare: only used internally.

poll: retrieve new I/O events; execute I/O
related callbacks (except immediate,
close callbacks, and timers).

check: invoke set Immediate ()
Source: [9] callbacks.

Q close callbacks:
e.g. socket.on(’close’).
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Between each run of the event loop, Node.js checks if it is waiting for
any asynchronous /O or timers and shuts down cleanly if there are
not any.


https://youtu.be/8aGhZQkoFbQ
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Node.js

Wait, what's a callback again?

Quick reminder:

Javascript callbacks [10]

@ A callback is a function passed as an argument to another
function.

@ This technique allows a function to call another function.
@ A callback function can run after another function has finished.

Asynchronous JavaScript [11])

@ Functions running in parallel with other functions are called
asynchronous.

@ In the real world, callbacks are most often used with
asynchronous functions.

@ A typical example is JavaScript set Timeout ().




INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server

Installation (on your own setup)

@ Install Node.js:

sudo apt install nodejs

@ Check installed version:

node -v or node —--version

@ Install npm:

sudo apt install npm

@ Check installed version:

npm -v or npm —--version
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Your first Node.js (back-end) server
Get started
@ Create a directory:

mkdir backend
cd backend

(foemol

@ Initialize a new Node.js project in this folder:
npm init
Choose the name of your main entry point file (example:
server. js)

@ (optional) Initialize a git repository
git init
Important: add the node modules directory to your
.gitignore file!

@ Finally, create your main entry point file:

touch server.js



INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server

Server example: NodeJSMini/server.js (adapted from [12])

1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’'htip’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) => {

10 /I set the response of your endpoint
11 res.end('Hello World!);

12 });

13

14 // run the server

15 server.listen(port, hostname, () => {

16 // callback executed when the server is launched

17 console.log(‘Server running at http://${hostname}:${port}/);

18 });
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Your first Node.js (back-end) server

Start your server!

@ To start your server, simply run:

node server or node server.js

output:

@ 127.0.0.1:3000

<« C ® 127001

Server running at http
://127.0.0.1:3000/ Hello World!

@ alternatively you can also install nodemon module [13]:
as a development dependency:

globally:
npm install -g or npm install --save-dev
nodemon nodemon

to restart your server automatically.



INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server
Node.js Globals

Node.js Globals

Node.js uses objects that are available everywhere; they are called
the Globals:

@ __dirname: stores the path of the current folder.

@ __filename: returns the name of the file being executed.
@ require (): function that allows to load modules.

@ module: returns info on the current module.

@ process: returns info about the current environment.
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Your first Node.js (back-end) server
HTML server example: NodeJSHTML/server.js

8 // create a http server endpoint
9 const server = http.createServer((req, res) => {

10
11
12
13
14
15
16
17
18
19
20

21 });

// response status code (200 = OK)
res.statusCode = 200;
/I response header
res.setHeader('Content-Type’, ‘text/html’);
/I set the response of your endpoint
res.end(‘<!DOCTYPE html>
<html>
<body>
<h1>Hello World! (but it's in HTML)</h1>
</body>
</html>‘);
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Your first Node.js (back-end) server

Handling GET requests: NodeJSGET/server.js (adapted from [14])

3 // import url module; documentation: https://nodejs.org/api/url.html
4 const url = require('url’);

11 const server = http.createServer((req, res) => {

12
13
14

21
22
23
24
25
26

27 });

// read and parse the URL
const queryObject = url.parse(req.url, true).query;

/I set the response of your endpoint
if (name’ in queryObject) {

res.end(‘Hey ${queryObject.name}!");

}else {

}

res.end("Hey you!);

[pen)|
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Your first Express.js (back-end) server (app)

NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require('http’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) =>

10 /I set the response of your endpoint
11 res.end(’Hello World!);

12 });

13

14 // run the server
15 server.listen(port, hostname, () => {

16 // callback executed when the server is
launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
P
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Your first Express.js (back-end) server (app)

NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require('http’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) =>

10 /I set the response of your endpoint
11 res.end(’Hello World!);

12 });

13

14 // run the server
15 server.listen(port, hostname, () => {

16 // callback executed when the server is
launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
P

ExpressJSMini/server.js (from [?

) )

1 // import express module and create your
express app

2 const express = require('express’);

3 const app = express();

4

5 // set the server host and port

6 const port = 3000;

7

8 // create your express server endpoint

9 app.get(”/, function (req, res) {

10 /I set the response of your endpoint
11 res.send('Hello World!’);

12 });

13

14 // run the server
15 app.listen(port, () => {

16 /[ callback executed when the server is
launched

17 console.log(‘Express app listening on port
${port}?);

18 });
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Your first Express.js (back-end) server (app)

Installation [? ]

Express is not part of the NodelS APIs.
If we try to use it, we'll get an error:

const express = require('express');
const app = express();

module.js:327
throw err;

A

Error: Cannot find module 'express'
at Function.Module._resolveFilename

We need to install Express via npm.
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Your first Express.js (back-end) server (app)

Installation

@ To install Express, simply run:

npm install express

@ and then run your (express app) server:

node server.js

output:

@ 127.0.0.1:3000

Express app listening on = G © 127001
port 3000

Hello World!
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Your first Express.js (back-end) server (app)

Hello world example [? ]

const express = require('express');
const app = express();

The require() lets us load the Express)S module.

The module actually contains a function that creates a new
Express Application object.
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Your first Express.js (back-end) server (app)

Hello world example [? ]

app.listen(3000, function () {
console. log('Example app listening on port 3000!');
})

The Express)S 1isten() is identical to the NodelS

listen() function:
This binds the server process to the given port number.
Now messages sent to the OS's port 3000 will be routed
to this server process.

- The function parameter is a callback that will execute
when it starts listening for HTTP messages (when the
process has been bound to port 3000)
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Your first Express.js (back-end) server (app)

Serving static files [? ]

const express = require('express');
const app = express();

[app.use(express.static('public'));]

app.get('/', function (req, res) {
res.send('Main page!');

1)

This line of code makes our server now start serving the
files in the 'public' directory directly.
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Your first Express.js (back-end) server (app)

Example: ExpressJSstatic

/ExpressJSstatic i .
/node modules ExpressdSstatic/server.js
package. json
/public 5 // enable your express app to serve static files located in
, "public” directory
index.html 6 app.use(express.static(public’));

resource.txt
server. s
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Your first Express.js (back-end) server (app)

Managing dependencies [? ]

When you upload NodelS code to a GitHub repository (or
any code repository), you should not upload the
node_modules directory:

- You shouldn't be modifying code in the node_modules
directory, so there's no reason to have it under version
control

- This will also increase your repo size significantly

Q: But if you don't upload the node_modules directory to
your code repository, how will anyone know what
libraries they need to install?
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Your first Express.js (back-end) server (app)

Managing dependencies [? ]

If we don't include the node_modules directory in our
repository, we need to somehow tell other people what
npm modules they need to install.

npm provides a mechanism for this: package.json
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Your first Express.js (back-end) server (app)

Managing dependencies [? ]

You can put a file named package. json in the root
directory of your NodelS project to specify metadata about
your project.

Create a package. json file using the following command:
$ npm init

This will ask you a series of questions then generate a
package. json file based on your answers.
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Your first Express.js (back-end) server (app)

Managing dependencies

Example of an auto-generated package. json:
{

"name": "expressjsstatic",
"version": "1.0.0",
"description": "",
"main": "server.ijs",
"scripts": {

"test": "echo \"Error: no test specified\" &&

exit 1",

"start": "node server.js"
}I
"author": "Alexandre Pauchet",
"license": "ISC",
"dependencies": {

"express": ""4.18.1"
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Your first Express.js (back-end) server (app)

1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’http’);

3 // import url module; documentation: https://nodejs.org/api/url.html

4 const url = require(‘url’);

5

6 // set the server host and port

7 const hostname = '127.0.0.17;

8 const port = 3000;

1 // run the first server
2 server.listen(port, hostname, () => {

3 /I callback executed when the server is launched

4 console.log(‘Server running at http://${hostname}:${port}/);
5 1)

6

7 // import express module and create your express app

8 const express = require('express’);

9 const app = express();

10 // enable your express app to serve static files located in "public” directory
11 app.use(express.static('public’));

12 app.listen(3030);

13 console.log(‘Express running at http://${hostname}:3030/‘);
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Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.
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(1) a browser, (2) a server, and (3) a database.
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Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.

” This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

” The back end is the data access layer and the software infrastructure hosted
on the web server.

” Node.js provides an asynchronous runtime able to answer to multiple
requests

~ ... while performing non-blocking 1/O operations.
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Key takeaways:
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/

Conclusion

Key takeaways:

A full-stack web developer is a person who can develop both client and
server software.

This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

The back end is the data access layer and the software infrastructure hosted
on the web server.

Node.js provides an asynchronous runtime able to answer to multiple
requests

... while performing non-blocking 1/O operations.

Node.js takes advantages of JavaScript callbacks and asynchronous
functions.

Running a simple Node.js server is a piece of cake ...

... but the use of frameworks is highly recommended for large-scale
applications/services.



Lecture 1. Introduction to back-end web development with Node.js

INSA - ASI

Conclusion
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