INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Web Technologies 1

Lecture 1. Introduction to back-end web development with Node.js

Maxime Guériau & Alexandre Pauchet

INSA Rouen - Département ASI

BO.B.RC.18, pauchet@insa-rouen. fr

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Plan

ﬂ Back end, front end, full stack?

e Node.js

e Your first Node.js (back-end) server

0 Your first Express.js (back-end) server (app)

e Your first Express.js (back-end) server (app)

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Back end, front end, full stack?

Traditional client-server architecture (back to old-fashioned TW1)

Requéte (URL) Ressource ?
'\\\\> " Réponse ~Ressource
Client Web
(navigateur) Serveur Web
Client Web Serveur Web
) Apache Http
Javascript S I\(ALASM(;)L
. ' y
iQuery *— souice PHP + SQLite P postgreSQL
Applet, (LASP) gt (LAPP)

Source: [1]

INSA - ASI

Lecture 1. Introduction to back-end web development with Node.js

Back end, front end, full stack?

Front-end vs. back-end

Front end

|

HTTP Request

[\

11000=0

HTTP Response

11000 =0

AN

Web client(s)

1000 0=0

Back end

SQL query

Web server

Database

INSA - ASI

Back end, front end, full stack?

Full stack web development

Lecture 1. Introduction to back-end web development with Node.js

R

STER ST SETTER TR

s W) M s wowc s
== oy e ==
Java (Spring).
[. QR . W .]
s
) [T bl et
Angular Casandra Jenking
‘Webpack CouchDB.
PO ...]
[...] ok
e St
e e =
P e
v
T
.
Zectia

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js

What is Node.js?

Node.js

@ Node.js is an asynchronous event-driven JavaScript
runtime;

@ Designed to build scalable network applications;

@ Particularly suited for server-side scripting.

@ Provides an open-source and cross-platform
environment based on V8 JavaScript engine [3].

@ Comes with npm [4, 5], the world’s largest
software registry, a powerful package manager
and installer.

¢ -
©

INSA - ASI

Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGl or ASP

@ Sends the task to the
computer’s file system.

©@ Waits while the file system
opens and reads the file.

© Returns the content to the
client.

© Ready to handle the next
request.

Lecture 1. Introduction to back-end web development with Node.js

Node.js

@ Sends the task to the
computer’s file system.

© Ready to handle the next
request.

© When the file system has
opened and read the file, the
server returns the content to
the client.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js
Why Node.js? [6]

How a file request is handled by:

PHP, CGI or ASP Node.js
@ Sends the task to the @ Sends the task to the
computer’s file system. computer’s file system.
© Waits while the file system @ Ready to handle the next
opens and reads the file. request.
© Returns the content to the @ When the file system has
client. opened and read the file, the
© Ready to handle the next server returns the content to
request. the client.

v Node.js eliminates the waiting, and simply continues with the next
request, and runs (memory efficient) single-threaded, non-blocking,
asvnchronous proarammind.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js

What can Node.js do? [6]

Node.js can:
v/ generate dynamic page content;
v create, open, read, write, delete, and close files on the server;
v collect form data;
v/ add, delete, modify data in a database;

through the use of Node.js files that:
@ have extension . js;

@ contain tasks that will be executed on certain events (typically
someone trying to access a port on the server);

@ must be initiated on the server before having any effect;

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js

How it works

. Request

[] >
. Request

["

Request

i

Request

0l

° Thread Processing

Q

Node.js Server

Event
Loop

Delegate

i

Single
Thread

POSIX
Async
Threads

Qe
(=] =

Source: [7]

Non-blocking 10

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8] f>B).

https://youtu.be/sRWE5tnaxlI

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js
Event loop [9]

The Event loop is what allows Node.js to perform non-blocking I/O
operations.

Problem: Javascript is in fact single-threaded (and weird [8] f>B).

Solution: Offloading operations to the system kernel whenever
possible:

@ most modern kernels are multi-threaded;
@ callbacks can be executed asynchronously.

https://youtu.be/sRWE5tnaxlI

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js
Phases of the Event loop [9]

@ timers: executes callbacks scheduled by
setTimeout () and setIn > Tl ().

@ pending callbacks: executesT
callbacks deferred to the next loop
iteration.

idle, prepare: only used internally.

poll: retrieve new I/O events; execute I/O
related callbacks (except immediate,
close callbacks, and timers).

check: invoke set Immediate ()
Source: [9] callbacks.

Q close callbacks:
e.g. socket.on(’close’).

timers

T
I

pending callbacks

idle, prepare

‘ o
o

]
|

—— connections, |

|

i |

data, etc

check

1
|
I}
1
|
I}
1
|
, ncoming
|
]
1
|
|
1
close callbacks |
1

©

Between each run of the event loop, Node.js checks if it is waiting for
any asynchronous /O or timers and shuts down cleanly if there are
not any.

https://youtu.be/8aGhZQkoFbQ

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Node.js

Wait, what's a callback again?

Quick reminder:

Javascript callbacks [10]

@ A callback is a function passed as an argument to another
function.

@ This technique allows a function to call another function.
@ A callback function can run after another function has finished.

Asynchronous JavaScript [11])

@ Functions running in parallel with other functions are called
asynchronous.

@ In the real world, callbacks are most often used with
asynchronous functions.

@ A typical example is JavaScript set Timeout ().

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server

Installation (on your own setup)

@ Install Node.js:

sudo apt install nodejs

@ Check installed version:

node -v or node —--version

@ Install npm:

sudo apt install npm

@ Check installed version:

npm -v or npm —--version

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server
Get started
@ Create a directory:

mkdir backend
cd backend

(foemol

@ Initialize a new Node.js project in this folder:
npm init
Choose the name of your main entry point file (example:
server. js)

@ (optional) Initialize a git repository
git init
Important: add the node modules directory to your
.gitignore file!

@ Finally, create your main entry point file:

touch server.js

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server

Server example: NodeJSMini/server.js (adapted from [12])

1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’'htip’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) => {

10 /I set the response of your endpoint
11 res.end('Hello World!);

12 });

13

14 // run the server

15 server.listen(port, hostname, () => {

16 // callback executed when the server is launched

17 console.log(‘Server running at http://${hostname}:${port}/);

18 });

Lecture 1. Introduction to back-end web development with Node.js

INSA - ASI

Your first Node.js (back-end) server

Start your server!

@ To start your server, simply run:

node server or node server.js

output:

@ 127.0.0.1:3000

<« C ® 127001

Server running at http
://127.0.0.1:3000/ Hello World!

@ alternatively you can also install nodemon module [13]:
as a development dependency:

globally:
npm install -g or npm install --save-dev
nodemon nodemon

to restart your server automatically.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server
Node.js Globals

Node.js Globals

Node.js uses objects that are available everywhere; they are called
the Globals:

@ __dirname: stores the path of the current folder.

@ __filename: returns the name of the file being executed.
@ require (): function that allows to load modules.

@ module: returns info on the current module.

@ process: returns info about the current environment.

INSA - ASI

Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server
HTML server example: NodeJSHTML/server.js

8 // create a http server endpoint
9 const server = http.createServer((req, res) => {

10
11
12
13
14
15
16
17
18
19
20

21 });

// response status code (200 = OK)
res.statusCode = 200;
/I response header
res.setHeader('Content-Type’, ‘text/html’);
/I set the response of your endpoint
res.end(‘<!DOCTYPE html>
<html>
<body>
<h1>Hello World! (but it's in HTML)</h1>
</body>
</html>‘);

INSA - ASI

Lecture 1. Introduction to back-end web development with Node.js

Your first Node.js (back-end) server

Handling GET requests: NodeJSGET/server.js (adapted from [14])

3 // import url module; documentation: https://nodejs.org/api/url.html
4 const url = require('url’);

11 const server = http.createServer((req, res) => {

12
13
14

21
22
23
24
25
26

27 });

// read and parse the URL
const queryObject = url.parse(req.url, true).query;

/I set the response of your endpoint
if (name’ in queryObject) {

res.end(‘Hey ${queryObject.name}!");

}else {

}

res.end("Hey you!);

[pen)|

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require('http’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) =>

10 /I set the response of your endpoint
11 res.end(’Hello World!);

12 });

13

14 // run the server
15 server.listen(port, hostname, () => {

16 // callback executed when the server is
launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
P

INSA - ASI

Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

NodeJSMini/server.js (adapted
from [12])

1 // import http module; documentation: https://
nodejs.org/api/http.html

2 const http = require('http’);

3

4 // set the server host and port

5 const hostname = '127.0.0.17;

6 const port = 3000;

7

8 // create a http server endpoint

9 const server = http.createServer((req, res) =>

10 /I set the response of your endpoint
11 res.end(’Hello World!);

12 });

13

14 // run the server
15 server.listen(port, hostname, () => {

16 // callback executed when the server is
launched
17 console.log(‘Server running at http://${

hostname}:${port}/‘);
P

ExpressJSMini/server.js (from [?

))

1 // import express module and create your
express app

2 const express = require('express’);

3 const app = express();

4

5 // set the server host and port

6 const port = 3000;

7

8 // create your express server endpoint

9 app.get(”/, function (req, res) {

10 /I set the response of your endpoint
11 res.send('Hello World!’);

12 });

13

14 // run the server
15 app.listen(port, () => {

16 /[callback executed when the server is
launched

17 console.log(‘Express app listening on port
${port}?);

18 });

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Installation [?]

Express is not part of the NodelS APIs.
If we try to use it, we'll get an error:

const express = require('express');
const app = express();

module.js:327
throw err;

A

Error: Cannot find module 'express'
at Function.Module._resolveFilename

We need to install Express via npm.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Installation

@ To install Express, simply run:

npm install express

@ and then run your (express app) server:

node server.js

output:

@ 127.0.0.1:3000

Express app listening on = G © 127001
port 3000

Hello World!

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Hello world example [?]

const express = require('express');
const app = express();

The require() lets us load the Express)S module.

The module actually contains a function that creates a new
Express Application object.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Hello world example [?]

app.listen(3000, function () {
console. log('Example app listening on port 3000!');
})

The Express)S 1isten() is identical to the NodelS

listen() function:
This binds the server process to the given port number.
Now messages sent to the OS's port 3000 will be routed
to this server process.

- The function parameter is a callback that will execute
when it starts listening for HTTP messages (when the
process has been bound to port 3000)

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Serving static files [?]

const express = require('express');
const app = express();

[app.use(express.static('public'));]

app.get('/', function (req, res) {
res.send('Main page!');

1)

This line of code makes our server now start serving the
files in the 'public' directory directly.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Example: ExpressJSstatic

/ExpressJSstatic i .
/node modules ExpressdSstatic/server.js
package. json
/public 5 // enable your express app to serve static files located in
, "public” directory
index.html 6 app.use(express.static(public’));

resource.txt
server. s

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Managing dependencies [?]

When you upload NodelS code to a GitHub repository (or
any code repository), you should not upload the
node_modules directory:

- You shouldn't be modifying code in the node_modules
directory, so there's no reason to have it under version
control

- This will also increase your repo size significantly

Q: But if you don't upload the node_modules directory to
your code repository, how will anyone know what
libraries they need to install?

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Managing dependencies [?]

If we don't include the node_modules directory in our
repository, we need to somehow tell other people what
npm modules they need to install.

npm provides a mechanism for this: package.json

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Managing dependencies [?]

You can put a file named package. json in the root
directory of your NodelS project to specify metadata about
your project.

Create a package. json file using the following command:
$ npm init

This will ask you a series of questions then generate a
package. json file based on your answers.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

Managing dependencies

Example of an auto-generated package. json:
{

"name": "expressjsstatic",
"version": "1.0.0",
"description": "",
"main": "server.ijs",
"scripts": {

"test": "echo \"Error: no test specified\" &&

exit 1",

"start": "node server.js"
}I
"author": "Alexandre Pauchet",
"license": "ISC",
"dependencies": {

"express": ""4.18.1"

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Your first Express.js (back-end) server (app)

1 // import http module; documentation: https://nodejs.org/api/http.html
2 const http = require(’http’);

3 // import url module; documentation: https://nodejs.org/api/url.html

4 const url = require(‘url’);

5

6 // set the server host and port

7 const hostname = '127.0.0.17;

8 const port = 3000;

1 // run the first server
2 server.listen(port, hostname, () => {

3 /I callback executed when the server is launched

4 console.log(‘Server running at http://${hostname}:${port}/);
5 1)

6

7 // import express module and create your express app

8 const express = require('express’);

9 const app = express();

10 // enable your express app to serve static files located in "public” directory
11 app.use(express.static('public’));

12 app.listen(3030);

13 console.log(‘Express running at http://${hostname}:3030/‘);

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.

” This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.

” This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

” The back end is the data access layer and the software infrastructure hosted
on the web server.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

Conclusion

Key takeaways:

” A full-stack web developer is a person who can develop both client and
server software.

” This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

” The back end is the data access layer and the software infrastructure hosted
on the web server.

” Node.js provides an asynchronous runtime able to answer to multiple
requests

~ ... while performing non-blocking 1/O operations.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

/

Conclusion

Key takeaways:

A full-stack web developer is a person who can develop both client and
server software.

This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

The back end is the data access layer and the software infrastructure hosted
on the web server.

Node.js provides an asynchronous runtime able to answer to multiple
requests

... while performing non-blocking 1/O operations.

Node.js takes advantages of JavaScript callbacks and asynchronous
functions.

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

/

Conclusion

Key takeaways:

A full-stack web developer is a person who can develop both client and
server software.

This course introduces modern ways to program and interconnect:
(1) a browser, (2) a server, and (3) a database.

The back end is the data access layer and the software infrastructure hosted
on the web server.

Node.js provides an asynchronous runtime able to answer to multiple
requests

... while performing non-blocking 1/O operations.

Node.js takes advantages of JavaScript callbacks and asynchronous
functions.

Running a simple Node.js server is a piece of cake ...

... but the use of frameworks is highly recommended for large-scale
applications/services.

Lecture 1. Introduction to back-end web development with Node.js

INSA - ASI

Conclusion
This is the plan:

~
Front end] Back end
HTTP Request / =\
10000 =0)
p— SQL query
0 HTTP Response 100000 <z
101000 =0

d
. nege
VVue.JS Exp@ess ?SQLite)

Questions?

el
Q

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

References and further reading/watching |

[1] Alexandre Pauchet. Techologies Web 2 — AJAX/JQuery. INSA
Rouen - Département ITI, 2021.

[2] What hiring managers look for in a full stack developer. URL
https://www.cybercoders.com/insights/
what-hiring-managers—look—-for-in—-a-full-stack-dev

[3] Whatis v8? URL https://v8.dev/.

[4] What is npm? (w3c), . URL
https://www.w3schools.com/whatis/whatis_npm.asp.

[5] What is npm? (node.js), . URL https://nodejs.org/en/
knowledge/getting—-started/npm/what—-is-npm/.

[6] Node.js introduction, . URL https:
//www.w3schools.com/nodejs/nodejs_intro.asp.

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://v8.dev/
https://www.w3schools.com/whatis/whatis_npm.asp
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.w3schools.com/nodejs/nodejs_intro.asp

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

References and further reading/watching

[7] How javascript is quickly becoming the market leader. URL
https://www.mobilelive.ca/blog/
javascript—-leader#:~:text=According%$20to%20the%
20latest%20survey, integrated%$20with%20other%
20frameworks$%$2Flanguages.

[8] Javascript is weird (extreme edition). URL
https://youtu.be/sRWES5tnax1T.

[9] The node.js event loop, timers, and process.nexttick(). URL
https://nodejs.org/en/docs/guides/
event—-loop-timers—and-nexttick/#:~:
text=The%20event%20loop%20is%20what, operations%
20executing%20in%20the%20background.

[10] Javascript callbacks, . URL
https://www.w3schools.com/Jjs/js_callback.asp.

https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://www.mobilelive.ca/blog/javascript-leader#:~:text=According%20to%20the%20latest%20survey,integrated%20with%20other%20frameworks%2Flanguages.
https://youtu.be/sRWE5tnaxlI
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#:~:text=The%20event%20loop%20is%20what,operations%20executing%20in%20the%20background.
https://www.w3schools.com/js/js_callback.asp

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

References and further reading/watching Il

[11] Asynchronous javascript, . URL https:
//www.w3schools.com/js/Jjs_asynchronous.asp.

[12] Go full-stack with node.js, express, and mongodb. URL
https://openclassrooms.com/fr/courses/
5614116—go—-full-stack-with-node-js—-express—and—-mo

[13] nodemon, . URL
https://www.npmjs.com/package/nodemon.

[14] How to access query string parameters, . URL
https://nodejs.org/en/knowledge/HTTP/clients/
how-to—-access—query-string-parameters/.

[15] Node.js official documentation, . URL
https://nodejs.org/en/docs/.

[16] Introduction to node.js, . URL https://nodejs.dev/learn.

https://www.w3schools.com/js/js_asynchronous.asp
https://www.w3schools.com/js/js_asynchronous.asp
https://openclassrooms.com/fr/courses/5614116-go-full-stack-with-node-js-express-and-mongodb
https://openclassrooms.com/fr/courses/5614116-go-full-stack-with-node-js-express-and-mongodb
https://www.npmjs.com/package/nodemon
https://nodejs.org/en/knowledge/HTTP/clients/how-to-access-query-string-parameters/
https://nodejs.org/en/knowledge/HTTP/clients/how-to-access-query-string-parameters/
https://nodejs.org/en/docs/
https://nodejs.dev/learn

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

References and further reading/watching IV

[17] Most popular backend frameworks 2012-2022. URL
https://statisticsanddata.org/data/
most—-popular—-backend-frameworks—-2012-2022/.

[18] Most used programming languages among developers
worldwide as of 2021. URL
https://www.statista.com/statistics/793628/
worldwide-developer—-survey-most-used-languages/.

[19] June 2022 web server survey. URL
https://news.netcraft.com/archives/2022/06/30/
june-2022-web-server—-survey.html.

[20] Rethinking atwood’s law. URL https://jayaprabhakar.
medium.com/rethinking—atwoods—-law-64a894b54aa4.

[21] Top languages over the years (github). URL
https://octoverse.github.com/
#top-languages-over-the-years.

https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://news.netcraft.com/archives/2022/06/30/june-2022-web-server-survey.html
https://news.netcraft.com/archives/2022/06/30/june-2022-web-server-survey.html
https://jayaprabhakar.medium.com/rethinking-atwoods-law-64a894b54aa4
https://jayaprabhakar.medium.com/rethinking-atwoods-law-64a894b54aa4
https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years

INSA - ASI Lecture 1. Introduction to back-end web development with Node.js

References and further reading/watching V

[22] Front end vs back end. URL
https://xyzcoding.com/course/the-internet/
how-the-internet-works/front-end-vs-back-end/.

[23] Philip roberts: What the heck is the event loop anyway?). URL
https://youtu.be/8aGhZQkoFbQ.

[24] Getting post parameters in node.js. URL https://
usefulangle.com/post/93/nodejs-post-parameters.

[25] Routing in node.js. URL https:

/ /www.geeksforgeeks.org/routing-in-node-js/.

[26] The node.js fs module. URL
https://nodejs.dev/learn/the-nodejs—-fs-module.

[27] Reading files with node.js, . URL https:
//nodejs.dev/learn/reading-files-with—-nodejs

[28] Writing files with node.js, . URL https:

//nodejs.dev/learn/writing-files-with—-nodejs

https://xyzcoding.com/course/the-internet/how-the-internet-works/front-end-vs-back-end/
https://xyzcoding.com/course/the-internet/how-the-internet-works/front-end-vs-back-end/
https://youtu.be/8aGhZQkoFbQ
https://usefulangle.com/post/93/nodejs-post-parameters
https://usefulangle.com/post/93/nodejs-post-parameters
https://www.geeksforgeeks.org/routing-in-node-js/
https://www.geeksforgeeks.org/routing-in-node-js/
https://nodejs.dev/learn/the-nodejs-fs-module
https://nodejs.dev/learn/reading-files-with-nodejs
https://nodejs.dev/learn/reading-files-with-nodejs
https://nodejs.dev/learn/writing-files-with-nodejs
https://nodejs.dev/learn/writing-files-with-nodejs

	Node.js
	Back end, front end, full stack?
	Traditional client-server architecture (back to old-fashioned TW1)
	Front-end vs. back-end
	Full stack web development

	Node.js
	What is Node.js?
	Why Node.js?
	What can Node.js do?
	How it works
	Event loop
	Asynchronous JavaScript and callbacks

	Your first Node.js (back-end) server
	Installation
	Get started
	Minimal example
	Start your server!
	Node.js Globals
	HTML server example
	Reading GET data with Node.js

	Your first Express.js (back-end) server (app)
	NodeJS vs. ExpressJS
	Installation
	Hello world example
	Serving static files
	Managing dependencies

	Your first Express.js (back-end) server (app)
	ExpressJS with static repository

	Conclusion

	Appendix
	References

