
Continuous
everything

Integration, Delivery, Deployment

1



Agenda
• First pieces of software product lines

• Dev. Machine
• Share for collaboration
• Share for dependencies

• SemVer
• Build versus Run dependencies
• Remote Build

• Virtualisation
• Hypervisors
• Containers
• Dockefile

• Continuous Integration
• Pipelines
• Push versus Merge Request
• Stages
• Gitlab Pages

• Conclusion

3



Software product lines
First pieces of …

4



Story telling

• Let’s see the major tools of a software factory (in agile context) with
the needs of a growing team

• SCM (Source Code manager)
• Dependency Manager
• Continuous X Engine

5



One dev : intro. To Dev. Machine

• Dev. Machine embeds
• Directories with source code
• Editor(s) of source code
• Possibly build tools (or tasks runner(s))

6



Second developper - Share for collaboration

• A second dev. is joining (Bob)
• He needs the existing file (src c)
• He can copy it from Alice 

project’s directory

7



Share for collaboration

• A second dev. is joining (Bob)
• He needs the existing file (src c)
• He can copy it from Alice 

project’s directory

• Life goes on
• Alice creates src g
• Bob creates src t
• Maybe one of them change src c

• HOW TO SYNC !?

8



Share for collaboration

• Let SCM come into
play

• Source Code
Manager

• State of the art
• Git

• Older
• SVN, CVS

9

push

push



Share – zoom on git

10

git add

git rm

origin

git commit

branch x

main

[..]

develop

git push

Dev. Machine SCM Machine (with Git Server)

git pull



Share dependencies

13

• Alice a new 
dependency (an 
external package : 
ie JavaFX libraries)



Share dependencies

14

• Not in the scope of 
git that hosts only
the content 
produced by the 
team

• NO



Share dependencies

15

push

• But the list of 
package is a 
production of the 
team => do put it in 
git.



Share dependencies

16

push

Use dependency
manager to 
retrieve needed
package in each
environment
(dev, …)



Share dependencies – Python example

• When joining a dev. Project, two operations
• Get the source code

• Example command
• > git clone https://gitlab.insa-rouen.fr/delestre/mgpi-tp-cicd

• Get the dependencies
• Example command
• > pip install -r requirements.txt

17



Share dependencies - Package Managers

Tool Dependencies file Elements

Java maven pom.xml package https://repo.maven.apache.org/maven2/

JavaScript (NodeJS) npm package.json package https://registry.npmjs.org/

Ruby bundle .Gemspec gem https://rubygems.org/

Python pip requirements.txt module, 
package

18



Share dependencies - semver

19Image-credit : https://www.osgi.org/developer/modularity/



Share dependencies – semver – EXA7124B

20

http://prodageo.insa-rouen.fr/casi4publi/fboodle/EXA7124B.enonce.pdf



Share dependencies – prod vs dev

• Some dependencies are for machines running the deliverables
• Utilities packages
• Frameworks
• Application Servers

• Others are for machines building the deliverables
• Tools

• Linters : static code analysis tool used to flag programming errors, bugs, stylistic errors 
and suspicious constructs.

• Source generators : generate code based on a higher-level language specification (REST 
server from Swagger spec, …)

22



Share dependencies – lint example

23

Dev. Console

Source code not compliant

Pylint doc

Source : https://pylint.pycqa.org/

Explicit dependency



Task Runners

Tool Default script file

Java maven pom.xml

JavaScript (NodeJS) grunt Gruntfile.js

Ruby rake Rakefile

Python TO BE DONE

24

Help in :
- Running tests
- Init. DB

Ruby project

Javascript project

Java project



Remote build

• Doris is joining the team with
a Windows OS.

• Some of the dev 
dependencies are not 
available on this OS !

25



Virtualisation
Piece of knowledge to understand the software factory line

26



Without virtualisation

• Applications are setup in a « Host 
Operating System » that gives access
to resources

• File System
• Network
• …

• Host Operating System adapt a 
physical infrastructure.

27



Kernel concept
• The kernel is the important program 

in the operating system

28



Physical Machine vs Hypervisor

29



Containers versus Hypervisor

30



Containers : « Base OS », « kernel »

• Container embeds
• One or several application(s)
• A Base OS

• « Base OS » interact with « kernel » 
of « Host Operating System »

• Note : in specific cases, some apps 
are allowed to interact directly with
kernel (by-passing « Base OS »).

31



Containers : « daemon »

• « daemon » is in charge of 
managing container

• Starting
• Stopping
• …

32



Dockerfile : installation fully scripted

33

python:3.7-alpine

> docker compose up

Dockerfile

Virtual machine

alpine

python:3.7

Requirements installed



Continuous Integration

34



Remote build

• Doris is joining the team with
a Windows OS.

• Some of the dev 
dependencies are not 
available on this OS !

35



Pipeline

• Based on an event, Gitlab
Runner will trigger the 
CREATION of a virtual
machine to run the job(s) of 
the CI platform !

• Event (CI_PIPELINE_SOURCE)
• push
• merge_request_event
• scheduled

36



First pipeline : failed

37



First pipeline : success

38



Some gouvernance on the pipeline

• With 4 persons working on the project, Alice wants to have control on 
the source code introduced in the main branch

• => she set a new branch : develop

• By default, a repository is created with one branch named main
• Note : master has been eradicated

39



Merge Request versus Push

• Push
• The developper decides to add the source code to a branch

• Merge Request
• Other designated people (Alice) do decide
• Possible to insertion additional control operation

40



Gitlab – restrict access to a branch

41



Sync with the develop branch

• Bob can continue to work
• He switched to the develop

branch
• And now, push is possible.

42



Gitlab – approval permissions rules

43



Gitlab – operations specific to Merge

44



Pipelines - Stages

45

j1a j1b j1c

j2a j2b

j3a j3b j3c

Stage tests

Stage static analysis

Stage deploy



Pipelines - Gitlab Pages

• A special job (pages:deploy) is triggered
after the pages job.

• Every files (HTML, …) generated within
public directory are published on the URL 
indicated in Settings > Pages

• https://account.pages.insa-rouen.fr/
reponame

• account : name of the person or group
• Reponame : name of the repository (project)

46



Conclusion : Continous Everything and DevOps

• Continuous
• Integration : unit test, lint, …

• Prepare and test the build
• Delivery

• Package the build in artefacts (deliverables like files, …)
• Deployment

• Copy and install the artefacts of the 
target environment
(be production, pre-production, demo, …)

47
DevOps – the lemniscate
Source : https://www.atlassian.com/devops



48


