Neural Networks

clement.chatelain@insa-rouen.fr

17 avril 2024

Sommaire

Introduction

- 2 Human learning vs. Machine learning
 - General idea of neural networks
 - Formal neuron
 - Topologies

3 Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Introduction

Machine learning before 2010 (more or less) :

Limited range of machine learning

- Only dedicated to very specific tasks
- Not very impressive ...

Introduction Machine learning since 2010 :

"Two pizzas sitting on top of a stove top oven"

"A group of young people playing a game of frisbee"

and also : Deepl, medical
imaging, https://
thispersondoesnotexist.
com/, deep nostalgia, etc.

4/44

Introduction

What happens in 2010? The emergence of "Deep learning"!

- Statistical models that benefit from 50 years of research in ML
- Deep Learning = Deep **Neural networks** = connectionist architectures
- Impressive results : some models pass the turing test !

In this Course you will learn :

- What's a neuron
- How they are connected & how they can model complex decision functions
- How they are trained (roughly)
- What's the deep learning revolution?

Plan

Introduction

2 Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Plan

Introduction

- Human learning vs. Machine learning
 General idea of neural networks
 - Formal neuron
 - Topologies

Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Human vs. Machine learning (1)

The best machine learning model is a human (yet;))

- Brain made of simple entities : neurons
- Neurons are connected through synapses
- Activation (or not) of neurons output depend of its inputs
- Information propagates from inputs (senses, memory) till decisions

- Combining many simple entities can model very complex functions
- Knowledge = connections between neurons, not neurons themself
- $\bullet \rightarrow$ learning = set the good connections between neurons

Neural Networks

Human vs. Machine learning (2)

Neural networks are simplified mathematical modelization of the human brain, where :

- Biological neurons = formal neurons
- Synapses = (weighted) connections
- Learning = optimization. Of what? the connections = weights
- Reward = Loss

Formal neuron [McCulloch & Pitts, 1943]

Formal neuron

Given *E* inputs x_e , and an output *y* :

• Combine information : a weighted sum α of x_e is computed :

$$\alpha = \sum_{e=0}^{E} w_e x_e \text{ with } x_0 = 1$$

• **Output activation** : apply an activation function φ on α :

$$\mathbf{y} = \varphi\left(\alpha\right) = \varphi\left(\sum_{e=0}^{E} \mathbf{w}_{e} \mathbf{x}_{e}\right)$$

Formal neuron [McCulloch & Pitts, 1943]

Aim of activation functions :

Modelize the output activation when the weighted sum is above/around a certain value.

Remarks :

- The "certain value" can be set (learned!) thanks to the bias w_0
- φ should be differentiable (\rightarrow heaviside)
- Often chosen non linear

Formal neuron [McCulloch & Pitts, 1943]

Let us consider a classification problem {*orange, blue*} with 2 inputs x_1, x_2 . Once the weights learned, linear/non linear activations brings decisions such as :

- OK for a simple decision (2 outputs) in a small space (2 inputs)
- What for a natural scene image classification (512×512 inputs, 1000 outputs)?
- We need more neurons to build more complex functions !!

How to connect neurons? Topology.

Plan

Introduction

2 Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Topologies : many ways to arrange neurons and connections

topologies

- Layered / Random / Totally interconnected
- Feedforward / recurrent
- Shared parameters

• ...

(and also different kinds of neurons : classical/LSTM/...)

Here we will explore basic architecture :

Layered, Feedforward

https://www.asimovinstitute.org/author/fjodorvanveen/

Topologies

Feedforward networks

Neurons are organized into layers

- Only connections between consecutive layers
- e < feedforward > : information from input to output

The connectionnist idea :

successive application of simple function may lead to complex functions.

- Efficient learning algorithm : gradient backpropagation
- May include different kinds of layer : Dense, Convolutional, pooling

Feedforward networks : Dense Layers

AKA Linear layers

- Each neuron is fed with outputs from all neurons from previous layer
- Can be used with any activation function
- "Legacy" layers

Remarks

- Contain a lot of parameters ("Dense")
- Last layer of a NN is generally a dense layer
 - Either for classif. with Softmax activation
 - Either for regression with Identity

Feedforward networks : Convolutional layers

Convolutional layers

- Each neuron is fed with outputs from a subset of neurons
- Each input subset changes, but the parameters subset is shared
- Convolutions through kernels = the subset of parameters
- Main specificities : light, extract features

CNN filters [Krizhevsky et al.]

Feedforward networks : Conv. neural nets (CNN)

Typical architecture :

- A bunch of convolutional layers, with several kernels per layer
- Often copled with pooling layers to concentrate the information
- Flatten
- Dense layer for decision purpose

Nice online demonstration :

https://www.cs.ryerson.ca/~aharley/vis/conv/

Plan

Introduction

- 2 Human learning vs. Machine learning
 - General idea of neural networks
 - Formal neuron
 - Topologies

3 Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Training : problem statement

Recall : we aim at finding f, i.e. :

- Learn the parameters = connections between neurons *W* ...
- ... using N samples from the train set ...
- ... for optimizing a Loss $\mathcal{L}(W)$ that must be differentiable.

Losses to optimize :

- Mean Square Error $\mathcal{L}(\mathbf{W}) = \sum_{n=1}^{N} (y(n) f(x(n))^2)$
- Categorical Cross Entropy (for classification)
- etc.

Neural Networks : Learning Scheme

- Forward sample through a randomly initialized W
- Compute Loss between "what we get" and "what we want" (the target)
- Modify (slightly) W so that "what we get" going closer to "what we want"

How to modify W? Gradient Descent!

Gradient Descent principles

Hidden values of Loss $\mathcal{L}(W)$ in a two parameters space (W_1, W_2) :

Principles of gradient descent for tuning W :

- Start with a random W₀
- **2** The variation of \mathcal{L} around \mathbf{W}_t provides the descent direction
- Let's make a small step in this direction
- While $\mathcal{L}(\mathbf{W})$ decrease, start again from (2)

Gradient Descent : the algorithm

Iterative gradient descent for tuning W

- Start with a random W₀
- 2 Compute the good direction $\frac{d\mathcal{L}(\mathbf{W})}{d\mathbf{W}}|_{\mathbf{W}_t}$

Apply

$$\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t - \eta \left. \frac{\mathrm{d}\mathcal{L}(\mathbf{W})}{\mathrm{d}\mathbf{W}} \right|_{\mathbf{W}}$$

where η is the step size (not too small, nor too big ...)

While \mathcal{L} decrease, start again from (2)

Gradient descent applied to NN (Y. Lecun¹)

Propagation

W;

foreach sample for i = 1 to L $H_i = F_i(H_{i-1})$ // either Dense, activation, etc. endfor end foreach

Gradient Backpropagation

for each sample for i = L downto 1 $\frac{\partial J}{\partial H_{i-1}} \leftarrow \frac{\partial J}{\partial H_i} \times \frac{\partial H_i}{\partial H_{i-1}}$ $\frac{\partial J}{\partial W_i} \leftarrow \frac{\partial J}{\partial H_i} \times \frac{\partial H_i}{\partial W_i}$ // if necessary end for end for each

1. https://www.college-de-france.fr/site/yann-lecun/

course-2016-02-12-14h30.htm

clement.chatelain@insa-rouen.fr

Neural Networks

Conclusion on feedforward NN

Resume

• Universal approximation theorem : "A unique non-linear layer is enoughto estimate any function *f*, provided we have an infinite number of neurons and an infinite number of example [Lippman 87]

Solution : Let's stack more layers !

Complex decision boundaries
 High level data representation
 Backpropagation theoretically OK
 But practically fails to reach low layers due to vanishing gradient issues

\rightarrow Deep learning !

Plan

Introduction

Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Plan

Introduction

Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

3 Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

What is deep learning?

Deep means :

- Many layers (3 ... 100 ...), leading to big models : Millions of parameters
- Deep neural network example : VGG16 (2014, 138M parameters)
- Impressive results !

Training deep neural networks is hard :

- Need for expert to design the architecture and control learning
- Need for big datasets and big computers (GPU)
- Need for fighting against vanishing gradient

Vanishing gradient

- Saturated Neurons, gradient \rightarrow 0
- Inefficient backpropagation

Fighting against the vanishing gradient

Many theoretical/practical solutions

- Pretraining
- Extensive use of Convolution (few parameters)
- ReLU (provides better dynamic to the gradient)
- Regularization : Dropout, Batch normalization, Tikhonov
- Transfer Learning
- Feeling, experience & hyperparameter tuning

Not described in this short introduction to DL ©

Definition and main principles

Need for big data?

Rather annotated big data : ImageNet [Krizhevsky 2012]

- > 14M images, 1000+ classes (objects, animals, natural scenes, etc.)
- RGB Images 512 * 512

Object classification

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-Kart	Jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Figure – ImageNet [Krizhevsky 2012]

Famous architectures with high performance ImageNet

VGG16, VGG19, AlexNet, GoogleNet, Inception, ResNet (L > 150!), etc.

Network Design

Kalming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

performance : error around 15 % in 2021 using EfficientNet, NFNet, etc.

Transfer learning : what if we only have few examples?

Hack a classical net pretrained on a big dataset

- Drop the last decision layer, replace by a randomly initialized dense layer that suits your problem
- Finetune the whole architecture on your (small) dataset.
- Here we are, most of time it works !

Plan

Introduction

Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

3 Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

Semantic Segmentation (1)

Pixel labeling

- Many CV tasks : medical imaging, road safety, document, etc.
- Difficult problem : high dimension, structured output, often few pixel-labeled examples, etc.

Now very efficiently achieved by neural networks since 2015!

- Fully Convolutional Networks (FCN)
- Light, need few examples, easy to train ©

Semantic Segmentation (2)

SegNet (démo sur http://mi.eng.cam.ac.uk/projects/segnet/)

Image Captioning (1)

Describes without errors

A person riding a motorcycle on a dirt road.

Describes with minor errors

Two dogs play in the grass.

Somewhat related to the image

A skateboarder does a trick on a ramp.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

results from the Google system

Image Captioning (2)

CNN/LSTM generative architecture

- CNN layer extract features (pretrained on imageNet)
- LSTM layers generate the output signal (also pretrained)
- Backprop on the Coco dataset for linking both architectures

Transformer architecture

"Attention Is All You Need", A. Vaswani, N. Shazeer, N.Parmar et. al Neurips 2017

Main architecture for any sequence problem

- encoder = transformer layer
- decoder = transformer layer
- based on multihead attention and linear layers
- along with positional encoding

On the use of transformers

- Encoder can be replaced by another encoder (DAN)
- Encoder alone can be used (BERT)
- Decoder alone can be used (GPT)

Plan

Introduction

Human learning vs. Machine learning

- General idea of neural networks
- Formal neuron
- Topologies

3 Training Neural networks

- Definition and main principles
- Recent success of deep learning
- Deep learning in practice

In practice

∃ many neural networks libraries

- TensorFlow (Google, python) https://www.tensorflow.org
- Keras (Google, python) https://keras.io/ (+ Theano ou TF)
- pytorch (Facebook, python) http://pybrain.org/ (basé sur torch)

...

Keras code example for vgg16:code/vgg16.py

Bibliography

Interesting links :

- Yann Lecun's course at collège de France (in french) https://www.college-de-france.fr/site/yann-lecun/
- Youtube channel of H. Larochelle : http://tinyurl.com/lpkvjm4
- "Deep Learning" book, Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press

https://mitpress.mit.edu/books/deep-learning

See also ITI's department courses :

- EC "Machine Learning" (ITI4.1)
- EC "Deep Learning" (ITI4.2)
- EC "Advanced Machine Learning" (ITI5.1)
- EC "Advanced Deep Learning" (ITI5.1)

Bibliography

- F. Rosenblatt. Principles of Neurodynamics. New York : Spartan, 1962.
- C.M. Bishop. Neural networks for pattern recognition, Oxford : Oxford University Press, 1995.
- D.E. Rumelhart, G.E. Hinton and R.J. Williams. Learning internal representations by error propagation. Parallel Distributed Processing Explorations in the Microstructure of Cognition. MIT Press, Bradford Books, vol. 1, pp. 318-362, 1986.
- S. Belharbi, C. Chatelain, R. Hérault, S. Adam, S. Thureau, M. Chastan, and R. Modzelewski, "Spotting L3 slice in CT scans using deep convolutional network and transfer learning", Computers in Biology and Medicine, vol. 87, pp. 95-103, 2017.
- Soufiane Belharbi, Clément Chatelain, Romain Hérault, Sébastien Adam : Input/Output Deep Architecture for Structured Output Problems. CoRR abs/1504.07550 (2015)