Introduction to Data Science
Supervised Learning

Benoit Gauzere

INSA Rouen Normandie - Laboratoire LITIS

March 4, 2024

1/54

What we are talking about ?

—

Supervised
Learning

» Learning trough examples
» Mimic human tasks (IA ?)

» Produce outputs given some inputs (functions ?)

2/54

Supervised Learning

Purpose
Given a dataset {(x;,y;) € X x V,i=1,...,N}, learn the
dependancies between X and).

> Example: Learn the links between cardiac risk and food
habits. x; is one person describe by d features concerning its
food habits; y; is a binary category (risky, not risky).

» 4, are essential for the learning process.

» Methods : K-Nearest Neighbors, SVM, Decision Tree, ...

3/54

How to Encode Data

X € R™*P
Samples

» n samples (number of lines)
> X(i,:) =x; : the i-th sample
> x; €RP

Features
» p features (number of colons)
» Each sample is described by p features
» X(:,j) = x,; : The j-th feature for all sample

X(i,7) @ j-th feature of i-th sample.

4/54

observation 1

observation i

observation n

| 9|qeliea

($1,1

T2.1

Zi 1

)

Kxn,l

x1,2
Z2,2

[3]qeliea

d a|geniea

Learning Model

Model

f: Xx=Y
X; = Y

We want that

f(xi) = yi

6/54

Example

80 A

60

40 1 ®

20 A

What is the underlying f function ?

7/54

Example

80

60

40

20

80

60

a0

o
Y

8/54

How to find a good f ?

fr= arg]{nin L(f(X),y)+22f)

> L:Yx)Y—=R
> AeRT
> Q: (X —>Y) >R

9/54

Fit to data term

L(f(X),y)

» Guarantees that the model fits the data

» Penalizes when the predicted value of f(x;) is far from y;

10/54

Regularization term

Q(f)

» Constrain the complexity of function f
» Occam’s razor : simpler is better

>) : Weight the balance between the two terms

11/54

[llustrations |

°
80 4
60 4
40 4 e.
°
204 [)
o
°
o] o o °
M 2 4 6 8 10

> Very high £(f(X),y)
> Very low Q(f)

12/54

[[lustrations |l

°
80
60
40 «*
°
20 A °
°
°

0 e © ®

0 2 4 6 8 10

> High L(f(X),y)
> Low Q(f)

13/54

[llustrations I

100 A

80 1

60 1

\}
)

40 1

o

201

[\)
\]
[\]

/]

10

14 /54

[llustrations 1V

100 4

80 1

60 1

401

20 A

[S)
LU

[\}

o 0

> L(f(X),y) =0
» Very high Q(f)

o

10

15/54

Generalization

A good model generalizes well

» Good generalization : good prediction on unseen data

» Hard to evaluate without bias

> A Overfitting

» Regularization term prevents from overfitting

16 /54

Supervised Learning Tasks |

Binary Classification
> Y= {07 1}
» Dog or cat 7 Positive or Negative 7

» Performance : Accuracy, recall, precision, ...

Dog

L

Cat

17/54

Supervised Learning Tasks Il
Regression
» V=R
» Stock market, House price, boiling points of molecules, ...
» Performance: RMSE, MSE, MAE, ...

18/54

Supervised Learning Tasks Il

And many others
» Ranking
» MultiClass classification
> Multi Labeling
> ...

19/54

Machine learning Methods for
Classification

» K-nearest neighbors

» Random forests

» SVM & consorts

> Multi Layer Perceptron

k Nearest Neighbors

Principle
Determine property from the property of similar data

21/54

k Nearest Neighbors

Principle
Determine property from the property of similar data

21/54

k Nearest Neighbors

Principle
Determine property from the property of similar data

° O
® O
® 0
.0 .*.

O -

21/54

k Nearest Neighbors

Principle
Determine property from the property of similar data

° O
® O
® 0

o
o *o .
® -

21/54

k Nearest Neighbors

Principle

Determine property from the property of similar data

21/54

k Nearest Neighbors

Principle

Determine property from the property of similar data

mm———
-
g Ss
o.
,
.

/ -

’ ’, N\ \
‘'O, Ny
1 / \
e
' '

' \
\ ")\

\

o
\

\

\
\

21/54

k Nearest Neighbors

Principle

Determine property from the property of similar data

mm———
-
g Ss
o.
,
.

/ -

’ ’, N\ \
‘'O, Ny
1 / \
e
' '

' \
\ ")\

\

o
\

\

\
\

21/54

K-NN Hyperparameters

Number of neighboors &
Quantify the number of neighbors used for the decision
» Low number : high variability, high accuracy

» High number : more smooth

Distance
How the similarity is determined

» Similarity depends on data, structure, task

» Euclidean, Manhattan, ad hoc distances

22/54

KNN : the code !

1 from sklearn.neighbors import KNeighborsClassifier

2 k=5

3 metric = 'manhattan'

4 knn = KNeighborsClassifier(n_neighbors=k,metric=metric)
5 knn.fit(X,y) #apprentissage

6 y_pred = knn.predict(X) # prediction

» Metrics : link
» — Notebook

» the documentation

23/54

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.distance_metrics.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

Decision Tree

Principle
Learn decision rules to separate the data.

....
2 .. ® ...
.‘h""1. ° :r . [)
1!
° ° .:\o. '.
| 4 ... “ e ° ¢
® oo @o_ oo
o ° .Jo. ®ec o
() ‘ ° o
-2 .:. PS (] °

24 /54

Decision Tree

Principle
Learn decision rules to separate the data.

X[0] <= -0.032
100
[50, 50]

24 /54

Decision Tree

Principle
Learn decision rules to separate the data.

24 /54

Random Forests
Principle
» Combine many decision trees to learn complex functions

» Ensemble methods, majority voting

25 /54

Random Forests Hyperparameters

Number of trees
Adjust the number of trees composing the forests

» low number : fast to compute, but less accurate

» high number : slower to compute, but more accurate up to
some number

Number of features
Determine the number of features to be used when splitting the
data

» See the guidelines of scikit-learn

Tree depth

Specify the maximal depth of tree. An higher depth will make
dedicate categories, but less generalizable.

26 /54

Random Forests : the code !

1 from sklearn.ensemble import RandomForestClassifier

2 n_estimators = 20 # the number of trees in the forest

3 max_depth = None # ezpand as you can

4 max_features = "sqrt" # RIFM

5 clf = RandomForestClassifier(n_estimators=n_estimators,
6 max_depth=max_depth,

7 max_features=max_features)
s clf.fit(X,y)

9 ypred = clf.predict(X)

» User guide for hyperparameters : link
> = Notebook

» the documentation

27 /54

https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

Support Vector Machines
Principle
Find the best line which separates the data

2.0 ° ®
[] []
1.5
® []
" ¢ Y]
051 @
[]
d. [} o
004 @
* a
[]
o e
[]
-1.5 1 [] ®
-15 -10 -05 0.0 05 1.0 15

28 /54

Support Vector Machines

Principle
Find the best line which separates the data

» Best separation = points far away the separation

» Points on margin : support vectors

28/54

Support Vector Machines

General Principle
What happens when there is no separation line ?

N °
2 ..
‘IDI. ° .'. ®
) ® o PS ® s
rr .6..
¢ lo‘ o e 9§ Lo
° : ® ’ ¢
' []
1 .’r A
x -*
[P S P 05 10 15 2.0

29 /54

Support Vector Machines

General Principle
What happens when there is no separation line ?

y £
24 P L. |:
“‘#’ q:'o °
[] [
AP I A
ey X ie 1. 0:. °®
°1 Qoo ,' Y .
° o] i ro
®_ i
N ol | :,4"
% | ¢+

» = We allow errors |
29 /54

C controls the trade off between errors and separation

Support Vector Machines
Error control

o °
.......... A ¢ ¢
2 e O]
ot o Popete-t
I PO § [T NP d
- O’ t%n . @ .' "
FE N «@e 0 [-
o" 38 “ o“o 2
. L XY D ° v
" i °
Ve e e ©® o
> . °

o °
. i apmmme———-l O -4
. 2 /‘/
. °
. &, o A S i
.u:un:-:..‘nwv ||||||||| n. N o® .ﬁ 'm
e e ®e T 3 s ‘o
o.‘o L - o" $2
e D o*e

30/54

Extension to non linear separation

Thanks to kernel trick, SVM can compute any kind of separation

line
===
3 ,"’
td
4
4
4
27 [)
]
C.q. A
o«*
1 ‘P)‘b
° /
o R4
N 8
1 "‘ﬂ
U
¥ @ ‘i
»
_1 4
."\%
24 .] ,
-1.5 -1.0 .

» Depends on kernel

31/54

SVM Hyperparameters

C

Adjust the importance of errors
» Jow C : fast to compute, more simple separation, more errors

» high number : slower to compute, less errors, maybe too
complex separation line

kernel
Determine how the separation line is build

» linear : straight line
» poly, rbf, sigmoid : complex lines, basic choice is rbf

» precomputed : provide a similarity matrix (more difficult)

32/54

SVM : the code !

1 from sklearn import svm

2 C=1

3 kernel = 'rbf'

4 clf = svm.SVC(C=C,kernel=kernel)
5 clf.fit(X,y)

6 ypred = clf.predict(X)

» User guide for hyperparameters : link
> = Notebook

» the documentation

33/54

https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/svm.html#classification

Multi Layer Perceptron

Principle

Learn the best representation of data

Weights

Net Input
function

Activation Threshold

U,,‘(J-—w
Dow; X +w0)—>@—>@ —»’g

Feedforward /- Error Computation

Input features
mdino poldIpaI g

Backpropagation-/-Parameters tuning

> Weights w are optimized by gradient descent

» Sequence of layers

34/54

MLP Hyperparameters

Hidden layers
Define the architecture of your MLP
» Number of layers : a high number tends to deep networks
» Number of neurons per layer : a high number tends to wide
networks
The model will be more complex if more neurons are used

Activation function
Determine how the non linearity is brought to the model

P identity : linear model

P tanh, relu, logistic : non linears. RelLU is a very popular choice

35/54

MLP : the code !

1 from sklearn.neural_network import MLPClassifier

2 activation = 'relu' # default

3 layers = [32,64,128,64,32] #5 layers avec différentes tailles
4 clf = MLPClassifier(hidden_layer_sizes=layers,max_iter=500)

5 clf.fit(X,y)

6 ypred = clf.predict(X)

» User guide for tips and help : link
> = Notebook

» the documentation

36 /54

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mlp-tips
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Pratical

How to learn a “good” model ?
> We want good performance
» Simple as possible
> Able to predict unseen data

37/54

Empirical Risk

Error on learning set

» Empirical risk:

| X
o= 3260
» L evaluates the performance of prediction f(x;)

» Error is computed on the training set

» The model can be too specialized on this particular dataset

38/54

Generalisation

Tentative of Definition
> Ability of the model to predict well unseen data
» Hard to evaluate

» Real objective of a model

Regularisation

» Regularization term control the model
P Balances between empirical risk and generalization ability
» Need to tune the balance (\)

39/54

How to evaluate to ability to generalize 7

Evaluate on unseen data
» Define and isolate a test set

» Evaluate on the test set
Bias
> Avoid to use same data in train and test

P> Test set must be totally isolated

40 /54

Overfitting vs Underfitting

» Overfitting: low Rey,p, high generalization error

» Underfitting: high Re,,,, medium generalization error

Prediction error

Test set

Learning set

low

Model complexity high

41/54

Hyperparameters

Parameters outside the model
» Some parameters are not learned by the model

> They are “hyperparameters” and must be tuned

> ATuned on data outside the test set
» Example: X in Ridge Regression

42 /54

How to tune the hyperparameters ?

Validation set
» Split train set into validation and learning set
» Learn model parameters using the learning set
» Evaluate the performance on validation set

> Validation set simulates the test set, aka unseen data

43 /54

General framework

Performance
Evaluation

[Model H Learning H I?a?%ild >

i

Model
Cross learned &
Validation optimal
hyperparameters

earnin alidation inal
L Validat Final
performance performance performance

44 /54

General CV pseudo code

: function EvAL(X, y, model, h_params)
best_perf + 0
Xtrain> Ytrain, Xtest7 Ytest Spht(X7 y)
for h_param € h_params do
perf < 0
foric1...10 do
Xt,yt, Xy Yo CVfSplit(Xtraina Ytrain, Z)
fitted_-model <— train(model, X¢, y;, h_param)
Ypred < predict(fitted_model, X))

—_

NN

10: perf < perf + score(y_pred, y,)

11: end for

12: if perf < best_perf then

13: best_perf < perf

14: best_param < h_param

15: end if

16: end for

17: fitted_model < train(model, X¢rqin, Ytrain, Dest_param)
18: Ypred < predict(fitted_model, Xyest)

19: return score(Ypred; Ytest)

20: end function 4554

Still Learned at Top Conf

F. Errica, M. Podda, D. Bacciu, and A. Micheli, ‘A Fair Comparison of Graph Neural
Networks for Graph Classification’. ICLR 2020. http://arxiv.org/abs/1912.09893

Algorithm 1 Model Assessment (k-fold CV) [Dataser]
1: Input: Dataset D, set of configurations © it

2: SpliF D into k folds Fi,..., F AR
3: fori<1,....kdo
4 traing, testy < (U#i F), F; ror | Traine]
5 besty, + Select(traing, ©) repeat
6: forr<1,...,Rdo o Trainas | Test_| Troines ‘ g
7 model,. +— Train(trainy, best;,) times | i
8: p» + Eval(modely, testy) Trainas [
9: end for e
10: perfp < >, p,./R o Ston:
11: endfor ’ e .
12: return ", perf, /k |
o po—
Algorithm 2 Model Selection
I: Input: trainy, © Trainm, | Valid, ‘ [/pu. | Jfoldy | Joldy | | /am_.‘
: Split trainy, into rrain and valid S (o] rame]
Po = socordng o Veldation repeat
: for each 0 € © do i
model < Train(trainy, 0) : times

CONDAUE W

Po < Po U Eval(model, valid)

: end for
: besty <— argmaxg pg
: return besty

e —

according 1o average Validation
performance

Validation strategies

How to split validation/training set
> Need of a strategy to split between training and validation sets
» Training is used to tune the parameters of the model

» Validation is used to evaluate the model according to
hyperparameters

47 /54

Train/Validation /Test

Single split
“* An unique model to learn
== May be subject to split bias

== Only one evaluation of performance

Available Data

A

»

learning set validation set

test set

48 /54

Leave one out

N splits
== N models to learn

== \/alidation error is evaluated on 1 data

Available Data

Split 1

Split 2

Splitn

49 /54

KFold Cross validation

K splits
< K models to learn
» Validation error is evaluated on N/K data

» Some splits may be biased

Available Data

Split 1 | | |

—
O —— | VS
—

Split 3 | | |

50 /54

Shuffle Split Cross validation
K splits
» Learn/Valid sets are randomly splited
K models to learn

Avoid bias
Some data may not be evaluated

1+ 4+

Available Data

Split 1

Split 2

Split K

51/54

With scikit-learn

vVvYvyy

sklearn.model_selection.train_test_split
sklearn.model _selection.KFold
sklearn.model_selection.ShuffleSplit

sklearn.model_selection.GridSearchCV

52/54

Recommandation

Size of splits
» How many splits 7
» How many element by split ?
» Depends on the number of data
» Tradeoff between learning and generalization

Stratified splits

» Splitting may induce to imbalanced datasets
P> Take care that the distribution of y is the same for all sets

53 /54

Conclusion

> A good protocol avoid bias
» Test is never used during tuning of (hyper)parameters

» Perfect protocol doesn't exists

54 /54

	General Problem
	Regression and Classification

	Methods
	k Nearest Neighbors
	Random Forests
	SVM & consorts
	Multi Layer Perceptron

