
Introduction to Data Science
Supervised Learning

Benoit Gaüzère

INSA Rouen Normandie - Laboratoire LITIS

March 4, 2024

1 / 54



What we are talking about ?

▶ Learning trough examples

▶ Mimic human tasks (IA ?)

▶ Produce outputs given some inputs (functions ?)

2 / 54



Supervised Learning

Purpose

Given a dataset {(xi, yi) ∈ X × Y, i = 1, . . . , N}, learn the
dependancies between X and Y.

▶ Example: Learn the links between cardiac risk and food
habits. xi is one person describe by d features concerning its
food habits; yi is a binary category (risky, not risky).

▶ yi are essential for the learning process.

▶ Methods : K-Nearest Neighbors, SVM, Decision Tree, . . .

3 / 54



How to Encode Data

X ∈ Rn×p

Samples

▶ n samples (number of lines)

▶ X(i, :) = x⊤
i : the i-th sample

▶ xi ∈ Rp

Features
▶ p features (number of colons)

▶ Each sample is described by p features

▶ X(:, j) = x•j : The j-th feature for all sample

X(i, j) : j-th feature of i-th sample.

4 / 54



observation 1

observation i

variable j

variable 1

variable
p

observation n



Learning Model

Model

f : X → Y
xi → ŷ

We want that
f(xi) ≃ yi

6 / 54



Example

What is the underlying f function ?

7 / 54



Example

0 2 4 6 8 10
0

20

40

60

80

0 2 4 6 8 10
0

20

40

60

80

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10

0

20

40

60

80

100

8 / 54



How to find a good f ?

f ⋆ = argmin
f
L(f (X),y) + λΩ(f )

▶ L : Y × Y → R

▶ λ ∈ R+

▶ Ω : (X → Y)→ R+

9 / 54



Fit to data term

L(f (X),y)

▶ Guarantees that the model fits the data

▶ Penalizes when the predicted value of f(xi) is far from yi

10 / 54



Regularization term

Ω(f )

▶ Constrain the complexity of function f

▶ Occam’s razor : simpler is better

▶ λ : Weight the balance between the two terms

11 / 54



Illustrations I

0 2 4 6 8 10
0

20

40

60

80

▶ Very high L(f(X),y)

▶ Very low Ω(f)

12 / 54



Illustrations II

0 2 4 6 8 10
0

20

40

60

80

▶ High L(f(X),y)

▶ Low Ω(f)

13 / 54



Illustrations III

0 2 4 6 8 10
0

20

40

60

80

100

▶ L(f(X),y) = 0

▶ High Ω(f)

14 / 54



Illustrations IV

0 2 4 6 8 10

0

20

40

60

80

100

▶ L(f(X),y) = 0

▶ Very high Ω(f)

15 / 54



Generalization

A good model generalizes well

▶ Good generalization : good prediction on unseen data

▶ Hard to evaluate without bias

▶ Overfitting

▶ Regularization term prevents from overfitting

16 / 54



Supervised Learning Tasks I

Binary Classification

▶ Y = {0, 1}
▶ Dog or cat ? Positive or Negative ?

▶ Performance : Accuracy, recall, precision, . . .

Dog

Cat

17 / 54



Supervised Learning Tasks II
Regression

▶ Y = R

▶ Stock market, House price, boiling points of molecules, . . .

▶ Performance: RMSE, MSE, MAE, . . .

H3C

Cl O

O

O P

S

O

CH 3

O CH 3

H3C

Cl O

O

O P

S

O

CH 3

O CH 3
120 °C

18 / 54



Supervised Learning Tasks III

And many others

▶ Ranking

▶ MultiClass classification

▶ Multi Labeling

▶ . . .

19 / 54



Machine learning Methods for
Classification

▶ K-nearest neighbors

▶ Random forests

▶ SVM & consorts

▶ Multi Layer Perceptron



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



k Nearest Neighbors

Principle

Determine property from the property of similar data

21 / 54



K-NN Hyperparameters

Number of neighboors k

Quantify the number of neighbors used for the decision

▶ Low number : high variability, high accuracy

▶ High number : more smooth

Distance
How the similarity is determined

▶ Similarity depends on data, structure, task

▶ Euclidean, Manhattan, ad hoc distances

22 / 54



KNN : the code !

1 from sklearn.neighbors import KNeighborsClassifier

2 k=5

3 metric = 'manhattan'

4 knn = KNeighborsClassifier(n_neighbors=k,metric=metric)

5 knn.fit(X,y) #apprentissage

6 y_pred = knn.predict(X) # prediction

▶ Metrics : link

▶ ⇒ Notebook

▶ the documentation

23 / 54

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.distance_metrics.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier


Decision Tree

Principle

Learn decision rules to separate the data.

24 / 54



Decision Tree

Principle

Learn decision rules to separate the data.

24 / 54



Decision Tree

Principle

Learn decision rules to separate the data.

24 / 54



Random Forests

Principle

▶ Combine many decision trees to learn complex functions

▶ Ensemble methods, majority voting

25 / 54



Random Forests Hyperparameters

Number of trees
Adjust the number of trees composing the forests

▶ low number : fast to compute, but less accurate

▶ high number : slower to compute, but more accurate up to
some number

Number of features
Determine the number of features to be used when splitting the
data

▶ See the guidelines of scikit-learn

Tree depth

Specify the maximal depth of tree. An higher depth will make
dedicate categories, but less generalizable.

26 / 54



Random Forests : the code !

1 from sklearn.ensemble import RandomForestClassifier

2 n_estimators = 20 # the number of trees in the forest

3 max_depth = None # expand as you can

4 max_features = "sqrt" # RTFM

5 clf = RandomForestClassifier(n_estimators=n_estimators,

6 max_depth=max_depth,

7 max_features=max_features)

8 clf.fit(X,y)

9 ypred = clf.predict(X)

▶ User guide for hyperparameters : link

▶ ⇒ Notebook

▶ the documentation

27 / 54

https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier


Support Vector Machines

Principle

Find the best line which separates the data

28 / 54



Support Vector Machines

Principle

Find the best line which separates the data

▶ Best separation ⇒ points far away the separation

▶ Points on margin : support vectors

28 / 54



Support Vector Machines

General Principle

What happens when there is no separation line ?

29 / 54



Support Vector Machines

General Principle

What happens when there is no separation line ?

▶ ⇒ We allow errors !
29 / 54



Support Vector Machines

Error control
C controls the trade off between errors and separation

30 / 54



Extension to non linear separation
Thanks to kernel trick, SVM can compute any kind of separation
line

▶ Depends on kernel
31 / 54



SVM Hyperparameters

C
Adjust the importance of errors

▶ low C : fast to compute, more simple separation, more errors

▶ high number : slower to compute, less errors, maybe too
complex separation line

kernel
Determine how the separation line is build

▶ linear : straight line

▶ poly, rbf, sigmoid : complex lines, basic choice is rbf

▶ precomputed : provide a similarity matrix (more difficult)

32 / 54



SVM : the code !

1 from sklearn import svm

2 C = 1

3 kernel = 'rbf'

4 clf = svm.SVC(C=C,kernel=kernel)

5 clf.fit(X,y)

6 ypred = clf.predict(X)

▶ User guide for hyperparameters : link

▶ ⇒ Notebook

▶ the documentation

33 / 54

https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/svm.html#classification


Multi Layer Perceptron

Principle

Learn the best representation of data

▶ Weights w are optimized by gradient descent

▶ Sequence of layers

34 / 54



MLP Hyperparameters

Hidden layers

Define the architecture of your MLP

▶ Number of layers : a high number tends to deep networks

▶ Number of neurons per layer : a high number tends to wide
networks

The model will be more complex if more neurons are used

Activation function
Determine how the non linearity is brought to the model

▶ identity : linear model

▶ tanh, relu, logistic : non linears. ReLU is a very popular choice

35 / 54



MLP : the code !

1 from sklearn.neural_network import MLPClassifier

2 activation = 'relu' # default

3 layers = [32,64,128,64,32] #5 layers avec différentes tailles

4 clf = MLPClassifier(hidden_layer_sizes=layers,max_iter=500)

5 clf.fit(X,y)

6 ypred = clf.predict(X)

▶ User guide for tips and help : link

▶ ⇒ Notebook

▶ the documentation

36 / 54

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mlp-tips
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


Pratical

How to learn a “good” model ?

▶ We want good performance

▶ Simple as possible

▶ Able to predict unseen data

37 / 54



Empirical Risk

Error on learning set

▶ Empirical risk:

Remp(f) =
1

N

N∑
i=1

L(f(xi), yi)

▶ L evaluates the performance of prediction f(xi)

▶ Error is computed on the training set

▶ The model can be too specialized on this particular dataset

38 / 54



Generalisation

Tentative of Definition
▶ Ability of the model to predict well unseen data

▶ Hard to evaluate

▶ Real objective of a model

Regularisation

▶ Regularization term control the model

▶ Balances between empirical risk and generalization ability

▶ Need to tune the balance (λ)

39 / 54



How to evaluate to ability to generalize ?

Evaluate on unseen data
▶ Define and isolate a test set

▶ Evaluate on the test set

Bias
▶ Avoid to use same data in train and test

▶ Test set must be totally isolated

40 / 54



Overfitting vs Underfitting

▶ Overfitting: low Remp, high generalization error

▶ Underfitting: high Remp, medium generalization error
P

re
di

ct
io

n 
er

ro
r

Test set

Learning set

low highModel complexity

41 / 54



Hyperparameters

Parameters outside the model
▶ Some parameters are not learned by the model

▶ They are “hyperparameters” and must be tuned

▶ Tuned on data outside the test set

▶ Example: λ in Ridge Regression

42 / 54



How to tune the hyperparameters ?

Validation set
▶ Split train set into validation and learning set

▶ Learn model parameters using the learning set

▶ Evaluate the performance on validation set

▶ Validation set simulates the test set, aka unseen data

43 / 54



General framework

Dataset

Validation set Test setLearning set

Model Model 
learned

Model 
learned & 
optimal 

hyperparameters
Learning Cross 

Validation
Performance

Evaluation

Learning 
performance

Validation 
performance

Final 
performance

44 / 54



General CV pseudo code
1: function Eval(X, y,model,h params)
2: best perf ← 0
3: Xtrain, ytrain, Xtest, ytest ← split(X, y)
4: for h param ∈ h params do
5: perf← 0
6: for i ∈ 1 . . . 10 do
7: Xt, yt, Xv, yv ← cv split(Xtrain, ytrain, i)
8: fitted model← train(model, Xt, yt,h param)
9: ypred ← predict(fitted model, Xv)

10: perf← perf + score(y pred, yv)
11: end for
12: if perf < best perf then
13: best perf← perf
14: best param← h param
15: end if
16: end for
17: fitted model← train(model, Xtrain, ytrain,best param)
18: ypred ← predict(fitted model, Xtest)
19: return score(ypred, ytest)

20: end function 45 / 54



Still Learned at Top Conf
F. Errica, M. Podda, D. Bacciu, and A. Micheli, ‘A Fair Comparison of Graph Neural
Networks for Graph Classification’. ICLR 2020. http://arxiv.org/abs/1912.09893

46 / 54



Validation strategies

How to split validation/training set

▶ Need of a strategy to split between training and validation sets

▶ Training is used to tune the parameters of the model

▶ Validation is used to evaluate the model according to
hyperparameters

47 / 54



Train/Validation/Test

Single split

An unique model to learn

May be subject to split bias

Only one evaluation of performance

Available Data

learning set validation set test set

48 / 54



Leave one out

N splits

N models to learn

Validation error is evaluated on 1 data

Available Data

Split 1

Split 2

Split n

...

49 / 54



KFold Cross validation

K splits

K models to learn

▶ Validation error is evaluated on N/K data

▶ Some splits may be biased

Available Data

Split 1

Split 2

Split 3

K = 3}
50 / 54



Shuffle Split Cross validation

K splits

▶ Learn/Valid sets are randomly splited

K models to learn

Avoid bias

Some data may not be evaluated

Available Data

Split 1

Split 2

Split K

...

51 / 54



With scikit-learn

▶ sklearn.model selection.train test split

▶ sklearn.model selection.KFold

▶ sklearn.model selection.ShuffleSplit

▶ sklearn.model selection.GridSearchCV

52 / 54



Recommandation

Size of splits

▶ How many splits ?

▶ How many element by split ?

▶ Depends on the number of data

▶ Tradeoff between learning and generalization

Stratified splits

▶ Splitting may induce to imbalanced datasets

▶ Take care that the distribution of y is the same for all sets

53 / 54



Conclusion

▶ A good protocol avoid bias

▶ Test is never used during tuning of (hyper)parameters

▶ Perfect protocol doesn’t exists

54 / 54


	General Problem
	Regression and Classification

	Methods
	k Nearest Neighbors
	Random Forests
	SVM & consorts
	Multi Layer Perceptron


