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The 3 main kinds of machine learning

Supervised Unsupervised

Reinforcement




Motivation

Unsupervised learning data and model:

{xiti=1,..n

o density estimation: IP(x) ~ IP(x)
@ visualization: ¢ :IRP - R9, qg<p

@ clustering: provide groups of alike objects

https://scikit-learn.org/stable/modules/clustering.html
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Clustering applications

Marketing: customer segmentation Image segmentation

Cluster with TSNE

o Galaxy types: retreive galaxy types, Doccument analysis: medical
records, Pizza hut position (delivery store optimization),
quantification. ..

@ Clustering with different data type: Categorical variables, Text,
images, Multimedia, Time-Series, Discrete Sequences, Network Data
and bi clustering, co clustering. ..

o Clustering also provides representations (prototype, quantification. . .)



Clustering at sklearn
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Lecture road map

@ The clustering problem



The Clustering problem

Clustering is the task of grouping a set of objects in such a way that
objects in the same group are more similar (in some sense) to each other
than to those in other clusters (Wikipedia)
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Clustering as a bi objective optimization problem:
@ minimize some intra-cluster energy (distance)

@ maximize some inter-cluster energy (distance)



Different representations of clustering

Hard affectation

1 if observation i belongs to cluster k
@ Zjy =
0 else
Z is a n X k membership matrix

o - — 1 if observations i and j belong to the same cluster
Y1 0 else
A'is a n X n symmetric adjacency matrix

Soft affectation
@ pix = probability that point i/ belongs to cluster k

@ «ajj = probability that points i and j belong to the same cluster

What about outliers?



Clustering as a partition problem
1 if observation i belongs to cluster k
Zjk =
0 else

Observation Cluster 1 Cluster 2 Cluster 3
X1 1
X2

)

X3
Xa
X5
X6
X7
X8
X9
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Minimize some energy and maximize some entropy

Enumerate of all possible ({0,1},{0,1},{0,1})"” configurations such that
each point belongs to only one cluster.
This is a k = 3-partition problem.




Clustering as a Mixed interger program

Grotschell-Wakabayashi formulation (1989) with k cluster
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Clustering issues

© How to deal with computational issues?
» distance matrix D is n X n

@ How to assess the quality of a partition?

© How to represent a cluser?
» prototype, center, shape. ..

@ How to decide the number of cluster?

» Why not put each data point into a separate class?
» What is the payoff for clustering things together?

© What if each data vector can be classified in many different ways?

@ What for?



Clustering is an ill posed problem

Data clustering has been used with different objectives:
@ Identify an underlying structure
@ Retrieve a "natural" classification

@ Data compression via prototypes

What is good clustering?

AK Jain, Data clustering: 50 years beyond K-means, 2010



Clustering performance evaluation

Evaluation of clustering results is as difficult as the clustering itself

Popular approaches involve :
@ "internal" evaluation: clustering is summarized to a single score

A\

Silhouette coefficient
Calinski-Harabasz Index
Davies—Bouldin index
Dunn index

|||

v VY

o "externa

Purity
Rand index (William M. Rand 1971)

»
» F-measure
>

evaluation, clustering is compared to some "ground truth",

v

@ "manual" evaluation by a human expert,

@ "indirect" evaluation by evaluating the utility of the clustering

https://scikit-learn.org/stable/modules/clustering.html
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Internal evaluation
Silhouette Coefficient: the mean over all examples x;
a mean distance between x; and all other points in the same class.

b mean distance with all other points in the nearest cluster.
b—a
max(a, b)
Calinski-Harabasz Index: the ratio of the between-clusters dispersion
mean and the within-cluster dispersion
B =Y, nk(ck —c)(ck — )T tr(B) n—k
_ 1 T _
W= 3"k o 2oxec, (Xi = i) (xi — ck) tr(W) -1

Davies-Bouldin Index:
sy is the average distance between each point of cluster k and ¢, the

centroid of that cluster — also know as cluster diameter.
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Lecture road map

e Distance, proximity graph, densities and spanning trees



Distance matrix and similarity graph

Distance matrix D. e.g. using the Euclian metric djj = ||x;i — xj||
The associated similarity matrix S

1
Si=-D; or or exp Di or ...
b v 1+d,'j P

The corresponding connection graphs:
@ a proximity graph
@ the minimum spanning tree

@ the dendogram ...

cloud of points proximity graph minimum spanning tree
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Distance matrix and proximity graph
@ Represent data with a similarity graph G = (V, E) whose vertices are
data points (|V| = n)
» k-nearest neighbor graphs
» c-neighborhood graph
@ a graph is associated with an adjacency matrix A with A; € {0,1}
@ The matrix of edge weights W from a similarity graph

. —D(i.j)
Wi = Sj for instance =exp™ ¢
Data points epsilon-graph, epsilon=0.3
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Minimum spanning tree for clustering

A minimum spanning tree (MST) or minimum weight spanning tree is a
subset of the edges of a connected, edge-weighted undirected graph that
connects all the vertices together, without any cycles and with the
minimum possible total edge weight

Algorithms:

@ Prim'’s (also known as Jarnik's) algorithm

o Kruskal's algorithm can be shown to run in O(ElogE)
o fast MST (B. Chazelle, 2000)



Distance matrix and minimum spanning tree
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Dendogram

A dendrogram is a diagram representing a tree
Data groups are connected depending on their distance (sort n? distances)

e .nll. @ .nl.

bottom up or top down.
rather unstablel
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© Parametric clustering



k-means
Cost function:

mmZZz,ka, — ll?

Associated probabilist model:

:Z]p(k) (x|k) = ZwkexP 3lIx—cil 2
k

EM algorithm: iterate until convergence

© assignment: E-step zjx = 1 if k = argmin; |[x; — Gl

Q refitting: M-step ¢, = %

Algorithm 14.1 K -means Clustering.

1. For a given cluster assignment C, the total cluster variance (14.33) is
minimized with respect to {my,...,mx} yielding the means of the
currently assigned clusters (14.32)

2. Given a current set of means {mi....,mx}, (14.33) is minimized by
assigning each observation to the closest (current) cluster mean. That
is

C(i) = argmin ||z; — my||? (14.34)
1<k<K

3. Steps 1 and 2 are iterated until the assignments do not change.




k-means

at work

Initial Centroids Initial Partition

Iteration Number 2 Iteration Number 20




k-means at work
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Gaussian Mixture

IP(

= P(k)P(x|k) =
k

% > w exp 3 (—9)E, M(x—0)
k

spherical diag
Train accuracy: 88.4 Train accuracy: 93.8
Test accuracy? 92.1 Test accuracy? 89.5
x
X x
X X x);;?( : * % *
X
¥ y X ¥
tied full
Train accuracy: 95.5 Train accuracy: 94.6
Test accuracy? 100.0 Test accuracy? 97.4
X x
Sex -
., A% x X5 x
* G ,e’?
¥ X
. b setosa
versicolor
virginica

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html
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Gaussian Mixture
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Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 10241024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel



Lecture road map

@ Partitional and Hierarchical Clustering Algorithms



Hierarchical clustering
Two main types of hierarchical clustering
@ Agglomerative: Start with the points as individual clusters

@ Divisive: Start with one, all-inclusive cluster

Linkage criteria

@ Average linkage clustering

Average Linkage Complete Linkage Single Linkage
\A|| |ZZDX”XJ =
x;€Ax;€EB Hm"
. . | ‘7 L
@ Complete-linkage clustering | H’
I
max(D(x;, xj) : xi € A, xj € B)
@ Single-linkage clustering Il

min(D(x;, x;) : xi € A, x; € B)



Hierarchical clustering
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DNA microarray data: average
linkage hierarchical clustering
has been applied independently
to the rows (genes) and
columns (samples), de-
termining the ordering of the
rows and columns (see text).
The colors range from bright
green (negative,
under-expressed) to bright red
(positive, over-expressed).
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Hierarchical clustering
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scipy.cluster.hierarchy.dendrogram



scipy.cluster.hierarchy.dendrogram

Spectral clustering (Donath and Hoffman, 1973)

© represent data with a similarity graph G = (V, E)
use adjacency (or affinity) matrix W to describe G
» K-nearest neighbor graphs
» c-neighborhood graph
» Fully connected graph
@ The data points are embedded in a space, in which the clusters are
more “obvious,” with the use of the eigenvectors of the graph Laplacian
© Finally, use the k-means is applied to partition the embedding

Data Symmetric KNN

Spectral Clustering

o, T
Pl

Example illustrating three steps of spectral clustering

2014



Spectral clustering (step 2)
@ The matrix of edge weights W from a similarity graph

—D(i,j)
Wijj =exp™ « ’ or 0
@ The degree matrix G is the diagonal matrix satisfying G;; = Zf:l Wi
@ The unnormalized graph Laplacian L is defined by

L=G-W
@ The normalized graph Laplacians (there exists different)
Ly=GL=1-G'w

@ The matrix L satisfies the following properties:
» L is symmetric and positive semi-definite.
» L has n non-negative, real-valued eigenvalues 0 = \; < --- < )\,
» VxeR", x'lx= %ZU wii(x — x;)?
» the multiplicity of the eigenvalue 0 of L equals the number of
connected components



Spectral clustering: L eigenvalues
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Spectral clustering




Affinity propagation (Frey and Dueck, 2007)

o Given
> data (x1,...,X%,)
> the "distance" matrix D with D; = ||x; — x;||?
» and modified diagonal D;; = d*

@ Split the data into 2 sets:

» exemplar data points (cluster center) {¢(i),i =1,...,n}
» and non-exemplar (other data points related with an exemplar)

Estimated number of clusters: 3

find o : {1,...,n} — {1,...,n} : %

m(PinZ D(i, p(i)) .
i=1

°

@ d* = 0: n cluster (each pojnt is a cluster)

@ d* = oco: only one big cluster



Affinity propagation

@ To split the data into 2 sets, build

» The "responsibility" matrix R
r(i, k) quantify how well-suited x is to serve as the exemplar for x;,

I’(I', k) = _D(i7 k) - m;Z((—D(I,_j) + a(’v./))
J
» The "availability" matrix A
a(i, k) represent how "appropriate" for x; to pick xx as its exemplar

@ The exemplars are extracted from the final matrices as those whose
'responsibility + availability’ for themselves is positive

r(i,i) 4 a(i,i) > 0

@ Hyperparameters:

» diagonal terms D;; controls how many classes the algorithm produces
» the damping factor A (momentum)

R+ — \R(K) (1- )\)R(Hl)



Affinity propagation
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Affinity propagation




Lecture road map

e Density-Based Clustering



DBSCAN

Density-based spatial clustering of applications with noise (1996)
Characterization of points (¢, minPts):
¢ the maximum distance (radius) to consider,

MinPts the number of points required to form a cluster.

border

minPts = 3

@ core point: more than minPts within its e-neighborhood

@ border point: fewer neighbors than minPts, in the neighbohood of a
core point

@ noise point is any point that is not a core point or a border point.



DBSCAN
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Optics

Ordering points to identify the clustering structure (OPTICS)
Characterization of points (¢, minPts) with variable ¢

om. 2

Ankerst et al, 1999



Optics
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Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN)

Performs DBSCAN over varying € values and integrates the result

-04 -0.2 00 02 04 06

Density-Based Clustering Based on Hi hical Density i Campello et al. 2013




HDBBSCAN
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Comparizon

Geometry (metric
Method name  Parameters Scalability Usecase used)
K-Means number of Very large General-purpose, even cluster Distances between
clusters n_samples , medium size, flat geometry, not too points.
n_clusters with many clusters
MiniBatch code
Affinity damping, sample Not scalable with Many clusters, uneven cluster  Graph distance (e.g.
propagation preference n_samples size, non-flat geometry nearest-neighbor graph)
Mean-shift bandwidth Not scalable with Many clusters, uneven cluster  Distances between
n_samples size, non-flat geometry points.
Spectral number of Medium n_samples, Few clusters, even cluster Graph distance (e.g.
clustering clusters small n_clusters size, non-flat geometry nearest-neighbor graph)
Ward number of Large n_samples Many clusters, possibly Distances between
hierarchical clusters or and n_clusters connectivity constraints points.
clustering distance
threshold
Agglomerative  number of Large n_samples Many clusters, possibly Any pairwise distance
clustering clusters or and n_clusters connectivity constraints, non
distance Euclidean distances
threshold, linkage
type, distance
DBSCAN neighborhood Very large Non-flat geometry, uneven Distances between
size n samples , medium cluster sizes nearest points
n_clusters
OPTICS minimum cluster  Very large Non-flat geometry, uneven Distances between
membership n samples , large cluster sizes, variable cluster points.
n_clusters density
Gaussian many Not scalable Flat geometry, gocd for density Mahalancbis distances
mixtures estimation to centers
Birch branching factor, Large n_clusters Large dataset, outlier removal, Euclidean distance
threshold, and n_samples data reduction. between points
optional global
clusterer.

https://scikit-learn.org/stable/modules/clustering.html
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Conclusions

© And the winner is DBSCAN and spectral clustering and . ..
@ still an open issue (what is the application?)

© other approaches. . .

» PAM, CLARANS: Solutions for the k-medoids problem

» BIRCH: Constructs a hierarchical tree that acts a summary of the data,
and then clusters the leaves.

» ROCK: clustering categorical data by neighbor and link analysis

» LIMBO, COOLCAT: Clustering categorical data using information
theoretic tools.

» CURE: Hierarchical algorithm uses different representation of the
cluster

» CHAMELEON: Hierarchical algorithm uses closeness and
interconnectivity for merging

@ No consensus or clear guidelines exist to guide these decisions. Cluster
analysis always produces clustering, but whether a pattern observed in
the sample data characterizes a pattern present in the population
remains an open question. -Allison et al. (2006)
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