

(8 points)

• Duration: 2h,

DES SCIENCE APPLIQUÉES

• Access to handouts and notes is granted

1 Quantile regression

Given a set of samples $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i=1}^n$ our goal is to learn a linear regression model $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$, with $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, relating an input \mathbf{x}_i to its output y_i . More specifically we aim to estimate a function f robust to outliers (abnormal data) by solving the problem

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \ell_\tau \left(y_i - (\mathbf{w}^\top \mathbf{x}_i + b) \right)$$
(1)

where the loss function ℓ_{τ} is defined as $\ell_{\tau}(z) = \begin{cases} \tau z & \text{if } z \ge 0 \\ -(1-\tau)z & \text{if } z < 0 \end{cases}$ with $\tau \in [0,1]$.

Notice that for a random variable $z \in \mathbb{R}$, its τ -quantile is $\mu_{\tau} = \inf_{\mu} \{ Pr(z \leq \mu) \} = \tau = \operatorname{argmin}_{\mu} \mathbb{E}sp \, \ell_{\tau}(z-\mu)$. The median is for instance the 0.5-quantile and is known to be robust to outliers contrary to the mean estimator.

1. Plot the loss function $\ell_{\tau}(z)$ for $\tau = 0.1$ and $\tau = 0.5$. Are these functions derivable?

To solve Problem (1), we rather consider the following equivalent formulation

$$\min_{\mathbf{w}, b, \{\xi_i\}_{i=1}^n, \{\gamma_i\}_{i=1}^n} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \left(\tau \xi_i + (1-\tau)\gamma_i\right)$$
subject to
$$y_i - \left(\mathbf{w}^\top \mathbf{x}_i + b\right) \le \xi_i \quad \forall i = 1, n$$

$$\left(\mathbf{w}^\top \mathbf{x}_i + b\right) - y_i \le \gamma_i \quad \forall i = 1, n$$

$$\xi_i \ge 0 \quad \forall i = 1, n$$

$$\gamma_i \ge 0, \quad \forall i = 1, n$$

with C > 0, the regularization parameter. ξ_i and γ_i , i = 1, n are the slack variables.

- 2. How many constraint does the problem have ? Express the lagrangian of this problem.
- 3. Write the KKT stationary optimality conditions with relation to the primal variables \mathbf{w} , b, ξ_k and γ_k , k = 1, n. What is the expression of \mathbf{w} ?
- 4. Derive the corresponding dual problem. Propose a way to solve it.

2 Bayes's decision rule

(7 points)

ASI4

Consider a binary classification problem with classes C_0 and C_1 . The C_k , k = 0, 1 are characterized by the respective conditional densities:

IML

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{\theta_k e^{-x}}{(1+e^{-x})^{\theta_k+1}}, \quad \text{with } x \in \mathbb{R}.$$
 (2)

 $\theta_k, k = 0$ and k = 1 are respectively the parameters of the density functions $p(\mathbf{x}|C_0)$ and $p(\mathbf{x}|C_1)$.

Let $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathbb{R} \times \{0, 1\}\}_{i=1}^n$ be the training dataset. \mathcal{D} includes n_0 samples from class \mathcal{C}_0 and n_1 points from the second class.

- 1. Give an estimation of $\mathbb{P}(\mathcal{C}_k)$ the prior probability of $\mathcal{C}_k, k = 0, 1$.
- 2. We want to estimate the parameters $\theta_k \in \mathbb{R}, k = 0, 1$ of the conditional densities by maximizing the likelihood of the training data. For each class $C_k, k = 0, 1$:
 - (a) Give the expression of the log-likelihood.
 - (b) Deduce the estimation of θ_k by maximum likelihood estimation.

We want to design a discrimination function of the samples using Bayesian theory. The cost of a good decision is 0 and a bad decision costs λ_s .

- 3. Give the expression of the conditionals risks $R(\mathcal{C}_k/x), k = 0, 1$.
- 4. Deduce that the minimum risk is attained by deciding C_k if $\mathbb{P}(C_k|x) > \mathbb{P}(C_\ell|x) \quad \forall \ell \neq k$.
- 5. Give the explicit expression of the decision function knowing that the $p(x|C_k)$ are given by Equation (2).

3/8

Student name : _

3 Learning principles

For this exercise, mark your answers ON THE EXAM ITSELF. Fill in the bubbles that represent the best answer(s) to the question.

IML

- 1. Let $k(\mathbf{x}_i, \mathbf{x}_j) = \exp^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}}$ a gaussian kernel. Let the samples \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 such that \mathbf{x}_1 is geometrically close to \mathbf{x}_2 and far from \mathbf{x}_3 . What will be the value of $k(\mathbf{x}_2, \mathbf{x}_1)$ and $k(\mathbf{x}_3, \mathbf{x}_1)$?
 - $\bigcirc k(\mathbf{x}_2, \mathbf{x}_1)$ is close to 0 and $k(\mathbf{x}_3, \mathbf{x}_1)$ close to 1
 - $\bigcirc k(\mathbf{x}_2, \mathbf{x}_1)$ is close to 1 and $k(\mathbf{x}_3, \mathbf{x}_1)$ close to 0
 - $\bigcirc k(\mathbf{x}_2, \mathbf{x}_1) > 1 \text{ and } k(\mathbf{x}_3, \mathbf{x}_1) < 0$
 - $\bigcirc k(\mathbf{x}_2, \mathbf{x}_1) < 0 \text{ and } k(\mathbf{x}_3, \mathbf{x}_1) > 1$
- 2. Let a classification problem. We design two positive definite kernel functions k_0 and k_1 . Under which condition their combination $k = a_0k_0 + a_1k_1$ is a positive definite kernel?
 - \bigcirc a_0 is negative and a_1 is positive
 - \bigcirc a_0 and a_1 are both positive
 - \bigcirc a_0 is positive and a_1 is negative
 - $\bigcirc a_0$ and a_1 are both negative
- 3. In a non-linear SVM for classification the kernel function is used to
 - \bigcirc reduce the dimension of the inputs
 - \bigcirc expand the dimension for a better separability of the inputs
 - \bigcirc measure the similarity between a point \mathbf{x}_i and its label y_i
 - \bigcirc to find a non-linear decision function
- 4. To estimate the best regularized logistic model, you test the following regularization parameters $C = 10^{-2}, 10^{-1}, 1, 10, 10^2$. How many different logistic models do you need to train if you implement a 10-fold validation?
 - \bigcirc 5, \bigcirc 10, \bigcirc 25, \bigcirc 50

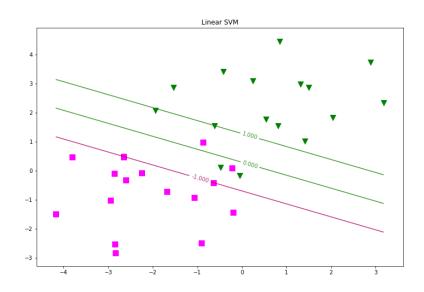
(5 points)

σ^2	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
Train error	35.12	27.18	9.71	2.35	0.00
Validation error	37.52	30.15	11.43	7.93	12.13

5. The model selection procedure of a SVM with gaussian kernel leads to the results in the table above. The optimal value of σ^2 is

\bigcirc 10	$)^{-1},$	\bigcirc	10^{-2}	2,	\bigcirc	10^{-3}	3,	\bigcirc	10^{-4}	•
---------------	-----------	------------	-----------	----	------------	-----------	----	------------	-----------	---

6. The figure below corresponds to a linear SVM trained with C = 1. Mark on the figure the support vectors.



7. t-SNE and PCA are

- \bigcirc supervised methods for dimension reduction
- linear approaches for classification
- \bigcirc unsupervised methods for dimension reduction
- 8. k-means clustering method does not require to specify the number of clusters
 G False O True