
Méthodes d’optimisation pour le Machine Learning

Stéphane Canu
scanu@insa-rouen.fr, asi.insa-rouen.fr\~scanu

Lundi 11 septembre 2023

The objectives of the lab
The purpose of this lab is to reproduce tables 3.1 and 3.2 from the third chapter of the book
"Elements of Statistical Learning" from Hastie, Tibshirani and Friedman, as shown bellow. The
objective of the homework is to reproduce partially table 3.3.

The following code is available on line with google colab at
https://colab.research.google.com/drive/1-gaATpexHmUqJvChanNrjTeafOFI3e9k

Ex. 1 — Tables 3.1 and 3.2
1. Prepare the data

a) Raw data is available on line, download it from moodle (Data.txt file) or from the
web at https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.
data.
import pandas as pd

url_data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
df = pd.read_csv(url_data, delimiter='\t')

b) Extract and normalize the explicative variables

1

variables = df.columns[1:9]
df[variables] = df[variables].apply(lambda x: (x - x.mean()) / x.std())

c) Is it wise to normalize these data?
d) Split the dataset into training and test data

Get the training and test sets
Y_train = df.loc[df["train"]=="T", 'lpsa'].as_matrix()
X_train = df.loc[df["train"]=="T", variables].as_matrix()
print("Training set : n = {} samples and p = {} dimensions".format(X_train.shape[0],

X_train.shape[1]))

Y_test = df.loc[df["train"]=="F", 'lpsa'].as_matrix()
X_test = df.loc[df["train"]=="F", variables].as_matrix()
print("Test set : n = {} samples and p = {} dimensions".format(X_test.shape[0], X_

test.shape[1]))

2. Compute the correlations of predictors in the prostate cancer data as presented Table
3.1
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
Xn = (X_train - X_train.mean(axis=0))/X_train.std(axis=0)
n, p = Xn.shape
C = Xn.T@Xn/n
or C = np.corrcoef(X_train.T)
plt.figure(figsize=(6, 4))
sns.heatmap(C, annot=True, fmt=".3f", vmin=-1)

3. Reproduce the results presented Table 3.2
a) Compute the coefficients of the linear regression model, without using the lm function

(but you can use it validate your code)
X = np.concatenate((np.ones((X_train.shape[0],1)), X_train), axis=1)
b_ls = np.linalg.solve(X.T@X, X.T@Y_train)

b) Compute the prediction error
n, p = X.shape
y_hat = X@b_ls
err = Y_train - y_hat

c) Compute the standard error for each variable
sigma_square = np.dot(Y_train - y_hat, Y_train - y_hat)/(n-p)
vector_v = np.diag(np.linalg.inv(X.T@X))
std_error_coef = np.sqrt(sigma_square * vector_v)

d) compute the Z score for each variable
z_score = b_ls/(std_error_coef)

e) visualize the results and compare with table 3.2
dash = '-' * 50
print(dash)
print("{:<11s}{:<15s}{:<13s}{:<10s}".format("Term", "Coef", "Std. error","Z score"))
print(dash)
for k in range(variables.shape[0]+1):

if k==0:
print("{:<10s}{:>12.2f}{:>12.2f}{:>12.2f}".format("Intercept", b_ls[k], std_

error_coef[k], z_score[k]))
else:

print("{:<10s}{:>12.2f}{:>12.2f}{:>12.2f}".format(variables[k-1], b_ls[k], std_
error_coef[k], z_score[k]))

print(dash)

2

Ex. 2 — Questions of means and preprocessing
1. (Hastie et al. Ex. 3.5 augmented; ridge regression/Lasso with intercept, ⇔ a ridge

regression/Lasso without intercept).
Consider the ridge regression problem with intercept term (3.41)

J(β0, β) =
N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

+ λ
p∑
j=1
|βj |q.

Show that this problem is equivalent to the minimization of

Jc(βc0, βc) =
N∑
i=1

yi − βc0 − p∑
j=1

(xij − xj)βcj

2

+ λ
p∑
j=1

∣∣∣βcj∣∣∣q .
Give the correspondence between [βc0;βc] and the original [β0;β]. Characterize the solu-
tion of this modified criterion. Propose a procedure to solve (1) by using

β̂R = (X>X + λI)−1X>y.

Show that similar result holds for the Lasso task in terms of the [βc0;βc] and [β0;β]
correspondence.

2. Weighted and normalized Lasso
• Weighted Lasso ⇔ a standard Lasso: Consider the weighted Lasso optimization

problem (on centered data with no intercept):

min
β
‖y−Xβ‖22 + λ

p∑
j=1

wj |βj |,

with given positive weight wj > 0 (j = 1, . . . , p). Show that this problem is equivalent
to a standard Lasso task [(3.52)]

min
β′

∥∥y −X ′β′∥∥2
2 + λ

p∑
j=1
|β′j |.

• Normalized Lasso ⇔ a weighted Lasso task with intercept: A typical way of using
the Lasso is to apply it on normalized data as follows:
1. Normalize y and X: yr = y−y

σy
and xrij = xij−xj

σj
for i = 1, . . . , n and j = 1, . . . , p.

2. Minimize ‖yr −Xrβr‖22 + λ ‖βr‖1 with respect to βr.
Show that this problem is equivalent to a weighted Lasso with intercept:

min
β
‖y− β0 −Xβ‖22 + λ

p∑
j=1

wj |βj |.

Explain how to retrieve β and β0 from βr.
3. (Hastie et al exercice 3.12 ridge regression⇔ a least squares problem) Show that the ridge

regression estimate can be obtained by ordinary least squares regression on an augmented
data set. We augment the centered matrix X with p additional rows containing

√
λIp,

and augment y with p zeros. By introducing artificial data having response value zero,
the fitting procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are implemented
by adding artificial data examples that satisfy them.

3

Ex. 3 — Your Turn
1. Reproduce in python Table 3.3, at least the first five columns that is LS, Best Subset,

Ridge, Lasso and PCR, implementing in python your own version of the LS, Best Subset,
Ridge, Lasso and PCR functions. You are allowed to cheat on the choice of the hyper-
parameters, and for instance assume that the best subset is given by the two variables
lcavol and lweight, for the ridge λ = 24.25, for the lasso λ = 23.39 and by taking 7
components for the PCR.

2. to solve the Lasso problem you can use CVXpy
import cvxpy as cp

Xn = (X_train - X_train.mean(axis=0))/X_train.std(axis=0)
Yn = (Y_train - Y_train.mean())/Y_train.std()
t = .7015
n, p = Xn.shape

b = cp.Variable(p)
o = cp.Minimize(cp.sum_squares(Xn@b-Yn))
c = [cp.norm(b, 1) <= t]
problem = cp.Problem(o, c)
problem.solve(solver=cp.SCS,eps=1e-5)

b_lasso = b.value*Y_train.std()/X_train.std(axis=0)
np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print("Estimation: ",b_lasso)

4

