Méthodes d’optimisation pour le Machine Learning

Stéphane Canu

scanu@insa-rouen.fr, asi.insa-rouen.fr\~scanu

Lundi 7 septembre 2025

The objectives of the lab

The purpose of this lab is to reproduce tables 3.1, 3.2 and 3.3 from the third chapter of the book
"Elements of Statistical Learning" from Hastie, Tibshirani and Friedman, as shown bellow.

TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol 1lweight age lbph svi lcp gleason

lweight 0.300

age 0.286 0.317

lbph 0.063 0.437 0.287

svi 0.593 0.181 0.129 —0.139

lcp 0.692 0.157 0.173 —0.089 0.671
gleason (.426 0.024 0.366 0.033 0.307 0.476

pggds 0.483 0.074 0.276 —0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coeflficient Std. Error Z Score

Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
peg4b 0.27 0.15 1.74

The following code is available on line with google colab at
https://colab.research.google.com/drive/1-gaATpexHmUqJvChanNrjTeafOFI3e9k?usp=
sharing

Ex. 1 — Tables 3.1 and 3.2

1. Prepare the data
a) Raw data is available on line, download it from moodle (Data.txt file) or from the

web at https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.
data.

import pandas as pd

url_data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
df = pd.read_csv(url_data, delimiter='\t')
b) Extract and normalize the explicative variables

variables = df.columns[1:9]
df [variables] = df [variables].apply(lambda x: (x - x.mean()) / x.std())

c) Is it wise to normalize these data?
d) Split the dataset into training and test data

Get the training and test sets

Y_train = df.loc[df["train"]=="T", 'lpsa'l].to_numpy()

X_train = df.loc[df["train"]=="T", variables].to_numpy ()

print("Training set : n = {} samples and p = {} dimensions".format(X_train.shape[0],
X_train.shape[1]))

Y_test = df.loc[df["train"]=="F", 'lpsa'l.to_numpy()

X_test = df.loc[df["train"]=="F", variables].to_numpy ()

print("Test set : n = {} samples and p = {} dimensions".format(X_test.shape[0], X_
test.shape[1]))

2. g?mpute the correlations of predictors in the prostate cancer data as presented Table

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

Xn = (X_train - X_train.mean(axis=0))/X_train.std(axis=0)
n, p = Xn.shape

C = Xn.T@Xn/n

or C = np.corrcoef (X_train.T)

plt.figure(figsize=(6, 4))

sns.heatmap(C, annot=True, fmt=".3f", vmin=-1)

3. Reproduce the results presented Table 3.2
a) Compute the coefficients of the linear regression model, without using the 1m function
(but you can use it validate your code)

X = np.concatenate((np.ones((X_train.shape[0],1)), X_train), axis=1)
b_1ls = np.linalg.solve(X.T@X, X.TQ@Y_train)

b) Compute the prediction error

n, p = X.shape
y_hat = X@b_1s
err = Y_train - y_hat

c¢) Compute the standard error for each variable

sigma_square = np.dot(Y_train - y_hat, Y_train - y_hat)/(n-p)
vector_v = np.diag(np.linalg.inv(X.T@X))
std_error_coef = np.sqrt(sigma_square * vector_v)

d) compute the Z score for each variable

z_score = b_ls/(std_error_coef)
e) visualize the results and compare with table 3.2

dash = '-' * 50
print(dash)
print ("{:<11s}{:<15s}{:<13s}{:<10s}".format ("Term", "Coef", "Std. error","Z score"))
print (dash)
for k in range(variables.shape[0]+1):
if k==0:
print ("{:<10s}{:>12.2f}{:>12.2f}{:>12.2f}" . format ("Intercept", b_ls[k], std_
error_coef[k], z_scorelk]))
else:
print ("{:<10s}{:>12.2f}{:>12.2f}{:>12.2f}" . format (variables [k-1], b_1s[k], std_
error_coef[k], z_scorelk]))
print (dash)

4. Propose a prompt to get the same result with any AI. Explain the Al you have chosen,
the way you work on your prompt and don’t spend more than 15 minutes in trying.

Ex. 2 — Questions of means and preprocessing

1.

2.

3.

(Hastie et al. Ex. 3.5 augmented; ridge regression/Lasso with intercept, < a ridge
regression/Lasso without intercept).
Consider the ridge regression problem with intercept term (3.41)

2

p
+AD 1617
j=1

N

p
J(Bo,B) = [yi —Bo— Y _ w3
=1

=1

Show that this problem is equivalent to the minimization of

q

Bj

2 p
+AY
j=1

N p
JO(B5. B = [yz — 85— D _(wij — ;)55

i=1 j=1

Give the correspondence between [3§; 3°] and the original [Sp; 8]. Characterize the solu-
tion of this modified criterion. Propose a procedure to solve (1) by using

B = (XTX + X)X Ty,

Show that similar result holds for the Lasso task in terms of the [5§; 3¢ and [fBo; f]
correspondence.
Weighted and normalized Lasso

e Weighted Lasso < a standard Lasso: Consider the weighted Lasso optimization
problem (on centered data with no intercept):

p
min [y — XBll; + A3 wil;l,
j=1

with given positive weight w; > 0 (j = 1,...,p). Show that this problem is equivalent
to a standard Lasso task [(3.52)]

P
min [ly = X', + A 31651
j=1

e Normalized Lasso < a weighted Lasso task with intercept: A typical way of using
the Lasso is to apply it on normalized data as follows:

1. Normalize y and X: y’":%andxfj:x”&i;@forz’:1,...,nandj:1,...,p.

2. Minimize ||y" — X78"||5 + A||87]|; with respect to 3"
Show that this problem is equivalent to a weighted Lasso with intercept:

p
mﬁin Iy — Bo — XBlI3 + XD w;B;l.
=1

Explain how to retrieve 8 and Fy from g".

(Hastie et al exercice 3.12 ridge regression < a least squares problem) Show that the ridge
regression estimate can be obtained by ordinary least squares regression on an augmented
data set. We augment the centered matrix X with p additional rows containing \ﬂlp,
and augment y with p zeros. By introducing artificial data having response value zero,
the fitting procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are implemented
by adding artificial data examples that satisfy them.

Ex. 3 — Your Turn

1. Reproduce in python Table 3.3, at least the first five columns that is LS, Best Subset,
Ridge, Lasso and PCR, implementing in python your own version of the LS, Best Subset,
Ridge, Lasso and PCR functions. You are allowed to cheat on the choice of the hyper-
parameters, and for instance assume that the best subset is given by the two variables
lcavol and lweight, for the ridge A = 24.25, for the lasso A = 23.39 and by taking 7
components for the PCR.

2. to solve the Lasso problem you can use CVXpy

import cvxpy as cp

Xn = (X_train - X_train.mean(axis=0))/X_train.std(axis=0)
Yn = (Y_train - Y_train.mean())/Y_train.std()

t = .7015

n, p = Xn.shape

cp.Variable(p)

cp.Minimize (cp.sum_squares (Xn@b-Yn))
[cp.norm(b, 1) <= t]

problem = cp.Problem(o, c)
problem.solve(solver=cp.SCS,eps=1e-5)

o o
nnu

b_lasso = b.value*Y_train.std()/X_train.std(axis=0)
np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print ("Estimation: ",b_lasso)

3. What do you think about the results regarding the PLS? Can you improve them?

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data.l The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2.477 2.452 2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238 0.169 0.289 0.344
age —0.141 —0.046 —-0.152 —0.026

lbph 0.210 0.162 0.002 0.214 0.220

svi 0.305 0.227 0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pggib 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0.492 0.479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152

