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Avant propos

Evaluation par attendus d’apprentissages disciplinaires

Depuis I’année universitaire 2018-2019, la validation du cours « Algorithique avancée et programmation
C > utilise une évaluation par attendus d’apprentissages disciplinaires (AAD). Le référentiel des AAD est dispo-
nible sur le site Moodle de 'INSA Rouen Normandie : https://moodle.insa-rouen.fr/course/
view.php?id=60&section=0.

Les exercices de ce document vous permettent de travailler ces AAD.

Quelque soit I’exercice les AAD suivants sont évalués :

— ANOO1 : Désigner les choses (identifiant significatif)

— ANO02 : Etre précis quant aux types de données utilisés

— ANOO3 : Connaitre le role de I’analyse

— CPO0O01 : Comprendre le paradigme de programmation impératif

— CP002 : Comprendre le paradigme de programmation structuré

— CP006 : Comprendre le role de la conception préliminaire

— CDO004 : Ecrire des algos avec le pseudo code utilisé 2 I'INSA

— CDO0O05 : Ecrire un pseudo code lisible (indentation, identifiant significatif)
— CDO006 : Choisir la bonne itération

— CDO007 : Utiliser les bonnes catégories de parametres effectifs pour un passage de parametre donnée
— CDO009 : Ecrire un algorithme qui résout le probleme

— CDO10 : Connaitre le role de la conception détaillée

Le tableau ci dessous croise les exercices de ce livret avec les autres compétences :

Croisement AAD - exercices

] AAD ‘ Exercices
ANO004 : Comprendre et appliquer des consignes al- MIZI, IEHE'
gorithmiques sur un exemple
AN101 : Identifier les entrées et sorties d’un M H |4_¥|, |§|
probleme
AN102 : Décomposer logiquement un probleme 2.4[, |4|
AN103 : Généraliser un probleme 4
AN104 : Savoir si un probleme doit étre décomposé | [2.4
ANZ201 : Identifier les dépendances d’un TAD 6} 18|12
AN?203 : Savoir si une opération identifiée fait partie | (6 (8|12
du TAD a spécifier -
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AAD ‘ Exercices

AN204 : Formaliser des opérations d’un TAD 6 12|

AN205 : Formaliser les préconditions d’une | |68
opération d’un TAD

AN206 : Formaliser des axiomes ou savoir définir la |§|, |£|
sémantique d’une opération d’un TAD

AN301 : Lister les collections usuelles

CP003 : Choisir entre une fonction et une procédure | |1.3 4|, |5L |6|, |Eﬂ;|12J_

CP004 : Concevoir une signature (préconditions in- | [L.1][1.2]1.3[2.1[[2.2[2.3}[3.1}3.2}[3.3] 3.5 |4} 5} 6} [12]

cluses)

CPO0O05 : Choisir un passage de parametre (E, S, E/S) 2.2[, |5|, |6|, |12|

CDO001 : Dissocier les deux roles du développeur : | [6
concepteur et utilisateur

CDO002 : En tant qu’utilisateur, respecter une signa- | |1.1}[1.2]

ture

CDO003 : Utiliser le principe d’encapsulation 6 8|
CD101 : Estimer la taille d’un probleme (n) 14,14
CD102 : Calculer une complexité dans le pire et le | (1.4} 4 |Z|

meilleur des cas

CD104 : Ecrire un algorithme d’une complexité

donnée

CD201 : Identifier et résoudre le probleme des cas M |£|, H M H m, |§|, @I, |£|

non récursifs

CD202 : Identifier et résoudre le probleme des cas MM Mlﬁ“ﬁ“ﬂ@@“ﬂ

récursifs

CD203 : Identifier une récursivité terminale et non EHQI, Mlﬁ“ﬁl
terminale et ce que cela implique

CD301 : Identifier un probleme qui se résout a I'aide | [2.3|
d’un algorithme dichotomique

CD302 : Définir I’espace de recherche d’un algorith- M H
mique dichotomique

CD303 : Diviser et extraire les bornes de 1’espace de M H
recherche d’un algorithme dichotomique (cas discret
ou continu)

CD403 : Concevoir et utiliser des arbres (binaires, m
n-aires)

CD501 : Comprendre les algorithmes des différents |Z|
tris et leurs complexités

CD601 : Concevoir des collections a 1’aide de SDD 10

CD602 : Comprendre les algorithmes d’insertion et | (10
de suppression (naifs et AVL) dans un arbre binaire
de recherche

CD701 : Définir la programmation dynamique 13

CD702 : Appliquer la programmation dynamique | (13
pour des cas simples

CD801 : Concevoir des graphes (matrice d’adja- |£|
cence, matrice d’incidence, liste d’adjacence)
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] AAD ‘ Exercices

CD804 : Comprendre des algorithmes de recherche |£|
du plus court chemin : Dijkstra et A*
CD901 : Concevoir un type de données adapté a la |2|,|2|
situation en terme d’espace mémoire et d’efficacité

Pseudo code

Vous écrirez vos algorithmes avec le pseudo code utilisé dans la plupart des cours d’algorithmique de
I’INSA Rouen Normandie. Voici la syntaxe des instructions disponibles :

Type de données

Les types de base sont : Entier, Naturel, NaturelNonNul, Reel, ReelPositif, ReelPositifNonNul, Reel-
Negatif, ReelNegatifNonNul, Booleen, Caractere, Chaine de caracteres.
On définit un nouveau type de la fagon suivante :
Type Identifiant_nouveau_type = Identifiant_type_existant
On déclare un tableau de la facon suivante :

— Tableau a une dimension : Tableau[borne_de_début. . .borne_de_fin] de type_des_éléments

— Tableau a deux dimensions : Tableau[borne_de_début. . .borne_de_fin][borne_de_début. . .borne_de_fin] de
type_des_éléments

On définit une structure de la facon suivante :
Type Identifiant = Structure
identifiant_attribut_1 : Type_1

finstructure

Affectation

Le symbole d’affectation est «—.

Conditionnelles

Il y a trois instructions conditionnelles :

si condition alors si condition alors cas ou identifiant_variable vaut
instruction(s) instruction(s) valeur_I:

finsi sinon instruction(s)_1

instruction(s) .

finsi autre :
instruction(s)
fincas

Itérations

L’instruction de base pour les itérations déterministes est le pour :
pour identifiant <—borne_de_début a borne_de_fin faire
instruction(s)
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finpour
On peut itérer sur les éléments d’une liste, d’une liste ordonnée ou d’un ensemble grace a I’instruction pour
chaque :
pour chaque élément de collection
instruction(s)
finpour
Pour les itérations indéterministes nous avons deux instructions :

tant que condition faire repeter
instruction(s) instruction(s)
fintantque jusqu’a ce que condition

Sous-programmes

Les fonctions permettent de calculer un résultat (composé d’une ou plusieurs valeurs) de maniere déterministe :

fonction identifiant (parametre(s)_formel(s)) : Type(s) de retour
| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s) avec au moins une fois I’instruction retourner
fin
Les procédures permettent de créer de nouvelles instructions :
procédure identifiant (parametre(s)_formel(s)_avec_passage_de_parametres)

| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s)
fin
Les passages de parameétre sont : entrée (E), sortie (S) et entrée/sortie (E/S).



Chapitre 1

Rappels : chaine de caracteres, itérations,
conditionnelles

Pour certains de ces exercices on considere que 1’on possede les fonctions suivantes :

— fonction longueur (uneChaine : Chaine de caracteres) : Naturel

— fonction iemeCaractere (uneChaine : Chaine de caracteres, iemePlace : Naturel) : Caractere

| précondition(s) 0 < iemePlace et iemePlace < longueur(uneChaine)

1.1 estUnPrefixe

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO006 : Choisir la bonne itération

\. J

Proposez la fonction estUnPrefixe qui permet de savoir si une premiere chaine de caracteres est préfixe
d’une deuxieme chaine de caracteéres (par exemple < pré > est un préfixe de < prédire > et de < pré >).

1.2 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO006 : Choisir la bonne itération

Une chaine de caracteres est un palindrome si la lecture de gauche a droite et de droite a gauche est iden-
tique. Par exemple “radar”, “été”, “rotor”, etc. La chaine de caracteres vide est considérée comme étant un
palindrome

Ecrire une fonction qui permet de savoir si une chaine est un palindrome.

9



10 CHAPITRE 1. RAPPELS : CHAINE DE CARACTERES, ITERATIONS, CONDITIONNELLES

1.3 Position d’une sous-chaine

Attendus d’apprentissages disciplinaires évalués

— ANI1O01 : Identifier les entrées et sorties d’un probleme
— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

Soit I’analyse descendante présentée par la figure [T.1] qui permet de rechercher la position d’une chaine de
caracteéres dans une autre chaine indépendemment de la casse (d’ot le suffixe IC a1’opération positionSousChaineIC),
c’est-a-dire que 1’on ne fait pas de distinction entre majuscule et minuscule.

’+ positionSousChainelC —

sontEgaleslC —»

sousChaine

longueur

’+ minuscule —

FIGURE 1.1 — Une analyse descendante

iemeCaractere

Pour résoudre ce probleme il faut pouvoir :

— obtenir la longueur d’une chaine de caracteres ;

— obtenir la sous-chaine d’une chaine en précisant I’indice de départ de cette sous-chaine et sa longueur (le
premier caractere d’une sous-chaine a I’indice 1);

— savoir si deux chaines de caracteres sont égales indépendemment de la casse.

L’opération positionSousChaineIC retournera la premiére position de la chalne recherchée dans la
chaine si cette premiere est présente, 0 sinon.
Par exemple :

— positionSousChaineIC ("AbCdEfGh", "cDE") retournera la valeur 3;
— positionSousChaineIC ("AbCdEfGh", "abc") retournera la valeur 1;

— positionSousChaineIC ("AbCdEfGh", "xyz") retournera la valeur 0.

1. Complétez I’analyse descendante en précisant les types de données en entrée et en sortie.

2. Donnez les signatures completes (avec préconditions si nécessaire) des sous-programmes (fonctions ou
procédures) correspondant aux opérations de 1’analyse descendante.

3. Donnez I’algorithme du sous-programme correspondant a I’opération positionSousChaineIC et
sousChaine
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1.4 Racine carrée d’un nombre : recherche par dichotomie

Attendus d’apprentissages disciplinaires évalués

— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

— CD101 : Estimer la taille d’un probleme (n)

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

L’ objectif de cet exercice est de rechercher une valeur approchée de la racine carrée d’un nombre réel positif
x (x > 1) a e pres a ’aide d’un algorithme dichotomique.
Pour rappel :

<« La dichotomie (“couper en deux” en grec) est, en algorithmique, un processus itératif [..]
de recherche ou, a chaque étape, on coupe en deux parties (pas forcément égales) un espace de
recherche qui devient restreint a I’'une de ces deux parties.

On suppose bien slir qu’il existe un test relativement simple permettant a chaque étape de
déterminer 1’'une des deux parties dans laquelle se trouve une solution. Pour optimiser le nombre
d’itérations nécessaires, on s’arrangera pour choisir a chaque étape deux parties sensiblement de
la méme “taille” (pour un concept de “taille” approprié au probléme), le nombre total d’itérations
nécessaires a la complétion de 1’algorithme étant alors logarithmique en la taille totale du probléme
initial. > (wikipédia).

. Définir < I’espace de recherche > pour le probleme de la recherche d’une racine carrée.
. Quelle condition booléenne permet de savoir si il doit y avoir une nouvelle itération ?

. Quel test va vous permettre de savoir dans laquelle des deux parties se trouve la solution ?

B S N

. Proposez 1’algorithme de la fonction suivante (on suppose que x et epsilon sont positifs et que x est
supérieur ou égal a 1) :

— fonction racineCarree (x,epsilon : ReelPositif) : ReelPositif

91

. Quelle est la complexité de votre algorithme ?
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Chapitre 2

Rappels : les tableaux

Dans certains exercices qui vont suivre, le tableau d’entiers ¢ est défini par [1.MAX] et il contient n
éléments significatifs (n < MAX).

2.1 Plus petit élément

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

Ecrire une fonction, minTableau, qui 2 partir d’un tableau d’entiers ¢ non tri¢ de n éléments significatifs
retourne le plus petit élément du tableau.

2.2 Sous-séquences croissantes

Attendus d’apprentissages disciplinaires évalués

— CPO003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O0S5 : Choisir un passage de parametre (E, S, E/S)

— CDO005 : Ecrire un pseudo code lisible (indentation, identifiant significatif)

Ecrire un sous-programme sousSequencesCroissantes, qui a partir d’un tableau d’entiers ¢ de n
éléments, fournit le nombre de sous-séquences strictement croissantes de ce tableau, ainsi que les indices de
début et de fin de la plus grande sous-séquence. Exemple : ¢ un tableau de 15 éléments : 1,2,5,3,12,25,13
,8,4,7,24,28,32,11, 14. Les séquences strictement croissantes sont : < 1,2,5 >, < 3,12,25 >, < 13 >, <
8 >,<4,7,24,28,32 >, < 11,14 >. Le nombre de sous-séquences est : 6 et la plus grande sous-séquence
est: < 4,7,24,28,32 >. Donc dans ce cas les trois valeurs calculées seraient 6, 9 et 13.

13



14 CHAPITRE 2. RAPPELS : LES TABLEAUX

2.3 Recherche d’un élément en O(log(n))

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDI104 : Ecrire un algorithme d’une complexité donnée

— CD301 : Identifier un probleme qui se résout a I’aide d’un algorithme dichotomique
— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

J

Ecrire une fonction, recherche, qui détermine le plus petit indice d’un élément, (dont on est sir de
I’existence) dans un tableau d’entiers ¢ trié¢ dans I’ordre croissant de n éléments en O(log(n)). Il peut y avoir
des doubles (ou plus) dans le tableau.

2.4 Lissage de courbe

Attendus d’apprentissages disciplinaires évalués

— ANIO01 : Identifier les entrées et sorties d’un probleme
— ANI102 : Décomposer logiquement un probleme

— ANI104 : Savoir si un probleme doit étre décomposé

J

L’ objectif de cet exercice est de développer un « filtre non causal >, c’est-a-dire une fonction qui lisse
un signal en utilisant une fenétre glissante pour moyenner les valeurs (Cf. figure [2.1)). Pour les premieres et
dernigres valeurs, seules les valeurs dans la fenétre sont prises en compte.

L [2/1]4]5]3]6]|3]7] 2]1]4a]5]3]6]3]7] (2]1]4]5]3]s]3][7] ]
v v v
is] | ] ] 1502333 4 [a7] | | | 1.5/2.3]3.3) 4 [4.7] 4 |53 5 |

FIGURE 2.1 — Lissage d’un signal avec une fenétre de taille 3

Soit le type Signal :
Type Signal = Structure

donnees : Tableau[1..MAX] de Reel

nbDonnees : Naturel
finstructure

Apres avoir fait une analyse descendante du probléme, proposez 1’algorithme de la fonction £i 1t reNonCausal
avec la signature suivante :

— fonction filtreNonCausal (signalNonLisse : Signal, tailleFenetre : NaturelNonNul) : Signal

| précondition(s) impair(tailleFenetre)



Chapitre 3

Rappels : récursivité

3.1 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction qui permet de savoir si une chalne est un palindrome. Est-ce un algorithme récursif
terminal ou non-terminal ?

3.2 Puissance d’un nombre

Attendus d’apprentissages disciplinaires évalués

— CPO004 : Concevoir une signature (préconditions incluses)

— CD104 : Ecrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction récursive, puissance, qui éléve un réel a a la puissance nb (naturel) en Q(n).
15



16 CHAPITRE 3. RAPPELS : RECURSIVITE

3.3 Recherche du zéro d’une fonction en O(n)

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDI104 : Ecrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction récursive, zeroFonction, qui calcule le zéro d’une fonction réelle f(z) sur I’inter-
valle réel [a, b], avec une précision e. La fonction f est strictement monotone sur [a, b].

3.4 Dessin récursif

Attendus d’apprentissages disciplinaires évalués

— ANO04 : Comprendre et appliquer des consignes algorithmiques sur un exemple
— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Supposons que la procédure suivante permette de dessiner un carré sur un graphique (variable de type
Graphique):
— procédure carre (E/S g : Graphique,E x,y,cote : Reel)

L’ objectif est de concevoir une procédure carres qui permet de dessiner sur un graphique des dessins
récursifs tels que présentés par la figure [3.1] La signature de cette procédure est :

— procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)

200
4 [ - in<F
180 J ‘_l:\_ ]u E‘\:'_’ :LF\
200 ’_ _\ 200 | 0 M
160| L J L ] O Ej:'_’
4 A O o dPh TP
E‘\:'_’ ELE
]40 100| ’— _\ 100 I_l:\\:j M = ] o 1
120 L ’_ J ELE ‘_':L ) E‘\:'_’
50 L 50 O \j:: ]
00
' 100 120 140 160 160 200 % S0 100 150 200 250 300 % S0 100 150 200 250 300

(a) carres(g,100,100, 100, 1) (b) carres(g, 100,100, 100, 3) (c) carres(g,100,100, 100, 4)

FIGURE 3.1 — Résultats de différents appels de la procédure carres

1. Dessinez le résultat de ’exécution de carres(g, 100,100, 100, 2).
2. Donnez I’algorithme de la procédure carres.

NB : Cet exercice estinspiré de http: //www—fourier.ujf-grenoble.fr/~parisse/giac/doc/
fr/casrouge/casrouge018.html.


http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html
http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html

3.5. INVERSION D’UN TABLEAU 17

3.5 Inversion d’un tableau

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Soit un tableau d’entiers ¢. Ecrire une procédure, inverserTableau, qui change de place les éléments
de ce tableau de telle facon que le nouveau tableau ¢ soit une sorte de “miroir” de 1’ancien.
Exemple: 1246 -6421
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Chapitre 4

Représentation d’un naturel

Attendus d’apprentissages disciplinaires évalués

— ANI1O01 : Identifier les entrées et sorties d’un probleme

— ANI102 : Décomposer logiquement un probleme

— ANI103 : Généraliser un probleme

— AN104 : Savoir si un probleme doit étre décomposé

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CDO001 : Dissocier les deux rdles du développeur : concepteur et utilisateur

— CDO002 : En tant qu’utilisateur, respecter une signature

.

L’ objectif de cet exercice est de concevoir quatre fonctions permettant de représenter un naturel en chaine
de caracteres telles que la premiere fonction donnera une représentation binaire, la deuxiéme une représentation
octale, la troisieme une représentation décimale et la derniere une représentation hexadécimale.

4.1 Analyse

L’analyse de ce probleme nous indique que ces quatre fonctions sont des cas particuliers de représentation
d’un naturel en chaine de caractéres dans une base donnée. De plus pour construire la chaine de caracteres
résultat, il faut €tre capable de concaténer des caracteres représentant des chiffres pour une base donnée.

Proposez 1’analyse descendante de ce probleme.

4.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures identifiées précédemment.

4.3 Conception détaillée

Donnez les algorithmes de ces fonctions ou procédures

19
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Chapitre 5

Calculatrice

Attendus d’apprentissages disciplinaires évalués

— ANIO01 : Identifier les entrées et sorties d’un probleme
— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)
— CPO0O05 : Choisir un passage de parametre (E, S, E/S)

J

L’ objectif de cet exercice est d’écrire un sous-programme, calculer, qui permet de calculer la valeur d’une
une expression arithmétique simple (opérande gauche positive, opérateur, opérande droite positive) a partir
d’une chaine de caracteres (par exemple "875+47.5”). Ce sous-programme, outre ce résultat, permettra de savoir
si la chaine est réellement une expression arithmétique (Conseil : Créer des procédures/fonctions permettant de
reconnaitre des opérandes et opérateurs) et si elle est logiquement valide

On considere posséder le type Operateur défini de la facon suivante :

— Type Operateur = { Addition, Soustraction, Multiplication, Division}

5.1 Analyse

Remplissez ’analyse descendante présentée par la figure [5.1] sachant que la reconnaissance d’une entité
(opérateur, opérande, etc.) dans la chalne de caracteres commencent a une certaine position et que la reconnais-

sance peut échouer.

— calculer —» "

_, reconnaitre
Operateur

reconnaitre
Operande

reconnaitreS
uiteChiffres
—» xPuissanceN — -

reconnaitre .
> > — -
J Virugle chaineEnNaturel

— estUnChiffre —» ..

FIGURE 5.1 — Analyse descendante d’une calculatrice simple

21



22 CHAPITRE 5. CALCULATRICE
5.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures correspondant aux opérations de I’analyse précédente.

5.3 Conception détaillée

Donnez les algorithmes des fonctions et procédures identifées.



Chapitre 6

Un peu de géométrie

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN?203 : Savoir si une opération identifiée fait partie du TAD a spécifier

— AN204 : Formaliser des opérations d’'un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD
— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O05 : Choisir un passage de parametre (E, S, E/S)

— CDO003 : Utiliser le principe d’encapsulation

6.1 Le TAD Point2D

Soit le TAD Point 2D définit de la fagon suivante :

Nom: Point2D

Utilise: Reel

Opérations: point2D:  Reel x Reel — Point2D
obtenirX: Point2D — Reel
obtenirY: Point2D — Reel
distanceEuclidienne: Point2D x Point2D — ReelPositif
translater: Point2D x Point2D — Point2D
faireRotation: Point2D x Point2D x Reel — Point2D

1. Analyse : Donnez la partie axiomes pour ce TAD (sauf pour I’opération faireRotation)

2. Conception préliminaire : Donnez les signatures des fonctions et procédures des opérations de ce TAD

Remarque(s) :

— 1l est important de choisir de bons identifiants pour les parametres formels. Ici il pourrait y
avoir ambiguité sur I’unité du parametre formel de 1’angle de la rotation.

23



24 CHAPITRE 6. UN PEU DE GEOMETRIE
6.2 Polyligne

< Une ligne polygonale, ou ligne brisée (on utilise aussi parfois polyligne par traduction de 1’anglais poly-
line) est une figure géométrique formée d’une suite de segments, la seconde extrémité de chacun d’entre eux
étant la premiere du suivant.[...] Un polygone est une ligne polygonale fermée. > (Wikipédia)

La figure [6.1] présente deux polylignes composées de 5 points.

(a) polyligne ouverte (b) polyligne fermée
FIGURE 6.1 — Deux polylignes

De cette définition nous pouvons faire les constats suivants :
— Tous les points d’une polyligne sont distincts ;
— Une polyligne est constituée d’au moins deux points;
— On peut obtenir le nombre de points d’une polyligne ;

— Une polyligne est ouverte ou fermée (qu’elle soit ouverte ou fermée ne change pas le nombre de points :
dans le cas ot elle est fermée, on considere qu’il a une ligne entre le dernier et le premier point);

— On peut insérer, supprimer des points a une polyligne (par exemple la figure présente la supression
du troisieme point de la polyligne ouverte de la figure [6.).

— On peut parcourir les points d’une polyligne ;
— On peut effectuer des transformations géométriques (translation, rotation, etc.);

— On peut calculer des propriétés d’une polyligne (par exemple sa longueur totale).

FIGURE 6.2 — Supression d’un point

6.2.1 Analyse

Proposez le TAD Polyligne (sans les parties Axiome et Sémantique) avec les opérations suivantes :

— créer une polyligne ouverte a partir de deux Point2D;
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— savoir si une polyligne est fermée ;

— ouvrir une polyligne ;

— fermer une polyligne ;

— connaitre le nombre de points d’un polyligne ;

— obtenir le ieme point d’une polyligne ;

— insérer le iéme point d’une polyligne ;

— supprimer le ieme point d’une polyligne (on suppose qu’elle a au moins 3 points) ;
— calculer la longueur d’un polyligne ;

— translater une polyligne;;

— faire une rotation d’une polyligne.

6.2.2 Conception préliminaire

Proposez la signature des fonctions et procédures pour le type Polyligne.

6.2.3 Conception détaillée

On propose de représenter le type Polyligne de la fagon suivante :
Type Polyligne = Structure
lesPts : Tableau[1..MAX] de Point2D
nbPts : Naturel
estFermee : Booleen
finstructure
Proposez les fonctions et procédures correspondant aux opérations suivantes :
— créer une polyligne ouverte a partir de deux Point2D;
— ouvrir une polyligne ;
— translater une polyligne.

6.3 Utilisation d’une polyligne

Dans cette partie, nous sommes utilisateur du type Polyligne et nous respectons le principe d’encapsu-
lation.

6.3.1 Point a Pintérieur

Nous supposons posséder la fonction suivante qui permet de calculer I’angle orienté en degré formé par les

segments (ptCentre, ptl) et (ptCentre, pt2) :
— fonction angle (ptCentre,ptl,pt2 : Point2D) : Reel
| précondition(s) ptl#ptCentre et pt2#ptCentre

Il est possible de savoir si un point pt est a I’intérieur ou a 1’extérieur d’une polyligne fermée en calculant
la somme des angles orientés formés par les segments issus de pt vers les points consécutifs de la polyligne. En
effet si cette somme en valeur absolue est égale a 360° alors le point pt est a I’intérieur de la polyligne, sinon il
est a 'extérieur.

Par exemple, sur la figure[6.3] on peut savoir algorithmiquement que pt est a I’intérieur de la polyligne car
la + ag + as + ayg + as| = 360.

Proposez le code de la fonction suivante :estALInterieur
fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

| précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)
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FIGURE 6.3 — Point a I’intérieur d’une polyligne

6.3.2 Surface d’une polyligne par la méthode de monté-carlo

Une des fagons d’approximer la surface d’une polyligne est d’utiliser la méthode de Monté-Carlo. Le prin-
cipe de cette méthode est de « calculer une valeur numérique en utilisant des procédés aléatoires, c’est-a-dire
des techniques probabilistes > (Wikipédia). Dans le cas du calcul d’une surface, il suffit de tirer au hasard des
points qui sont a ’intérieur du plus petit rectangle contenant la polyligne. La surface .S de la polyligne pourra
alors étre approximée par la formule suivante :

Nb points dans la polyligne

S ~ SurfaceDuRectangle x
urfaceDuRectangle Nb points total

Par exemple, sur la figure[6.4] en supposant que le rectangle fasse 3 cm de hauteur et 4, 25 cm de largeur, et
qu’il y a 28 points sur 39 qui sont a I’intérieur de la polyligne, sa surface .S peut étre approximée par :

2
S%3><4,25><£:9,390m2

FIGURE 6.4 — Calcul de la surface d’une polyligne par la méthode de Monté-Carlo
On suppose posséder la procédure suivante qui permet d’obtenir un réel aléatoire entre une borne minimum
et une borne maximum :

— procédure reelAleatoire (E borneMin,bornneMax : Reel, S leReel : Reel)

1. Proposez I’analyse descendante pour le calcul d’une surface d’une polyligne a 1’aide de la méthode de
Monté-Carlo.

2. Donnez les signatures des procédures et fonctions de votre analyse descendante.

3. Donnez I’algorithme de I’opération principale (au sommet de votre analyse descendante).



Chapitre 7

Tri par tas

Attendus d’apprentissages disciplinaires évalués

— ANO04 : Comprendre et appliquer des consignes algorithmiques sur un exemple
— CD102 : Calculer une complexité dans le pire et le meilleur des cas
— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD501 : Comprendre les algorithmes des différents tris et leurs complexités

7.1 Qu’est ce qu’un tas?

Un tas est un arbre binaire particulier : la valeur de chaque noeud est supérieure aux valeurs contenues dans
ses sous-arbres et I’arbre est rempli par niveau (de gauche a droite), un nouveau niveau n’étant commencé que
lorsque le précédent est complet.

Un tas peut étre représenté 1’aide d’un tableau ¢ de telle sorte que les fils gauche et droit de ¢[i] sont
respectivement (2 * i] et t[2 x i + 1].

Dessinez I’arbre binaire représenté par le tableau ¢ suivant :

I 2 3 4 5 6 7 8 9 10
1| 87771473340 [24[25]18[5]29]

7.2 Fonction estUnTas

Donnez 1’algorithme récursif de la fonction suivante qui permet de savoir si un tableau ¢ de n éléments
significatifs représente un tas a partir de la racine de position % :

— fonction estUnTas (t : Tableau[1.. MAX] d’Entier, i,n : Naturel) : Booleen

| précondition(s) i<n

7.3 Procédure faireDescendre

A Iissue de 1’appel a cette procédure faireDescendre, 1’arbre (représenté par un tableau) dont la racine est
en position ¢ sera un tas. On présuppose que les deux arbres dont les racines sont positionnées en 27 et 2 4 1
sont des tas.
La signature de cette procédure est :
27
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— procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier,E i,n : Naturel)

1. En supposant que la premiere valeur du tableau ¢ de la partie [7.1| ne soit pas 87 mais 30. Donnez les
valeurs de ¢ apres I’appel faireDescendre (t,1,10).

2. Proposez I’algorithme de la procédure faireDescendre.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

7.4 Procédure tamiser

L’ objectif de cette procédure est de transformer un tableau de n éléments significatifs quelconque en un tas.
Pour ce faire on part du milieu du tableau en remontant jusqu’au premier élément du tableau pour qu’a I’issue
de chaque itération I’arbre représenté par le tableau dont la racine est a la position ¢ soit un tas.

1. Soit le tableau ¢ suivant :

1 2 3 4 5 6 7 8 9 10
t[33][77[25][18[40[24[47[87]5]29]

Donnez les valeurs de ce tableau a I’issue de chaque itération.
2. Proposez I’algorithme de la procédure tamiser.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

7.5 Procédure trierParTas

Le principe du tri par tas est simple. Apres avoir transformé le tableau ¢ composé de n éléments significatifs
en un tas, cet algorithme est composé d’itérations ¢ (allant de n jusqu’a 2) qui :

— échange t[1] et t[i];
— s’assure que le tableau de ¢ — 1 éléments significatifs soit un tas.

Voici les différentes étapes de cet algorithme une fois que le tableau ¢ de la partie ait été transformé en
tas (tableau de la partie :

77140 | 47 33129 |24 |25 |18 | 5 | &7
47 140 | 25 (33 129|124 | 5 |18 |77 |87
40 |33 |25 |18 |29 |24 | 5 |47 |77 | 87
33129125 |18 | 5 |24 |40 |47 |77 | 87
29 |24 |25 |18 | 5 |33 |40 |47 |77 |87
25 (24| 5 |18 129 |33 |40 |47 |77 |87
24 |18 | 5 | 2529|3340 (47 |77 |87
18 5 |24 25129 |33 |40 |47 |77 |87

S | 1824|2529 (33140 |47 |77 |87

O Co N O i AN W~

1. Dessinez I’analyse descendante a posteriori de ce probleme.
2. Proposez I’algorithme de la procédure trierParlas.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.



Chapitre 8

Sudoku

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN?203 : Savoir si une opération identifiée fait partie du TAD a spécifier
— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN301 : Lister les collections usuelles

— CPO003 : Choisir entre une fonction et une procédure

— CDO003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

\. J

Le jeu du Sudoku est composé d’une grille carrée de 9 cases de coté. Ce jeu consiste <« a compléter toute la
grille avec des chiffres allant de 1 & 9. Chaque chiffre ne doit étre utilisé qu’une seule fois par ligne, par colonne
et par carré de neuf cases >>|H

On suppose que 1’on numérote les lignes, les colonnes et les carrés d’une grille de Sudokude 1 a 9.

La grille présentée par la figure 8.1] présente une grille de Sudoku a compléter.

Soit les TAD Coordonnee et GrilleSudoku suivants :

Nom: Coordonnee
Utilise: Naturel
Opérations: coordonnee: 1..9 x 1..9 — Coordonnee

obtenirLigne:  Coordonnee — 1..9
obtenirColonne: Coordonnee — 1..9
obtenirCarre: Coordonnee — 1..9

Axiomes: - obtenirColonne(coordonnee(c,l))=c
- obtenirLigne(coordonnee(c,l))=1
- obtenirCarre(c)=3*((obtenirLigne(c)-1) div 3)+((obtenirColonne(c)-1) div3)+1

Nom: GrilleSudoku
Utilise: Naturel, Coordonnee, Booleen
Opérations:  grilleSudoku: — GrilleSudoku
caseVide: GrilleSudoku x Coordonnee — Booleen

1. Définition donnée par le journal le Monde.
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30 CHAPITRE 8. SUDOKU

Numérotation des colonnes

315 Numérotation
8|3 ) des
carrés
Numérotation 2 6.7
des __—»
lignes 9 7 1
62 3 9
3/819
5 4 2 8
4 2 6

FIGURE 8.1 — Exemple de grille de Sudoku

obtenirChiffre: GrilleSudoku x Coordonnee — 1..9

fixerChiffre:  GrilleSudoku x Coordonnee X 1..9 - GrilleSudoku

viderCase: GrilleSudoku x Coordonnee - GrilleSudoku
Sémantiques: grilleSudoku: permet de créer une grille de Sudoku vide

caseVide: permet de savoir si une case d’une grille de Sudoku vide

obtenirChiffre: permet d’obtenir le chiffre d’une case non vide

fixerChiffre:  permet de fixer un chiffre d’une case vide

viderCase: permet d’enlever le chiffre d’une case non vide
Préconditions: obtenirChiffre(g,c): non caseVide(g,c)

fixerChiffre(g,c,v):  caseVide(g,c)

viderCase(g,c): non caseVide(g,c)

8.1 Conception préliminaire

Donnez la signature des fonctions et procédures correspondant aux deux TAD précédents.

8.2 Conception détaillée

On se propose de concevoir le TAD Coordonnee de la fagon suivante :
Type Coordonnee = Structure

ligne: 1.9

colonne : 1..9
finstructure

Donnez les algorithmes des fonctions correspondant aux opérations de ce TAD.
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8.3 Fonctions métiers

On se propose d’écrire des fonctions et procédures permettant de vérifier ou d’aider a la résolution manuelle
d’une grille de Sudoku.

1. Donnez I’algorithme de la fonction suivante qui permet de savoir si une grille de Sudoku est totalement
remplie (sans vérifier sa validité) :

— fonction estRemplie (g : GrilleSudoku) : Booleen

2. On suppose que 1’on possede les fonctions suivantes qui permettent d’obtenir I’ensemble des chiffres déja
fixés d’une colonne, d’une ligne ou d’un carré :

— fonction obtenirChiffresDUneLigne (g : GrilleSudoku, ligne : 1..9) : Ensemble< 1..9 >
— fonction obtenirChiffresDUneColonne (g : GrilleSudoku, colonne : 1..9) : Ensemble< 1..9 >
— fonction obtenirChiffresDUnCarre (g : GrilleSudoku, carre : 1..9) : Ensemble< 1..9 >

Donnez I’algorithme de la fonction suivante qui permet de savoir si on peut mettre un chiffre dans une
case vide sans contredire la regle donnée en introduction :

— fonction estChiffreValable (g : GrilleSudoku, chiffre : 1..9, case : Coordonnee) : Booleen
| précondition(s) caseVide(g,case)
3. Donnez I’algorithme la fonction suivante qui donne la liste des solutions possibles pour une case vide :
— fonction obtenirSolutionsPossibles (g : GrilleSudoku, case : Coordonnee) : Liste< 1..9 >
| précondition(s) caseVide(g,case)

4. Donnez I’algorithme de la fonction suivante qui cherche la solution d’une grille de sudoku g (le booléen
indique s’il y a effectivement une solution) :

— fonction chercherSolution (g : GrilleSudoku) : GrilleSudoku, Booleen
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Chapitre 9

Liste

Attendus d’apprentissages disciplinaires évalués

— AN301 : Lister les collections usuelles

— CP003 : Choisir entre une fonction et une procédure

— CPO004 : Concevoir une signature (préconditions incluses)

— CPO0O05 : Choisir un passage de parametre (E, S, E/S)

— CDO003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— (D401 : Concevoir et utiliser des listes chainées

— CD901 : Concevoir un type de données adapté a la situation en terme d’espace mémoire et d’effi-
cacité

9.1 SDD ListeChainee

9.1.1 Type et signatures de fonction et procédure

Apres avoir rappelé le SDD ListeChainee dans le paradigme de la programmation structurée, donnez les
signatures des fonctions et procédures permettant de 1’utiliser.

9.1.2 Utilisation

1. Ecrire une fonction booléenne itérative, estPresent, qui permet de savoir si un élément est présent
dans une liste chainée.

2. Ecrire une fonction booléenne récursive, estPresent, qui permet de savoir si un élément est présent
dans une liste chainée.

3. Ecrire une procédure récursive, concatener, qui concaténe deux listes chainées.
4. Ecrire une procédure récursive, inverser, qui permet d’inverser une liste chainée.

5. Ecrire une procédure itérative, inverser, qui permet d’inverser une liste chainée.
33
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9.2 Conception détaillée d’une liste ordonnée d’entiers a I’aide d’une liste
chainée
Cet exercice propose de concevoir le type ListeOrdonneeDEntiers (ou LODE) avec le SDD ListeChainee
de I’exercice précédent.

1. Proposez une conception détaillée du type ListeOrdonneeDEntiers

2. Ecrire les fonctions/procédures creationListeOrdonneeDEntiers, inserer, supprimer un élément (le pre-
mier, et que I’on sait présent), obtenirlemeElement a la i¢me position et longueur proposées par ce type

9.3 Utilisation : Liste ordonnée d’entiers

Ecrire une fonction, fusionner, qui permet de fusionner deux listes ordonnées



Chapitre 10

Arbre Binaire de Recherche (ABR)

Attendus d’apprentissages disciplinaires évalués

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD403 : Concevoir et utiliser des arbres (binaires, n-aires)

— CD601 : Concevoir des collections a I’aide de SDD

— CD602 : Comprendre les algorithmes d’insertion et de suppression (naifs et AVL) dans un arbre
binaire de recherche

— CDY901 : Concevoir un type de données adapté a la situation en terme d’espace mémoire et d’effi-
cacité

10.1 Conception préliminaire et utilisation d’un ABR

Pour rappel, le TAD ABR modélisant un Arbre Binaire de Recherche est défini de la fagon suivante :

Nom: ABR (ArbreBinaireDeRecherche)
Parameétre: Element

Utilise: Booleen

Opérations: aBR: — ABR

estVide:  ABR — Booleen
insérer: ABR x Element — ABR
supprimer: ABR x Element — ABR
estPresent: ABR x Element — Booleen
obtenirElement: ABR — Element
obtenirFilsGauche: ABR - ABR
obtenirFilsDroit: ABR -» ABR
Axiomes: - estVide(aBR())

- non estVide(insérer(e,a))

- obtenirElement(insérer(e,aBR()))=¢e

- obtenirFilsGauche(insérer(e,a))=insérer(e,obtenirFilsGauche(a)
et obtenirElement(a)> e

- obtenirFilsDroit(insérer(e,a))=insérer(e,obtenirFilsDroit(a)
et obtenirElement(a)< e
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Préconditions: obtenirElement(a): non(estVide(a))

obtenirFilsGauche(a): non(estVide(a))
obtenirFilsDroit(a): non(estVide(a))

. Donner les signatures des fonctions et procédures d’un ABR.

. Ecrire une procédure récursive, af ficherEnOrdreCroissant, qui affiche, en ordre croissant, tous

les éléments d’un ABR.

. Ecrire une procédure récursive, af ficherEnOrdreDecroissant, qui affiche, en ordre décroissant,

tous les éléments d’un ABR.

. Bcrire une fonction récursive, hauteur, qui calcule la hauteur d’un ABR (-1 si ’arbre est vide, O s’il

n’y a qu’un seul élément).

. Ecrire une fonction récursive, nbElements, qui calcule le nombre d’éléments d’un arbre.

10.2 Une conception détaillée : ABR

Nous allons concevoir le type ABR a I’aide du SDD ArbreBinaire

A

Rappeler le SDD ArbreBinaire (type et signatures des fonctions et procédures)
Proposer une implantation du type ABR

Expliciter la fonction booléenne : estPresent.

Expliciter la procédure d’insertion : inserer.

Expliciter la procédure de suppression : supprimer.
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Arbres AVL

Pour rappel un AVL est un ABR qui conserve I’équilibre entre tous ces fils (2 +-1 pres) apres les opérations
d’insertion et de supression.

1. Expliciter les procédures de “simple rotation”, faireSimpleRotationADroiteet faireSimple-
RotationAGauche,etde “double rotations”, faireDoubleRotationADroiteet faireDouble-—
RotationAGauche.

2. Montrer que les simples et doubles rotations conservent la propriété d’un ABR (en considérant que 1’arbre
ne contient pas de doublons).

3. Expliciter la procédure d’équilibrage d’un arbre qui aurait deux sous-arbres équilibrés mais qui pourrait
ne pas étre équilibré.
4. Expliciter la procédure d’insertion : inserer.

5. Expliciter la procédure de suppression : supprimer.
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Chapitre 12

Graphes

Attendus d’apprentissages disciplinaires évalués

— AN201

— CP003

— CD201

— CD801

— ANO004 :

Comprendre et appliquer des consignes algorithmiques sur un exemple

: Identifier les dépendances d’un TAD
— AN203 :
— AN204 :
— AN205 :
— AN206:

Savoir si une opération identifiée fait partie du TAD a spécifier
Formaliser des opérations d’un TAD
Formaliser les préconditions d’une opération d’un TAD

Formaliser des axiomes ou savoir définir la sémantique d’une opération d’'un TAD

: Choisir entre une fonction et une procédure
— CP004 :
— CPO005 :

Concevoir une signature (préconditions incluses)

Choisir un passage de parametre (E, S, E/S)

: Identifier et résoudre le probleme des cas non récursifs
— CD202:

Identifier et résoudre le probleme des cas récursifs

: Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)
— CD804 :

Comprendre des algorithmes de recherche du plus court chemin : Dijkstra et A*

12.1 Le labyrinthe

L’ objectif de cet exercice est d’étudier le probléme du labyrinthe, c’est-a-dire créer un algorithme permettant

de trouver le chemin qui mene de I’entrée a la sortie (cf. figure [12.1]).

12.1.1 Partie publique

Un labyrinthe est composé de cases. On accede a une case a partir d’une case et d’une direction. Les

directions possibles sont Nord, Sud, Est et Ouest.

Par exemple, comme le montre la figure [I2.2] le labyrinthe précédent peut étre considéré comme étant
composé de 25 cases. La case numéro 6 est la case d’entrée. La case 20 est la case de sortie. La case 8 est

accessible depuis la case 13 avec la direction Nord.

Le TAD labyrinthe

Les opérations disponibles sur un labyrinthe sont les suivantes :
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FIGURE 12.1 — Un labyrinthe

112 .3 ,4 .5
6 |7 819 |10
I_____a____________

FIGURE 12.2 — Un labyrinthe composé de cases

— créer un labyrinthe,

— obtenir la case d’entrée,

— savoir si une case est la case de sortie,

— obtenir une liste de directions possibles depuis une case donnée,

— obtenir la case accessible depuis une case avec une direction.

1. Donnez le type Direction

2. Donnez le TAD Labyrinthe

Algorithme du petit-poucet

Une solution pour trouver la sortie est d’utiliser le principe du petit poucet, ¢’est-a-dire mettre un caillou
sur les cases rencontrées.

Pour ne pas modifier le TAD Labyrinthe, plutdt que de marquer une case avec un caillou on peut ajouter une
case a un ensemble. Pour vérifier si on a déja rencontré une case, il suffit alors de vérifier si la case est présente
dans I’ensemble.

Proposer le corps de la procédure suivante qui permet de trouver le chemin de sortie (s’il existe) a partir
d’une case donnée :
procédure calculerCheminDeSortie (E 1 : Labyrinthe, caseCourante : NaturelNonNul, E/S casesVisitees :
Ensemble<NaturelNonNul>, S permetDAllerJusquALaSortie : Booleen, lesDirectionsASuivre : Liste<Direction>)
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12.1.2 Partie privée

Le graphe

On peut représenter un labyrinthe a I’aide d’un graphe étiqueté et valué. On considere dans ce cas que les
valeurs des noeuds du graphe sont les cases du labyrinthe et les arcs étiquetés par les directions.

Dessinez le graphe associé a I’exemple de la figure [12.3]

112 3,
IR O
.4 |5 6
I_____a____

7 .8 19

FIGURE 12.3 — Un labytinthe composé de 9 cases

Représentation du graphe

Proposez la matrice d’adjascence du graphe précédent.

12.2 Algorithme de Dijkstra

En utilisant I’algorithme de Dijkstra, donnez 1’arbre recouvrant pour le graphe présenté par la figure [12.4]
depuis le sommet 1 qui permet d’obtenir tous les chemins les plus courts depuis ce sommet.

FIGURE 12.4 — Un graphe valué positivement

12.3 Skynet d’apres Codingame©

Un arbre recouvrant

Nous avons vu en cours que 1’algorithme de Dijkstra permet d’obtenir un arbre a recouvrant depuis un
sommet s sur un graphe valué avec des nombres positifs tel que le chemin de a reliant s a tout sommet du

graphe est le plus court. Cet algorithme est le suivant :
fonction dijkstra (g : Graphe<Sommet,,ReelPositif>, s : Sommet) : Arbre<Sommet>, Dictionnaire<Sommet,

ReelPositif >
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| précondition(s) sommetPresent(g,s)

Déclaration arbreRecouvrant : Arbre<Sommet>, cout : Dictionnaire<Sommet, ReelPositif >
I : Liste<Liste<Sommet>>, ¢ : ReelPositif
sommetDeA, sommetAAjouter : Sommet

debut
arbreRecouvrant <— arbrelnitial(s)
cout < dictionnaire()
ajouter(cout,s,0)
I < arcsEntre ArbreEtGraphe(g,arbreRecouvrant)
tant que non estVide(l) faire
sommetDeA,sommetAAjouter,c <— arcMinimal(g,l,cout)
ajouter(cout,
sommetAAjouter,
obtenirValeur(cout,sommetDeA)+c
)
ajouterCommeFils(arbreRecouvrant,sommetDeA,sommetA Ajouter)
1 < arcsEntre ArbreEtGraphe(g,arbreRecouvrant)
fintantque
retourner arbreRecouvrant, cout
fin

Tel que :
— arbrelInitial crée un arbre possédant uniquement le noeud s

— arcsEntreArbreEtGraphe permet d’obtenir la liste des arcs présents dans le graphe G, dont le
sommet source est présent dans 1’arbre mais pas le sommet destination ;

— arcMinimal permet d’identifier I’arc (sommet source, sommet destination) dont le sommet destination
est le plus proche (au sens du dictionnaire de cout) des sommets de a ainsi que le cofit supplémentaire
pour I’atteindre

— ajouterCommeFils permet d’ajouter un sommet dans I’arbre en spécifiant son pere.

Signatures

Donnez les signatures des sous-programmes précédents.

Algorithme

Donnez I’algorithme de la fonction sommet sAccessiblesDepuisArbre (n’oubliez pas de décomposer
le probleme si besoin).

12.3.1 Le chemin le plus court

Donnez I’algorithme de la fonction suivante qui permet d’obtenir le chemin (une liste de sommets) le plus
court permettant d’aller d’un sommet s1 a un sommet s2 d’un graphe valué avec des nombres positifs :

— fonction cheminPlusCourt (g :Graphe, s1,s2 : Sommet) : Liste<Sommet>

| précondition(s) sommetPresent(g,s1) et sommetPresent(g,s2)



12.3. SKYNET D’APRES CODINGAME®© 43

12.3.2 Skynet le virus

Le site Web www.codingame . com propose des exercices ludiques de programmation. L’un des exer-
cices, < Skynet le virus > est présenté de la fagon suivante :

< Votre virus a créé une backdoor sur le réseau Skynet vous permettant d’envoyer de nouvelles instructions
au virus en temps réel. Vous décidez de passer a I’attaque active en empéchant Skynet de communiquer sur son
propre réseau interne. Le réseau Skynet est divisé en sous-réseaux. Sur chaque sous-réseau un agent Skynet a
pour tache de transmettre de I’information en se déplacant de noeud en noeud le long de liens et d’atteindre
une des passerelles qui mene vers un autre sous-réseau. Votre mission est de reprogrammer le virus pour qu’il
coupe les liens dans le but d’empécher I’agent Skynet de sortir de son sous-réseau et ainsi d’informer le hub
central de la présence de notre virus. >

Bref, I’agent Skynet (S) est sur un graphe (par exemple celui de la figure[12.5]ot les identifiants des sommets
ne sont pas indiqués) valué (avec la valeur 1 pour chaque arc) dont certains sommets sont des passerelles (P).
Le but du jeu est d’empécher I’agent skynet d’atteindre une des passerelles en supprimant le moins d’arcs du
graphe.

L’algorithme de ce jeu est proposé par la procédure skynet. L’ agent Skynet parcourt le graphe (grace
a la fonction seDeplace) de sommet en sommet a chaque itération. Pour résoudre ce probléme, il faut couper
un arc du graphe a chaque itération de facon a ce que 1’agent Skynet ne puisse pas atteindre 1’une des passerelles.
De plus il faut faire le moins de coupures possibles (le score est fonction de ce parameétre). Pour cela il suffit de
supprimer le premier arc du chemin le plus court entre I’agenSkynet et la plus proche passerelle.

Complétez I’algorithme de la procédure skynet (remplacer les ... par une ou plusieurs instructions).

procédure skynet (E/S g : Graphe<Sommet>, E agentSkynet : Sommet, S agentSkynetAAtteindPasserelle :
Booleen)

Déclaration passerelles : Liste<Sommet>
s : Sommet

debut
passerelles <— sommetsDesPasserelles(g)
tant que agentSkynetPeutAtteindreUnePasserelle(g,agentSkynet) et non estPresent(passerelles, agentSky-
net) faire

supprimerArc(g,agentSkynet,s)
agentSkynet +— seDeplace(g, agentSkynet)
fintantque
agentSkynetAAtteindPasserelle < estPresent(agentSkynet,passerelles)
fin


www.codingame.com
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FIGURE 12.5 — Un sous réseau Skynet




Chapitre 13

Programmation dynamique

Attendus d’apprentissages disciplinaires évalués

— ANOO04 : Comprendre et appliquer des consignes algorithmiques sur un exemple
— CD701 : Définir la programmation dynamique

— CD702 : Appliquer la programmation dynamique pour des cas simples

— CD801 : Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)

13.1 [L’algorithme de Floyd-Warshall

FIGURE 13.1 — Un graphe orienté valué

L’algorithme de Floyd-Warshall est un algorithme qui permet de calculer la longueur du plus court chemin
entre tous les nceuds d’un graphe orienté valué positivement.

< L’algorithme repose sur la remarque suivante : si (ao, . .., a;, . .., a,) est un plus court chemin de ag a a,
, alors (ag, ..., a;) est un plus court chemin de ag a a; , et (aj, ..., a,) un plus court chemin de a; a a,, . De plus,
comme les arétes sont valuées positivement, tout chemin contenant un cycle est nécessairement plus long que
le méme chemin sans le cycle, si bien qu’on peut se limiter a la recherche de plus courts chemins passant par
des sommets deux a deux distincts.

Floyd montre donc qu’il suffit de calculer la suite de matrices définies par :
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k
M

= min(Mf, M+ MEY. >
tel que MY est la matrice d’adjacence du graphe avec :
— les nceuds qui sont numérotés de 1 an (et k variede 1 a n);
— Mp; =0;
— ng = +o00 s’il n’existe pas d’arc reliant 7 a j.
1. Donnez la matrice d’adjacence M° du graphe proposé par la ﬁgure (pour plus de clarté, vous pouvez
ne pas noter les 4-00).
2. Donnez les matrices M de Floyd pour & variant de 1 a 6.

3. A partir de la matrice M/ donnez la longueur du plus court chemin reliant le nceud 2 au nceud 4.

13.2 La distance de Levenshtein

« La distance de Levenshtein est une distance mathématique donnant une mesure de la similarité entre deux
mots. Elle est égale au nombre minimal de lettres qu’il faut supprimer, insérer ou remplacer pour passer d’un
mot a |’autre.

On appelle distance de Levenshtein entre deux mots M et P le colt minimal pour aller de M a P en
effectuant les opérations élémentaires suivantes :

— substitution d’une lettre de M en une lettre de P
— ajout dans M d’une lettre de P;
— suppression d’une lettre de M.

On associe ainsi a chacune de ces opérations un cofit. Le coft est toujours égal a 1, sauf dans le cas d’une
substitution de lettres identiques, il vaut alors 0. > (inspiré de Wikipédia).

Pour calculer cette distance on utilise un matrice m de taille | P|+1 x | M|+ 1 (tel |s| représente la longueur
d’un mot s) indicée a partir de 0, tel que :

moj = J,J € 0..|M]|
m;o = 1,1 € 0.4}%
m;; = min(mm_l + l,mi_l,j + 1,m¢_17j_1 + 1PZ-,Mj)7i S 0..‘P‘,j S O‘M’

tel que 1p, a7, vaut 0 si P = Mj (la ieme lettre de P est égale a la jeme lettre de M), 1 sinon.
La distance de Levenshtein est alors égale a mp| |-

1. Remplissez la matrice suivante pour calculer la distance de Levenshtein entre les deux mots "voiture"

et"toile".
. v o 1 t u r e

D T~ = Q

2. A quel paradigme de conception appartient cet algorithme ? Justifiez.

3. Donnez I’algorithme de la fonction qui permet de calculer la distance de Levenshtein entre deux mots.

1. http://www.nimbustier.net/publications/djikstra/floyd.html


http://www.nimbustier.net/publications/djikstra/floyd.html
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