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Models of relationships between structure and boiling point (bp) of 185 acyclic ethers, peroxides, acetals and 
their sulfur analogues have been constructed by means of a multilayer neural network (NN) using the back- 
propagation algorithm. The ability of a neural network to predict the boiling point of acyclic molecules containing 
polar atoms is outlined. The usefulness of the so-called embedding frequencies for the characterization of 
chemical structures in quantitative structureproperty studies has been shown. NNs proved to give better results 
than multiple linear regression and other models in the literature. 

NNs have recently'T2 become the focus of much attention, 
largely owing to their wide range of applicability and the ease 
with which they can handle complex and non-linear prob- 
lems. A leading reference book3 on the application and the 
meaning of NN in chemistry has recently been published in 
which an extensive list of references can be found. NNs have 
been applied to the identification of proton-NMR ~ p e c t r a , ~  
to the interpretation of IR ~ p e c t r a , ~ . ~  to the prediction of 13C 
chemical shifts,' to the classification of mass spectra,* to the 
estimation of aqueous ~olubilities,~ to the determination of 
protein structure,".' ' to the investigation of quantitative 
structure-activity relationships (QSAR)' 2-'4 and to the pre- 
diction of chemical reactivity.' '*16 

Boiling point (bp) is one of the properties used to charac- 
terize organic compounds. However, it may happen that this 
property is not available in the literature or difficult to evalu- 
ate experimentally. It appears obvious that the usefulness of 
quantitative structure-property relationships (QSPR) cannot 
be denied in those cases. Several  method^'^,'^ for prediction 
of the bp of organic compounds have been described in the 
literature. We have recently used NNs to predict the bp of 
a lkane~ . '~  These compounds were chosen because they are 
simple, easy to code and do not have polarized atoms nor 
intramolecular bonds. 

The goals of the current work are: (a) To provide an appli- 
cation of the NN theory (developed in our earlier paper") to 
acyclic ethers, peroxides, acetals and their sulfur analogues. 

(b) To show the NNs ability to predict the bp of acyclic 
molecules containing heteroatoms. 

(c) To call attention to the interest of molecular descriptors 
such as the embedding frequencies in the presence of hetero- 
atoms. 
(6) To compare the results obtained by an NN to those 

given by multiple linear regression (MLR) and to those given 
in the literature. 

Neural Networks 
Artificial NNs are mathematical models of biological neural 
systems. Three components constitute an NN : the processing 
elements, the topology of the connections between the nodes 
(vertices),20 and the learning rule. In this paper, the specific 
algorithm used is the back-propagation (BP) system. Its 

goal is to minimize an error function. A description of the BP 
algorithm was given previo~s ly '~  with a simple example of 
application and a more extensive description can be found in 
other works.21,22 

Embedding Frequencies 
In a BP NN the input layer contains information concerning 
the data samples under study. In chemistry this information 
is represented by molecular codes (molecular descriptors). In 
our study the molecular codes correspond to the embedding 
f requencie~ .~~ These integer entities determine to some extent 
the structure of acyclic compounds composed of carbon, 
oxygen and sulfur atoms (hydrogen atoms are ignored). Their 
simple graph-theoretical construction has been described in 
our recent p ~ b l i c a t i o n . ~ ~  Let T be a tree with vertices evalu- 
ated by symbols C, 0 or S. T is assigned to any 
acyclic molecule with skeleton composed of carbon, oxygen, 
and sulfur atoms. Let T' be a subtree of the tree T.  T' corre- 
sponds to a connected cluster of atoms. The embedding 
f r e q u e n ~ y ~ ~ ? ~ ~  of 7" in T ,  denoted by n(T, T'), is then defined 
as the number of appearance of the cluster T' in the tree- 
molecule T.  In Table 1, 20 clusters used in the construction 
of input activities, are listed. The input activities correspond 
to 20 embedding frequencies assigned to these clusters, di = 
n(T, TJ, for i = 1, 2, . .., 20, where T formally treated as a 
tree corresponds to a molecule determined by these 20 
descriptors. Examples of descriptors for three molecules are 
listed in Table 2. 

Table 1 
frequencies 

List of 20 clusters used for the construction of embedding 

no. cluster no. cluster no. cluster 
~~ 

1 c  2 0  3 s  
4 c-c 5 c-0 6 C-S 
7 0-0 8 S-S 9 c-c-c 

10 c-c-0 11 c-0-c 12 0-c-0 
13 C-C-S 14 C-S-C 15 S-C-S 
16 C-C-C-C 17 C-(C)3" 18 C-C-C-C-C 
19 C-C-(C)3' 20 C-(C)4" 

' 17: isobutyl; 19: isopentyl; 20: neopentyl. 
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Table 2 Three examples of 20 descriptors assigned to acyclic mol- 
ecules 

dimethyl 2 2 0 0 2 0 1 0 0 0 
peroxide 0 0 0 0 0 0 0 0 0 0 

dipropyl 6 0 1 4 0 2 0 0 2 0 
sulfide 0 0 2 1 0 0 0 0 0 0 

dibutyl 8 0 2 6 0 2 0 1 4 0 
disulfide 0 0 2 0 0 2 0 0 0 0 

Method 
The set of 185 compounds (Table 3) used in the present paper 
has been studied by Balaban et This set essentially con- 
sists of two basic types of molecules: (1) Acyclic ethers, per- 
oxides and acetals (73 ethers, 17 diethers, 21 acetals and 6 
peroxides). (2) Acyclic sulfide, disulfide and thioacetal (45 sul- 
fides, 6 bis-sulfides, 4 thioacetals and 13 disulfides). 

Table 3 
dicted (pred) bps and corresponding residuals (res) (all in "C) 

Compounds studied with their experimental (exp) bps, pre- 

~~ 

no. name bpcxp bPprcd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

dimethyl ether 
dimethyl peroxide 
dimethyl sulfide 
dimethyl disulfide 
ethyl methyl ether 
ethyl methyl peroxide 
dimethoxymethane 
ethyl methyl sulfide 
ethyl methyl disulfide 
bis(meth ylt hio)met hane 
methyl propyl ether 
diethyl ether 
isopropyl methyl ether 
diethyl peroxide 
isopropyl methyl peroxide 
ethoxymethoxyethane 
1,l -dimethoxyethane 
1,2-dimethoxyethane 
methyl propyl sulfide 
diethyl sulfide 
isopropyl methyl sulfide 
diethyl disulfide 
1,l -bis(methylthio)ethane 
ethylthiomethylthiomethane 
1,2-bis(methylthio)ethane 
butyl methyl ether 
ethyl propyl ether 
ethyl isopropyl ether 
isobutyl methyl ether 
sec-butyl methyl ether 
tert-butyl methyl ether 
diet hoxymethane 
2,2-dime thoxypropane 
1,3-dimethoxypropane 
lethoxy-2-methoxyethane 
1,2-dime thoxypropane 
ethyl isopropyl sulfide 
butyl methyl sulfide 
isobutyl methyl sulfide 
ethyl propyl sulfide 
tert-butyl methyl sulfide 
ethyl propyl disulfide 
ethyl isopropyl disulfide 
bis(ethy1thio)methane 
methyl pentyl ether 
ethyl butyl ether 
dipropyl ether 
isopropyl propyl ether 
ethyl isobutyl ether 
isopentyl methyl ether 
methyl 2-methylbutyl ether 
ethyl sec-butyl ether 
methyl 1-methylbutyl ether 
diisopropyl ether 

- 23.70 
14.00 
37.30 

109.70 
10.80 
39.00 
42.00 
66.60 

135.00 
148.50 
40.00 
34.60 
32.00 
63.00 
53.50 
67.00 
64.40 
84.70 
95.50 
92.00 
84.40 

154.00 
156.00 
166.00 
183.00 
70.30 
63.60 
52.50 
59.00 
59.50 
55.20 
88.00 
83.00 

104.50 
102.00 
92.00 

107.40 
123.20 
112.50 
118.50 
101.50 
173.70 
165.50 
181.00 
99.50 
92.30 
90.10 
80.20 
82.00 
9 1.20 
91.50 
81.20 
93.00 
69.00 

-4.80 
9.8 1 

40.64 
112.31 

7.50 
39.24 
36.41 
66.95 

134.93 
150.48 
35.63 
34.98 
31.41 
58.15 
59.66 
69.19 
64.48 
74.53 
94.82 
90.89 
88.01 

152.98 
152.97 
167.16 
187.30 
72.38 
62.14 
54.75 
61.79 
65.29 
53.56 
92.65 
77.85 

105.09 
104.25 
99.99 

106.47 
124.26 
114.89 
116.96 
102.34 
174.22 
165.57 
183.98 
97.25 
93.88 
89.07 
79.21 
84.03 
86.77 
87.01 
83.83 
85.81 
69.74 

- 18.90 
4.19 

- 3.34 
- 2.61 

3.30 
- 0.24 

5.59 
-0.35 

0.07 
- 1.98 

4.37 
-0.38 

0.59 
4.85 

-6.16 
-2.19 
- 0.08 
10.17 
0.68 
1.11 

-3.61 
1.02 
3.03 

- 1.16 
-4.30 
- 2.08 

1.46 
-2.25 
- 2.79 
- 5.79 

1.64 
- 4.65 

5.15 
-0.59 
- 2.25 
-7.99 

0.93 
- 1.06 
-2.39 

1.54 
-0.84 
-0.52 
- 0.07 
- 2.98 

2.25 

1.03 
0.99 

- 2.03 
4.43 
4.49 

-2.63 
7.19 

- 1.58 

-0.74 
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Table 3 (continued) 

no. name bpcrp bPprcd 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 

methyl tert-pentyl ether 
1,2-dimethylpropyl methyl ether 
1,l-diethoxyethane 
l,l-dimethoxy-2-methylpropane 
2-ethoxy-2-methoxypropane 
1,l-diaethoxybutane 
1-methoxy- 1-propoxyethane 
1,4-dimethoxybutane 
1,2diethoxyet hane 
1,3-dimet hoxybutane 
methyl pentyl sulfide 
butyl ethyl sulfide 
dipropyl sulfide 
isopropyl propyl sulfide 
ethyl isobutyl sulfide 
isopentyl methyl sulfide 
methyl 2-methylbutyl sulfide 
sec-butyl ethyl sulfide 
tert-butyl ethyl sulfide 
diisopropyl sulfide 
1-ethylpropyl methyl sulfide 
dipropyl disulfide 
diisopropyl disulfide 
sec-butyl ethyl disulfide 
isopropyl propyl disulfide 
tert-butyl ethyl disulfide 
1,l-bis(ethy1thio)ethane 
1,2-bis(ethylthio)ethane 
hexyl methyl ether 
ethyl pentyl ether 
butyl propyl ether 
butyl isopropyl ether 
isobutyl propyl ether 
ethyl isopentyl ether 
tert-butyl propyl ether 
2,2-dimethylpropyl ethyl ether 
tert-butyl isopropyl ether 
ethyl 1-methylbutyl ether 
ethyl tert-pentyl ether 
1,2-dimethylpropyl ethyl ether 
ethyl 1-ethylpropyl ether 
dipropoxymethane 
2,2-diethoxypropane 
1 -ethox y- 1 -propoxyet hane 
1,l-diethoxypropane 
1,3-diethoxypropane 
1,5-dimethoxypentane 
1-ethoxy-4-methoxybutane 
1,4-dimethoxypentane 
1,3-dimethoxypentane 
hexyl methyl sulfide 
butyl propyl sulfide 
isobutyl propyl sulfide 
isobutyl isopropyl sulfide 
ethyl 2-methylbutyl sulfide 
tert-butyl propyl sulfide 
sec-butyl isopropyl sulfide 
ethyl isopentyl sulfide 
butyl isopropyl sulfide 
1,3-bis(ethylthio)propane 
dibutyl ether 
isopentyl propyl ether 
butyl isobutyl ether 
butyl sec-butyl ether 
butyl tert-butyl ether 
sec-butyl isobutyl ether 
1,3-dimethylpentyl methyl ether 
diisobutyl ether 
isobutyl tert-butyl ether 
di-tert-butyl ether 
isopropyl tert-pentyl ether 
heptyl methyl ether 
1-ethylpropyl propyl ether 
di-tert-butyl peroxide 
1,1 -diisopropoxyethane 
1,1 -dipropoxyethane 
1,3-dirnethoxyet hane 
2,4-dimethoxy-2-methylpentane 
1,4-diethoxybutane 
dibutylsulfide 
diisobutyl sulfide 
butyl isobutyl sulfide 
di-tert-butyl sulfide 
di-sec-butyl sulfide 
butyl sec-butyl sulfide 

86.30 
82.00 

103.00 
103.50 
96.00 

112.00 
104.00 
132.50 
123.50 
120.30 
145.00 
144.20 
142.80 
132.00 
134.20 
137.00 
139.00 
133.60 
120.40 
120.00 
137.00 
195.80 
177.20 
181.00 
185.90 
175.70 
186.00 
211.00 
125.00 
118.00 
117.10 
107.00 
102.50 
112.00 
97.40 
91.50 
87.60 

106.50 
101.00 
99.30 
90.00 

137.00 
114.00 
126.00 
124.00 
140.50 
157.50 
146.00 
145.00 
141.00 
171.00 
166.00 
155.00 
145.00 
159.00 
138.00 
142.00 
159.00 
163.50 
229.50 
142.00 
125.00 
132.00 
130.50 
125.00 
122.00 
121.00 
122.20 
112.00 
106.00 
114.50 
151.00 
128.50 
109.50 
126.00 
147.00 
158.00 
147.00 
165.00 
188.90 
170.00 
178.00 
148.50 
165.00 
177.00 

80.03 
85.08 

103.38 
103.49 
96.67 

114.82 
107.02 
131.04 
120.49 
123.54 
146.94 
143.05 
142.02 
131.01 
132.84 
138.59 
138.21 
131.66 
116.57 
119.84 
135.40 
191.77 
176.05 
185.93 
185.14 
172.93 
185.68 
210.96 
122.66 
115.99 
117.97 
106.03 
106.13 
108.48 
92.68 
97.97 
87.88 

103.06 
98.75 

104.49 
105.45 
134.89 
109.58 
122.16 
122.39 
139.22 
152.06 
146.66 
143.88 
144.78 
169.07 
166.13 
155.18 
147.67 
153.68 
139.41 
144.8 1 
154.27 
154.47 
225.03 
142.18 
130.53 
129.77 
130.10 
1 15.23 
122.66 
133.12 
119.50 
115.69 
113.24 
114.79 
148.31 
126.77 
101.08 
130.9 1 
141.33 
157.66 
146.48 
157.69 
187.68 
169.06 
177.68 
147.73 
167.32 
177.83 

6.27 
- 3.08 
-0.38 

0.01 
-0.67 
-2.82 
- 3.02 

1.46 
3.01 

- 3.24 
- 1.94 

1.15 
0.78 
0.99 
1.36 

0.79 
1.94 
3.83 
0.16 
1.60 
4.03 
1.15 

-4.93 
0.76 
2.77 
0.32 
0.04 
2.34 
2.01 

--0.87 
0.97 

3.52 
4.72 

- 1.59 

- 3.63 

-6.47 
-0.28 

3.44 
2.25 

-5.19 
- 15.45 

2.1 1 
4.42 
3.84 
1.61 
1.28 
5.44 

- 0.66 
1.12 

-- 3.78 
1.93 

-0.13 
-0.18 
- 2.67 

5.32 
- 1.41 
-2.81 

4.73 
9.03 
4.47 

-0.18 
- 5.53 

2.23 
0.40 
9.77 

- 0.66 
- 12.12 

2.70 
--3.69 
-7.24 
-0.29 

2.69 
1.73 
8.42 

5.67 
0.34 
0.52 
7.31 
1.22 
0.94 
0.32 
0.77 

- 4.9 1 

-2.32 
-0.83 
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Table 3 (continued) 

140 
141 
142 
143 
144 
145 
146 

147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 

161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 

172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 

sec-butyl isobutyl sulfide 
heptyl methyl sulfide 
dibutyl disulfide 
diisobutyl disulfide 
di-tert-butyl disulfide 
1,1 -bis(isopropylt hiokthane 
l-ethyl-1,3-dimethylbutyl methyl 

ethyl heptyl ether 
butyl isopentyl ether 
tert-butyl isopentyl ether 
butyl pentyl ether 
1,5-dimethylhexyl methyl ether 
isobutyl isopentyl ether 
methyl I-methylheptyl ether 
methyl octyl ether 
2-ethylhexyl methyl ether 
methyl 1,1,4-trirnethylpentyl ether 
3,5-dimethylhexyl methyl ether 
ethyl 1,1,3-trimethylbutyl ether 
tert-butyl tert-pentyl peroxide 
1,l -dimethoxy-2,2- 

dimethylpentane 
1,l -diethoxypentane 
1,1 -dipropoxypropane 
1,l -diisopropoxypropane 
1,3-dipropoxypropane 
1,3-diisopropoxypropane 
ethyl heptyl sulfide 
methyl octyl sulfide 
bis(buty1thio)methane 
2,2-bis(propylthio)propane 
ethyl octyl ether 
ethyl 1,1,3,3-tetramethylbutyl 

bis(1-ethylpropyl) ether 
bis(1-methylbutyl) ether 
butyl 1-methylpropyl ether 
diisopentyl ether 
dipentyl ether 
isopropyl heptyl ether 
heptyl propyl ether 
isopentyl pentyl ether 
methyl I-methyloctyl ether 
di-tert-pentyl sulfide 
dipentyl sulfide 
disopentyl sulfide 
isobutyl 4-methylpentyl sulfide 
methyl nonyl sulfide 

ether 

ether 

167.00 
195.00 
226.00 
215.00 
201.00 
205.00 

151.50 
165.50 
157.00 
139.00 
163.00 
153.50 
139.00 
162.00 
173.00 
159.50 
159.50 
155.50 
141.00 
126.00 

164.00 
163.00 
166.50 
146.00 
165.00 
159.00 
195.00 
218.00 
250.00 
235.00 
186.50 

156.50 
162.00 
162.00 
170.00 
173.20 
186.80 
173.00 
187.00 
174.00 
188.50 
199.00 
228.00 
215.00 
216.00 
240.00 

170.87 
191.54 
225.07 
216.22 
202.29 
215.31 

154.31 
161.94 
151.68 
142.02 
163.76 
155.94 
148.07 
160.11 
175.51 
162.75 
144.30 
165.14 
142.65 
136.20 

145.47 
175.06 
158.68 
149.80 
185.08 
152.69 
211.74 
215.22 
257.62 
225.10 
187.80 

161.80 
160.46 
160.46 
173.67 
168.25 
185.45 
172.71 
185.97 
176.40 
186.00 
195.40 
227.28 
210.35 
216.52 
232.63 

- 3.87 
3.46 
0.93 

- 1.22 
- 1.29 
- 10.31 

-2.81 
3.56 
5.32 

- 3.02 
-0.76 
- 2.44 
- 9.07 

1.89 
- 2.5 1 
- 3.25 
15.20 
- 9.64 
- 1.65 
- 10.20 

18.53 

7.82 
- 12.06 

- 3.80 
- 20.08 

6.8 1 

2.78 

9.90 

- 16.74 

- 7.62 

- 1.30 

- 5.30 
1.54 
1.54 

- 3.67 
4.95 
1.35 
0.29 
1.03 

2.50 
3.60 
0.72 
4.65 

-0.52 
7.37 

- 2.40 

We used a network with 20 units and a bias in the input 
layer, a variable hidden layer including bias, and one unit in 
the output layer. Input and output data were normalized 
between 0.1 and 0.9. The weights were initialized to random 
values between -0.5 and +0.5 and no momentum was 
added. The learning rate was initially set to 1 and was grad- 
ually decreased until the error function could no longer be 
minimized. 

All computations were performed on an Iris Indigo (Silicon 
Graphics) workstation using our own programs, written in C 
language. 

Results and Discussion 
In a BP NN the input and output neurons are known since 
they present, respectively, the embedding frequencies and the 
bp of the molecules. Unfortunately, there are neither theoreti- 
cal results available, nor satisfying empirical rules that would 
enable us to determine the number of hidden layers and of 
neurons contained in these layers. However, for most of the 
applications of NNs to chemistry, one hidden layer seems to 
be sufficient. For the determination of the number of hidden 
neurons, we have recently" discussed the usefulness of the p 
parameter, defined as : 

number of data point in the training set 
= sum of the number of connections in the NN 

Table 4 Comparison of standard error of learning (SEL) and corre- 
lation coefficient (R) of NNs, MLR, eqn. (l),  eqn. (2) and eqn. (3) 

method SEL R 

3.507 
3.31 1 
2.942 
2.685 
2.800 
2.948 
6.350 
9.0 

10.5 
8.2 

0.997 
0.998 
0.998 
0.998 
0.998 
0.998 
0.992 
0.982 
0.977 
0.986 

"3 . . . "8 is for 3 . . . 8 neurons in the hidden layer. 

According to Zupan and Gasteiger2' 'a good rule of 
thumb is that the number of data values taken for training 
should be equal to or greater than the number of weights to 
be determined in the network' (i.e. p 2 1). In this paper, six 
architectures of NN (20-x-1; x = 3, 4, 5,  6,  7 ,  8 ;  i.e. p E Cl.05, 
2.761) have been tried, and two studies have been achieved: 
learning and prediction. The term learning is used when the 
NN estimates bp values for molecules in the training set. 
When it estimates bp values for molecules not included in the 
training set, this is prediction. 

Learning 

N N s  
In order to determine the best architecture, six different ones 
have been tried (20-x-1; x = 3, 4, 5,  6, 7, 8). The criteria used 
for the comparison of the six architectures are the correlation 
coefficient ( R )  and the standard error of learning (SEL) 
defined by: 

where bprnea, stands for the arithmetic mean of all N 
observed values of the bp. 

The results obtained are given in Table 4. Fig. 1 clearly 
indicates that the SEL goes down to a minimum correspond- 
ing to six neurons in the hidden layer. It can be seen that the 
SEL increases slightly (i.e. the learning performance 
decreases) for seven and eight neurons. That is due to the fact 
that the number of weights is nearly equal to the number of 
molecules in the training set. Thus, the information brought 

3.4 

3.2 

. 

no. of hidden neurons 

SEL as a function of the number of neurons in the hidden Fig. 1 
layer 
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to the training set is not sufficient to train correctly the NN 
with the architecture 20-x-1 (x = 7 and 8). 

M L R  
The most widely used mathematical method in QSAR or 
QSPR is MLR. The objective of such an analysis is to find an 
equation that relates a dependent variable (such as the bp 
property) to one or more independent variables (such as 
molecular descriptors). The solution to the problem consists 
in determining the coefficients a, and the constant term a ,  of 
the following equation: 

bp = a, + 1 a i d i  

It is helpful to note some inherent difficulties or* MLR in 
particular, arising from the interdependence of molecular 
descriptors. In this study MLR was used to correlate bp with 
only 15 independent molecular descriptors ( d 6 ,  d , ,  d , ,  d , ,  
and d , ,  are removed). The correlation coefficient and the 
standard error of learning are 0.992 and 6.350, respectively. 

Other Models in the Literature 
Bps of the 185 compounds studied were correlated by 
Balaban et ~ 1 . ~ ~  with chemical structures using two or three 
topological descriptors. Three equations were found : 

bp = -59.10 + 44.30 ' X  + 42.88Ns; 

R = 0.982; S = 9.0 (1) 

bp = - 11.23 - 7.21She, + 35.04'~' - 18.30TMe; 

R = 0.977; S = 10.5 (2) 

bp = -41.75 + 43.79 ' X  + 45.03Ns - 2.905he,; 

R = 0.986; S = 8.2 (3) 

All the results given by NNs, MLR, eqn. (l), eqn. (2) and 
eqn. (3) are shown in Table 4. We see that in all cases the NN 
approach gives the best results. However, the learning abil- 
ities of the models are not completely comparable since the 
descriptors used are not the same. In this study NNs show an 
interesting ability to extract information about cyclic com- 
pounds directly from the embedding frequencies. 

Prediction 
The predictive ability of an NN is its ability to give a 
satisfying output to a molecule not included in the examples 
the NN learned. To determine that predictive ability, cross- 
validation has been used. In this procedure one compound is 
removed from the data set, the network is trained with the 
remaining compounds and used to predict the discarded 
compound. The process is repeated in turn for each com- 
pound in the data set. After cross-validation, the predictive 
ability of different networks was assessed by the standard 
error of prediction (SEP) and the cross-validated R2 (R,2,). 

Table 5 Comparison of predictive ability for NNs and MLR 

method SEP R:v 

NN3 
NN4 
NN5 
NN6 
NN7 
MLR 

5.223 
5.152 
5.102 
5.946 
6.215 
6.710 

0.988 
0.988 
0.989 
0.985 
0.983 
0.98 1 

input 
layer 

hidden 
layer 

bias 

d 20 

di 

W W 

Fig. 2 
ration shown is 20-5-1. 

Architecture of a BP network with three layers. The configu- 

Table 5 shows the results obtained with five different archi- 
tectures and with MLR. This table shows that the NN per- 
formance is a function of the number of hidden neurons. NNs 
give a superior performance to that given by MLR. In MLR 
the relationship between bp and molecular descriptors is 
expressed by a linear combination of the contributing terms. 
On the contrary the NN owes its predictive ability to its non- 
linear power. This does not mean that the NN is a poly- 
nomial model but it is able to learn by example how to 
make predictions for cases not belonging to the training set. 
It can be seen that the best architecture is 20-5-1 ( p  = 1.67; 
Fig. 2). It is interesting to note the variation of the SEP 
according to the number of iterations. Fig. 3 shows this varia- 
tion for the NN with an architecture 20-5-1. The learning 
performance of the NN increases with the number of iter- 
ations, but its predictive ability slowly decreases after 4000 
iterations. This is known as the overtraining effect, due to a 
too long learning time. Indeed, the weights obtained after the 
overtraining contain more information specific to the training 
set. Therefore, prediction on the test set will not really be 
satisfying. Thus, when a very low error in the training set is 

I \  3 

21 ' > ' ' ' , '  , ' I .  
! , , ,  

0 2000 4000 6000 8000 10000 
no. of iterations 

Fig. 3 
(bottom curve). 

Predictive ability of NN (top curve). Learning ability of NN 
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sought, the predictive ability of an NN is less successful. The 
ability to predict being an essential quality of an NN, the 
overtraining effect must be avoided. The full results of cross- 
validation for 4000 iterations and with the NN architecture 
20-5-1 are gathered in Table 3. Those results are satisfying 
and show that the embedding frequencies are very useful 
descriptors for the compounds studied. Nevertheless, six out- 
liers can be seen (compounds 1, 95, 156, 160, 164 and 166 
with residuals between 15 and 20°C). For dimethyl ether, a 
large deviation is expected because it is the only one to have 
a negative experimental bp. It should be noted that the NN 
predicted a negative value for this compound. Since the bp is 
one of the physical properties that are difficult to measure,’* 
the experimental bps of the other outliers may be in error. 

Conclusion 
This paper has discussed the use of BP NN to predict the 
boiling point of acyclic ethers, peroxides, acetals and their 
sulfur analogues. The performances of NN were compared 
with those given by MLR and those of other models in the 
literature, and proved to be better. It is interesting to note 
that the performances of the NNs decrease when overtraining 
occurs. The embedding frequencies provide enough informa- 
tion to an NN for prediction of the bp of the compounds 
studied. The approach using the embedding frequencies is 
adapted to the modelling of compounds containing hetero- 
atoms, which is not the case for descriptors based on topo- 
logical in dice^.^' 
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