INSTITUT NATIONAL
DES SCIENCES ASI 4
APPLIQUEES

ROUEN Graph Kernel B. Gaiizere

INSA

Objectives Implement a first graph kernel based on bags of patterns. The enumeration of
patterns is made using an external library.

Preliminaries A paper,mine: https://www.sciencedirect.com/science/article/
abs/pi1i1/S016786551200102Xorherehttp://pagesperso.litislab.fr/~bgauzere/
GauzereAl-PRL2012-Two_New_Graphs_Kernels_In_Chemoinformatics.pdf

Also, the code provided is from this github : https://github.com/jajupmochi/

py—graph

1 Loading dataset

On Moodle, you can download the dataset Acyclic. This dataset is composed of 183 chemical
compounds, encoded as graphs, associated to their boiling point. Each node encodes an atom
and is labeled by its chemical element. Each edge encodes an atomic bond and is labeled by its
valence, encoded as an integer.

/O
e YT

_0 CH3
H3C

Questions

1. Load the dataset and check the data

#Chargement du dataset
#!pip install graphkit—-learn # uncomment to install graphkit—-learn
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plt

import networkx as nx
from gklearn.utils.graph_files import load_dataset

Load dataset
G,y,info= load_dataset("/path/to/the/dataset/dataset_bps.ds")

np.array(y)
len(G)

y
N

p.1/6

https://www.sciencedirect.com/science/article/abs/pii/S016786551200102X
https://www.sciencedirect.com/science/article/abs/pii/S016786551200102X
http://pagesperso.litislab.fr/~bgauzere/GauzereAl-PRL2012-Two_New_Graphs_Kernels_In_Chemoinformatics.pdf
http://pagesperso.litislab.fr/~bgauzere/GauzereAl-PRL2012-Two_New_Graphs_Kernels_In_Chemoinformatics.pdf
https://github.com/jajupmochi/py-graph
https://github.com/jajupmochi/py-graph

ASI4 ML

2 First contact with graphs

Contents of dataset are graphs as NetworkX format. NetworkX proposes some functions to
visualize graphs.

Questions
1. Take two graphs and visualize them using NetworkX

2. Feel free to check NetworkX library documentation

x1 = 92
Gl = G[x1]
print(y[x1])

print(nx.get_node_attributes(Gl, ’label’))
nx.draw_networkx (G1l)
plt.show()

x2 = 90

G2 = G[x2]

print(y[x2])
print(nx.get_node_attributes (G2, ’'label’))
nx.draw_networkx (G2)

plt.show()

3 Treelet Kernel

Treelet kernel is a graph kernel based on bags of patterns. Similarity between two graphs is
defined as a sum over the similarity of patterns extracted from the graphs. This similarity is
computed using a kernel between number of occurences, generally a Gaussian Kernel.

The Treelet kernel is implemented in gklearn library ﬂ

Question
1. What function computes the kernel value between two graphs ?

2. Compute the kernel value between two arbitrary graphs. Compare it to the difference of
associated boiling points.

from gklearn.kernels import treeletKernel
def linear_kernel (x,y):
return np.dot(x,y)

def rbf kernel(x,y, sigma=1):
return np.exp(-(np.linalg.norm(x-y)*x2)/(2xsigma==2))

x1 = 100

"See https://graphkit-learn.readthedocs.io/en/master/modules.html for the docs.

p.2/6

https://graphkit-learn.readthedocs.io/en/master/modules.html

ASI4 ML

Gl = G[x1]

x2 = 101

G2 = G[x2]

kernel _value ,run_time = treeletKernel.treeletkernel(Gl, G2,

sub_kernel = rbf_kernel, n_jobs=1, parallel=None)
print (kernel_value)

print(y[x1],y[x2])

The same function can be used to compute the Gram Matrix over a particular dataset.

Question
1. Compute the Gram Matrix of our dataset and display it.

2. Check if this kernel is a valid kernel

#Calcul matrice de Gram

K,run_time = treeletKernel.treeletkernel (G,
sub_kernel = rbf_kernel ,n_jobs=1, parallel=None)
plt.imshow (K)

np.min(np.linalg.eigvalsh(K))

4 Learn a graph kernel machine

Since we have now a valid Gram Matrix, we are able to combine it with kernel machines such
as SVM.

Question
1. What kind of problem do we have here ? What method you will use ?

2. Without tuning any hyperparameter, learn a first predictor and evaluate its performance
correctly.

from sklearn.svm import SVR

import numpy as np

from sklearn.model_selection import ShuffleSplit
clf = SVR(kernel ="precomputed")

rs = ShuffleSplit (n_splits=5, test_size=.33, random_state=0)
errors = []

dataset = np.arange(len(G))

for train_index, val_index in rs.split(dataset):
Ktrain = K[train_index,:][:,train_index]

p.3/6

ASI4 ML

Kval = K[val_index,:][:,train_index]
clf.fit(Ktrain , y[train_index 1])

y_pred = clf.predict (Kval)

errors.extend (np.abs(y_pred - y[val_index]))

print (np.mean(errors))

3. Identify the hyperparameters and tune them using an unbiased method

S Improve the kernel

When applying treeletKernel function, we hinge on a gaussian keernel with a o value
equals to 1 to compare the number of occurences of each treelet in the compared graphs.

The aim of this section is to modify this kernel between number of occurences. To do this,
we first need to get the bags of patterns from both graphs.

Question
1. Extract and visualize the bag of patterns extracted from one graph.

2. Extract bags of patterns for all the graphs in the dataset.

from gklearn.kernels.treeletKernel import get_canonkeys

treelets = get_canonkeys(Gl, node_label="atom_symbol’, edge_label=’"bon
print(treelets)

X = []
for graph in G:
X.append(get_canonkeys (graph,
node_label="atom_symbol’, edge_label="bond_type’,
labeled=True, is_directed=False))

Now, we want to compare the number of occurences of a same treelet in two different graphs.

Question
1. What are the input space for our kernel ?
2. Propose and implement kernels to compare number of occurences
3. Implement a function computing the kernel value between two bags of patterns.

4. Check that your new kernel is semi positive definite

p.4/6

ASI4 ML

def my_graph_kernel (T1,T2,sigma=1):
#T1 and T2 are dict encoding the number of occurences of each

codes = set(Tl.keys()) & set(T2.keys())

kernel = 0
for c¢ in codes:
tl = Tl.get(c,0)
t2 = T2.get(c,0)
sub_kernel = np.exp((-(tl - t2)x%2) / (sigma=%2))
kernel = kernel + sub_kernel
return kernel

def my_tani_kernel(T1,T2,sigma=1):
codes = set(Tl.keys())
codes.update(set(T2.keys()))

kernel = 0
for c¢ in codes:
tl = Tl.get(c,0)
t2 = T2.get(c,0)
sub_kernel = min(tl,t2)
kernel = kernel + sub_kernel
return kernel

def compute_gram(dataset,kernel,param_kernel):
N = len(dataset)
my_K = np.zeros((N,N))
for i in range(®,N):
for j in range(i,N):
my_K[i,j] = kernel (X[i],X[j],param_kernel)
mny[Jil:l = mny[l,J]
return my K

my K = compute_gram(G, my_graph_kernel, 5)
plt.imshow (my_K)
print(np.min(np.linalg.eigvalsh(my_K)))

The sub kernel is now a new hyperparameter. Tune the selection of this kernel together with
hyperparameter related to your classifier.

from sklearn.svm import SVR
from sklearn.kernel_ridge import KernelRidge

import numpy as np
from sklearn.model_selection import ShuffleSplit

p.5/6

tree.

ASI4 ML

clf = SVR(kernel="precomputed’)

K = compute_gram(G,my_tani_kernel b 10)
rs = ShuffleSplit(n_splits=5, test_size=.33, random_state=0)
errors = []
for train_index, val_index in rs.split(G):
K_train = K[train_index,:][:,train_index]
K_val = K[val_index,:][:,train_index]

clf.fit(K_train, y[train_index])
y_pred = clf.predict(K_val)
rmse_val = np.sqrt(np.mean((y_pred - y[val_index])==%2))
errors.extend(np.abs(y_pred - y[val_index]))
print (np.mean(errors))

Comment the obtained results.

References

[CV94] D. Cherqaoui and D. Villemin. Use of a neural network to determine the boiling
point of alkanes. J. Chem. Soc. Faraday Trans., 90:97-102, 1994.

[GBVI11] Benoit Gaiizeére, Luc Brun, and Didier Villemin. Two new graph kernels and appli-
cations to chemoinformatics. Pattern Recognition Letters, 2011.

[MVO08] P.Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules. Machine
Learning, 75(1):3-35, October 2008.

[RGO3] J. Ramon and T. Gértner. Expressivity versus efficiency of graph kernels. In /st Int.
Workshop on Mining Graphs, Trees and Sequences, pages 65-74, 2003.

[VBKS10] S.V.N. Vishwanathan, K. M. Borgwardt, I. R. Kondor, and N. N. Schraudolph.
Graph Kernels. Journal of Machine Learning Research, 11:1201-1242, 2010.

p.6/6

	Loading dataset
	First contact with graphs
	Treelet Kernel
	Learn a graph kernel machine
	Improve the kernel

