Model selection and assessment

Gilles Gasso

INSA Rouen -Department ASI Laboratory LITIS

December 19, 2019

Plan

Introduction

- Principles of statistical learning
- 3 Assessing model's quality
 - Performance measures
 - Estimation of generalization ability

Model selection

- Principle
- Practical methodology

The goal

Goal

- $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1\cdots n}$: set of labeled data
- (x, y) ∼ p(X, Y) with p(X, Y) the joint distribution generally unknown
- \bullet Goal : learn from ${\cal D}$ a function

$$f: \mathcal{X} \longrightarrow \mathcal{Y}$$
$$x \longmapsto \hat{y} = f(\mathbf{x})$$

that predicts the output \hat{y} associated to each point $\pmb{x} \in \mathcal{X}$

Properties of the learning

- \forall (\boldsymbol{x}_i, y_i) $\in \mathcal{D}$, we want f to predict the correct label y_i
- f should correctly predict the labels of unseen sample x_j

Example

Example : image classification

Classification methods

- K-NN
- Logistic Regression
- SVM (linear or non-linear)
- o . . .

⇒ Which model to select ? How to asess its ability to generalize to unseen data ?

Loss function

Loss function $\ell(Y, f(X))$

• evaluates how "close" is the prediction f(x) to the true label y

• it penalizes errors:
$$\ell(y, f(\mathbf{x})) = \begin{cases} 0 & \text{if } y = f(\mathbf{x}) \\ \ge 0 & \text{if } y \neq f(\mathbf{x}) \end{cases}$$

For binary classification

- We suppose $\mathcal{Y} = \{-1, 1\}$
- 0 1 cost

$$\ell(y, f(\boldsymbol{x})) = \mathbb{I}_{yf(\boldsymbol{x}) \leq 0} = \begin{cases} 0 & \text{if } yf(\boldsymbol{x}) > 0 \\ 1 & \text{if } yf(\boldsymbol{x}) \leq 0 \end{cases}$$

measures the number of classification errors

Risk function and learning

Risk function

Assesses the expected error (generalization ability) of f

$$R(f) = \mathbb{E}_{X,Y}\ell(Y, f(X))$$

$$R(f) = \int_{\mathcal{X},\mathcal{Y}}\ell(y, f(\mathbf{x}))p(\mathbf{x}, y)d\mathbf{x}dy$$

Statistical learning problem

Find the function f^* that minimises R(f)

f

$$= \operatorname{argmin}_{f} \mathbb{E}_{X,Y} \ell(Y, f(X))$$

However

 f^* is not attainable as $\mathbb{P}(X, Y)$ is unknown

Empirical risk

We only have access to a finite set of samples $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1\cdots n}$.

Define the empirical risk

$$R_{n}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, f(\boldsymbol{x}_{i}))$$

Empirical risk minimization

• We are looking for a decision function

$$f_n = \operatorname{argmin}_f R_n(f)$$

• $R_n(f_n)$ is the empirical risk corresponding to f_n . It is an approximation of the real risk $R(f_n) = \mathbb{E}_{X,Y}\ell(Y, f_n(X))$

Empirical risk and over-fitting

- Should we choose f based on $R_n(f_n)$? NO !
- as we can design a sufficiently complex function f_n such that $R_n(f_n) \rightarrow 0$ but with high risk $R(f_n)$

K-NN classification function

The paradigm of statistical learning

With given D, find a model f in a family F (linear, kernel SVM ...) with good generalization properties

Gilles Gasso

Why the learning is possible

Supremum on generalization error

Let's $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1\cdots n}$ the dataset. Let \mathcal{F} be a space of functions. For each $f \in \mathcal{F}$, with probability $1 - \delta$ we have

$$R(f) \leq R_{n}(f) + \mathcal{O}\left(\sqrt{\frac{h}{n}\log\frac{2en}{h} + \frac{\log 2/\delta}{n}}\right)$$

h > 0 measures the "complexity" of the functions class ${\cal F}$

- Generalization occurs whenever $h < \infty$
- Bigger is n better it is (n >> h: the number of data increases with model complexity)
- Linear model $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$ with $w \in \mathbb{R}^d$, h = d + 1

Illustration

Generalization / over-fitting

$$R(f) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_i), y_i) + \operatorname{term}(n, h(\mathcal{F}))$$

- $R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i)$ is not a good estimator of generalization ability
- Over-fitting appears with the increasing complexity of f

Complexity control: regularisation

Let $k_1 < k_2 < k_3 < \cdots$ We define $\mathcal{F}_j = \{f : \Omega(f) \le k_j\}$ $\Omega(f)$: regularisation function Example: $\Omega(f) = ||f||^2$

Minimization of the regularized empiric risk

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_{i}), y_{i}) + \boldsymbol{\lambda} \Omega(f)$$

- $\lambda > 0$: regularization hyper-parameter
- $\lambda >> 1 \rightarrow$ we encourage f to be of low complexity

Example : SVM $\min_f \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i) + \lambda ||f||^2$ with cost function $\ell(y, f(\mathbf{x})) = \max(0, 1 - yf(\mathbf{x}))$ and $\lambda = 1/C$

Illustration: influence of model's hyper-parameters

• The choice of the hyper-parameter's value (hence of the model) impacts the quality of the prediction

Model selection and evaluation

Raised issues

- Model evaluation : what measure(s) of performance?
- Estimation of the generalisation capacity of the model
- Practical model selection procedures

Plan

Introduction

- Principles of statistical learning
- Assessing model's quality
 - Performance measures
 - Estimation of generalization ability

4 Model selection

- Principle
- Practical methodology

Assessing the quality of a model

The confusion matrix

A matrix showing the predicted and actual classifications. A confusion matrix is of size $p \times p$, where p is the number of classes.

Predicted / Actual	Positive	Negative
Positive	TP	FP
Negative	FN	TN
	P = TP + FN	N = FP + TN

- Error rate = (FP + FN)/(P + N) (\searrow)
- Accuracy = 1 Error rate = (TP + TN)/(P + N) (\nearrow)
- Precision = TP/(TP + FP)
- Recall, Sensitivity = TP/P
- Specificity = FP/N

• F-Measure =
$$2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (\nearrow)

ROC Curve

- It's the curve TPR = fonction(FPR)
- Allows graphical comparison of different models

Measure of performances

Area Under the ROC Curve (AUC)

• Let $\mathcal{D} = \{(\mathbf{x}_i, y_i = 1)\}_{i=1}^P \cup \{(\mathbf{x}_j, y_j = -1)\}_{i=1}^N$ and f be the decision function. The AUC is defined by

$$AUC = \sum_{i=1}^{P} \sum_{j=1}^{N} \frac{\mathbb{I}\left[f(\boldsymbol{x}_{i}) > f(\boldsymbol{x}_{j})\right] + 0.5 \,\mathbb{I}\left[f(\boldsymbol{x}_{i}) = f(\boldsymbol{x}_{j})\right]}{P \times N}$$

with ${\rm I\!I}$ the indicator function

• AUC is between 0 and 1 $(\nearrow \nearrow)$

• Favours the decision function such that $f(\mathbf{x}_i) > f(\mathbf{x}_j)$ $\forall (y_i = 1, y_j = -1)$

Other performance measures

- Many performance measures exist
- Each classifier may be the best one according to a specific measure
- Keep in mind that your model may fail according to another measure
- \rightarrow Choose wisely according to your problematic

N. Japkowicz & M. Shah, "Evaluating Learning Algorithms: A Classification Perspective", Cambridge University Press, 2011

The model' generalization

- Let f be a decision-making function developed using the data $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1\cdots n}$
- We are looking at $R(\mathcal{D}_{\infty}, f)$ the theoretical performance of f on all possible future data

Generalisation Capacity

Capacity of f to perform well (measured with one of the previous metrics) when tested on data other than those used for training

How to estimate $R(\mathcal{D}_{\infty}, f)$ in practice ?

Paradigm test set/training set

Randomly split \mathcal{D}_n into two disjoints sets \mathcal{D}_{train} and \mathcal{D}_{test}

•
$$\mathcal{D}_{train} = \{(\boldsymbol{x}_i, y_i)\}_{i=1\cdots n_{train}}$$
: data used for training f

• $\mathcal{D}_{test} = \{(\mathbf{x}_i, y_i)\}_{i=1\cdots n_{test}}$: data used to evaluate the generalization capacity of f

Remark

- Bigger n_{train} is, better the training
- Bigger n_{test} is, better the estimation of performance is f
- \mathcal{D}_{test} is used only one time !

Error bars on Bernoulli trials

Hypothesis

My new method classifies well 90 (n_s) examples over 100 (n). 10 (n_F) examples are mis-classified. What is my level of confidence?

Level of confidence $\boldsymbol{\alpha}$

success probability : $\hat{p} = 0.9$

$$\hat{p}_{\alpha} = \hat{p} \pm z \sqrt{\frac{\hat{p} \left(1 - \hat{p}\right)}{n}} = \frac{n_{\mathsf{S}}}{n} \pm \frac{z}{n} \sqrt{\frac{n_{\mathsf{S}} n_{\mathsf{F}}}{n}}$$

with z is the $1-\frac{\alpha}{2}$ quantile of a standard normal distribution.

- Consider $\alpha = 0.95$,
- z = scipy.stats.norm.ppf(0.975)*np.sqrt(0.9*(1-0.9)/100) $\widehat{p}_{\alpha} = 0.9 \pm 0.059$

• ie. 95% of time: 0.84
$$< \widehat{p} <$$
 0.96

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

To improve the estimate

Dataset size

- If you increase the number of runs, your confidence increases.
- Check the confidence interval

Increase n

- Random Subsampling (The repeated holdout method)
- K-Fold Cross-Validation (K = 10, 5, 2, ...)
- Leave-one-out Cross-Validation (K = n)
- Bootstrap (each sample can be in differents subsets)

Error bars: the gaussian approximation

The *repeated* holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
- In each iteration, use a different random splitting
- Average the error rates on the different iterations

Statistics

• Mean error rate
$$e = \frac{1}{K} \sum_{k=1}^{K} e_k$$

• Variance $\hat{\sigma}^2 = \frac{1}{K-1} \sum_{k=1}^{K} (e_k - e)^2$
• Confidence: $e \pm t_{\alpha/2, K-1} \frac{\hat{\sigma}^2}{\sqrt{K}}$
($t_{0.025.9} = 2.262$)

Conclusion

Good habits

- Simulate real conditions
- Avoid test set bias by adding it within learning procedure
- Look for stability rather than performance

What to do next ?

- What is the best method for my problem?
- How good is my learning algorithm?

Estimation of generalization ability

Comparing two algorithms: Mc Nemar's test

Null Hypothesis H_0 : No differences

We expect :
$$\begin{cases} e_{00} + e_{10} = e_{00} + e_{01} \\ e_{11} + e_{10} = e_{11} + e_{01} \end{cases}$$

• $H_0 : e_{10} = e_{01}$
 $\frac{(e_{10} - e_{01})^2}{e_{10} + e_{01}} \sim \chi_1^2$

o python: in statsmodel

J. L. Fleiss (1981) Statistical Methods for Rates and Proportions. Second Edition. Wiley.

Plan

Introduction

- 2 Principles of statistical learning
- Assessing model's quality
 - Performance measures
 - Estimation of generalization ability

Model selection

- Principle
- Practical methodology

Principle

Model Selection

Problem

• Given a set of models $\mathcal{F} = \{f_1, f_2, \dots\}$, choose the decision function giving the best performances on future data

Examples of function choice by classification type

- K-NN :choice of K
- Sparse Logistic Regression : number of selected variables
- SVM : choice of the hyper-parameter C, kernel tuning
- . . .

Validation set

How to choose the "best" model without testing on \mathcal{D}_{test} ?

- **1** Randomly split $\mathcal{D}_n = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$
- Train each possible model on D_{train}
- **③** Evaluate the performance on \mathcal{D}_{val}
- Select the model with the best performance on \mathcal{D}_{val}
- Test the selected model on \mathcal{D}_{test}

Remark

• \mathcal{D}_{test} is used only one time !

K-fold validation

What if the size of \mathcal{D}_n is small ?

Validation	Apprentissage		Test
Apprentissage	Validation	Apprentissage	Test
Ap	prentissage	Validation	Test

1 Randomly split
$$\mathcal{D}_n = \mathcal{D}_{train} \cup \mathcal{D}_{test}$$

- **2** Then split randomly $\mathcal{D}_{train} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_K$ in K sets
- For k = 1 to K
 - Put aside \mathcal{D}_k
 - **2** Train the model f on the K 1 remaining sets
 - **③** Evaluate its performance R_k on generalizing to \mathcal{D}_k
- Average the K measures of performance R_k

Practical procedure (1)

General Methodology

Input : hyper-parameters family $\mathcal{F} = \{p_1, p_2, \cdots\}$ and $\mathcal{D}_n = \{(x_i, y_i)\}_{i=1\cdots n}$

- Split data $(\mathcal{D}_{train_val}, \mathcal{D}_{test}) \leftarrow \texttt{SplitData}(\mathcal{D}, \texttt{options})$
- 2 Selecting the best model : $f^* \leftarrow \text{Selection}\left(\mathcal{D}_{train \ val}, \mathcal{F}\right)$
- **3** Perf \leftarrow EvaluerPerf $(\mathcal{D}_{test}, f^*)$

Practical procedure (2nd part)

function $f^* \leftarrow \texttt{Selection}\left(\mathcal{D}_{\textit{train_val}}, \mathcal{F}\right)$

 $\textbf{ Split again the dataset } (\mathcal{D}_{train}, \mathcal{D}_{val}) \leftarrow \texttt{SplitData} (\mathcal{D}_{\texttt{train_val}}, \texttt{options})$

2 For $f_i \in \mathcal{F}$

- Train the model : $f_i \leftarrow \text{Model.fit}(\mathcal{D}_{train}, p_i)$
- **2** $Perf(i) \leftarrow EvaluerPerf(\mathcal{D}_{val}, f_i)$
- Select the performing model (best hyper-parameter) : $p^* \leftarrow argmin Perf$

Illustration

K-Fold Cross-Validation

Cross-Validation

10¹

100