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The goal
Goal
© D={(xj,y;) € X X Y}i=1..n : set of labeled data

o (x,y) ~ p(X,Y) with p(X,Y) the joint distribution generally
unknown

@ Goal : learn from D a function

f: X —Y
x —y="f(x)

that predicts the output y associated to each point x € X

Properties of the learning
o V (xj,yi) € D, we want f to predict the correct label y;

e f should correctly predict the labels of unseen sample x;
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Introduction

Example

Example : image classification

Classification methods
o K-NN
o Logistic Regression
@ SVM (linear or non-linear)
°

= Which model to select 7 How to asess its ability to generalize to
unseen data ?
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Principles of statistical learning

Loss function

Loss function £(Y, (X))

@ evaluates how "close” is the prediction f(x) to the true label y
0 if y="Ff(x)

e it penalizes errors: {(y, f(x)) = { >0 if yf(x)

For binary classification
o We suppose Y = {—1,1}

@ 0-1 cost

0 if yf(x)>0
Uy, f(x)) =Ir(x)<o :{ 1 if yf(x)<o | %

measures the number of classification errors |
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Principles of statistical learning

Risk function and learning

Risk function

Assesses the expected error (generalization ability) of f
R(f) = Exy{(Y,f(X))

R(F) = /X Uy, F(x))p(x.y)dxdy

)

Statistical learning problem
Find the function * that minimises R(f)

f* = argminEx yU(Y, f(X))

However

f* is not attainable as IP(X, Y) is unknown
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Principles of statistical learning

Empirical risk

We only have access to a finite set of samples D = {(x;,yi)},_1...,,-

Define the empirical risk

Ra(F) = = 3 blyis (x1))

n <
i=1

Empirical risk minimization
@ We are looking for a decision function
fn = argmingR,(f)

@ Ry (f,) is the empirical risk corresponding to f,. It is an approximation
of the real risk R(f,) = Ex. y£(Y, f(X))
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Principles of statistical learning

Empirical risk and over-fitting

@ Should we choose f based on R,(f,) 7 NO !

@ as we can design a sufficiently complex function f, such that
Rn(f,) — 0 but with high risk R(7,)

K-NN classification function
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= Control the complexity of the function
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Principles of statistical learning

The paradigm of statistical learning

Hypothesis
space F

D = {(xi,yi)}/

<6

R(f Error Ry (f
]p( (:) > rror 1 () 6)
Ex, Uy, f(x) 230, 6f(xi)¥)

—~

With given D, find a model f in a family F (linear, kernel SVM ...) with
good generalization properties
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Why the learning is possible

Supremum on generalization error

Let's D = {(xj, yi)};_;..., the dataset. Let F be a space of functions. For
each f € F, with probability 1 — § we have

R(f) < Ru(f) + 0O <\/g |og2_:" n log:/é)

h > 0 measures the "complexity" of the functions class F

@ Generalization occurs whenever h < oo

e Bigger is n better it is (n >> h: the number of data increases with
model complexity )

o Linear model f(x) =w'x + bwithw c RY, h=d +1
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[[lustration

Generalization / over-fitting
1 n
R(f) < = F(xi), yi
(f) < n;“ (xi), yi) + term(n, h(F))
o Ry(f) =131 £(f(x;),y;) is not a good estimator of generalization
ability
e Over-fitting appears with the increasing complexity of f

Ensemble de Test

Erreur de prediction

Ensemble d’apprentissage

Faible Elevé
Complexité du modele
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Principles of statistical learning

Complexity control: regularisation

Let ky < ko < kg < ---

We define F; = {f : Q(f) < k;}
Q(f) : regularisation function
Example : Q(f) = ||f||?

Minimization of the regularized empiric risk

mfin % gﬂ(f(xi),yi) + A Q(f)

@ A > 0 : regularization hyper-parameter
@ A >>1— we encourage f to be of low complexity

Example : SVM ming 2 3°7  0(f(x;), yi) + A || f||> with cost function
Uy, f(x)) = max(0,1 — yf(x)) and A =1/C
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Principles of statistical learning

[llustration: influence of model’s hyper-parameters

02 1 1 1

o too small o too large

@ The choice of the hyper-parameter’s value (hence of the model)
impacts the quality of the prediction

Gilles Gasso Model selection and assessment 13 /33



Principles of statistical learning

Model selection and evaluation

Raised issues

@ Model evaluation : what measure(s) of performance?
o Estimation of the generalisation capacity of the model

@ Practical model selection procedures

The Classifier Evaluation Framework

Choice of Learning Algorithm(s)

/ Datasets Selection b

Performance Measure E imati
of Interest [T Sampling Method

|

Perform Evaluation
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Plan

© Assessing model's quality
@ Performance measures
e Estimation of generalization ability
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AR e LT
Assessing the quality of a model

The confusion matrix

A matrix showing the predicted and actual classifications. A confusion matrix is
of size p x p, where p is the number of classes.

Predicted / Actual Positive Negative
Positive TP FP
Negative FN TN

P=TP+FN N=FP+TN

Error rate = (FP + FN)/(P + N) (\,\\\)

Accuracy = 1 - Error rate = (TP + TN)/(P+ N) (/)
Precision = TP/(TP + FP)

Recall, Sensitivity = TP/P

Specificity = FP/N

Precision x Recall
F-M =2
° casure Precision + Recall ()
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Assessing model’s quality Performance measures

ROC Curve

@ It's the curve TPR = fonction(FPR)

@ Allows graphical comparison of different models

Courbes ROC
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Assessing model’s quality Performance measures

Measure of performances

Area Under the ROC Curve (AUC)

o Let D= {(x;,yi = 1)}, U{(xj,y; = —1)}, and f be the decision
function. The AUC is defined by

I[f(x;) > f(x;)] +0.50[f(x;) = f(x;)]
auc-3y° Loe
i=1 j=1
with I the indicator function

e AUC is between 0 and 1 ()

e Favours the decision function such that f(x;) > f(x;)
Vi=1y=-1)
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Assessing model’s quality Performance measures

Other performance measures

@ Many performance measures exist
@ Each classifier may be the best one according to a specific measure

@ Keep in mind that your model may fail according to another measure
— Choose wisely according to your problematic

Al
measures

I
Additional Info
(Classifier Uncertainty
Cost ratio, skew)

Scoring
Classifiers
Graphical | [ Summary
measures || Statistics

re

ROC Cunves || Auc
PR Curves || Hmeasu
DET Curves

[ Contusion Matix |

Deterministic Classifiers Continuous and

(Reliabilty metrics)

Single Class

Lift Charts BIR
Cost Curves
Interestngness
P[P Rale hensibiity
Accuracy | Cohen's Kappa || pracsionRecal Mati-crtera
Error Rate | Fleiss Kappa Sens/Spec,
Fmeasure
Geom. Mean

N. Japkowicz & M. Shah, "Evaluating Learning Algorithms: A Classification Perspective", Cambridge University Press, 2011
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VACEEEET A SERCTTEN A Estimation of generalization ability

The model’ generalization

@ Let f be a decision-making function developed using the data
Dy = {(xi, ¥i) }i=1-n

e We are looking at R(D, ) the theoretical performance of f on all
possible future data

Generalisation Capacity

Capacity of f to perform well (measured with one of the previous metrics)
when tested on data other than those used for training

How to estimate R(Doo, f) in practice 7 ]
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Estimation of generalization ability
Paradigm test set/training set

Randomly split D,, into two disjoints sets Diyajin and Diest

Données disponibles

Apprentissage | X, .7, Test (X Vi)

® Dirain = {(xi, ¥i) }i=1.-n,.;, - data used for training f

@ Diest = {(Xi,¥i)}i=1.--ne : data used to evaluate the generalization
capacity of f

Remark
e Bigger ny.in is, better the training
@ Bigger nies: is, better the estimation of performance is f

@ Dyes: is used only one time !
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Estimation of generalization ability
Error bars on Bernoulli trials

Hypothesis

My new method classifies well 90 (ns) examples over 100 (n). 10 (ng) examples
are mis-classified. What is my level of confidence?

Level of confidence «
success probability : p=10.9
. p(1-p) ns

Pa=ptzn/ =0
n n

with z is the 1 — § quantile of a standard normal distribution.
@ Consider oo = 0.95,

@ z = scipy. stats .norm.ppf(0.975)=*np.sqrt(0.9%(1—0.9)/100)
Do = 0.9 £ 0.059

@ ie. 95% of time: 0.84 < p < 0.96

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

VACEEEET A SERCTTEN A Estimation of generalization ability

To improve the estimate

Dataset size

@ If you increase the number of runs, your confidence increases.

@ Check the confidence interval

Increase n
e Random Subsampling (The repeated holdout method)
e K-Fold Cross-Validation (K = 10,5,2,...)
o Leave-one-out Cross-Validation (K = n)

@ Bootstrap (each sample can be in differents subsets)
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VACEEEET A SERCTTEN A Estimation of generalization ability

Error bars: the gaussian approximation

The repeated holdout method

@ Holdout estimate can be made more reliable by repeating the process
with different subsamples

@ In each iteration, use a different random splitting

@ Average the error rates on the different iterations

Statistics

1 K
@ Mean error rate e = — z (5%
K k=1
K

" 1
e Variance 5° = w1 Z(e;< —e)?
k=1

o Confidence: e & t,/» k1 j—;
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VACEEEET A SERCTTEN A Estimation of generalization ability

Conclusion

Good habits
@ Simulate real conditions
@ Avoid test set bias by adding it within learning procedure

@ Look for stability rather than performance

What to do next ?
@ What is the best method for my problem?
@ How good is my learning algorithm?
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VACEEEET A SERCTTEN A Estimation of generalization ability

Comparing two algorithms: Mc Nemar's test

Algo 2 Classified

Algo 1 Well  Wrong
Well €00 €01
Wrong €10 €11

Null Hypothesis Hyp: No differences

€00 + €10 = €po + €o1

We expect :
€11 + €10 = €11 + €o1
@ Hp: e1g = ent
(e10 — e01)? 2
€10 + €o1

@ python: in statsmodel

J. L. Fleiss (1981) Statistical Methods for Rates and Proportions. Second Edition. Wiley.
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Principle
Model Selection

Problem

o Given a set of models 7 = {fi, f,- - - }, choose the decision function
giving the best performances on future data

Examples of function choice by classification type
@ K-NN :choice of K
@ Sparse Logistic Regression : number of selected variables
@ SVM : choice of the hyper-parameter C, kernel tuning
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Principle
Validation set

How to choose the "best" model without testing on Diest 7

Données disponibles

Apprentissage (XY, validation(X .Y, Test (X,,.7,,]

© Randomly split D, = Dirain U Dyaj U Diest

@ Train each possible model on Dy4in

© Evaluate the performance on D,

@ Select the model with the best performance on D,
© Test the selected model on Diyest

Remark
@ Dyes is used only one time ! J
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Principle
K-fold validation

What if the size of D, is small ?

I Validation I Apprentissage _
T

I Apprentissage | Validation

@ Randomly split D, = Dyrain U Diest
@ Then split randomly D4yajp = D1 U--- U Dk in K sets

Q@ Fork=1to K

@ Put aside Dy
@ Train the model f on the K — 1 remaining sets
© Evaluate its performance Ry on generalizing to Dy

@ Average the K measures of performance Ry
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W B GM  Practical methodology

Practical procedure (1)

General Methodology
Input : hyper-parameters family F = {p1, p2,--- } and D, = {(xi, i) }i=1.--n
@ Split data (Dirain vai, Drest) < SplitData (D, options)
@ Selecting the best model : f* < Selection (Dirin val, F)

© Perf + EvaluerPerf (Diest, )
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Practical methodology
Practical procedure (2nd part)

function f* < Selection (Diwain_vai, F)
© Split again the dataset (Dyrain, Dvar) < SplitData (Dirain va1,options)

Q Forfie F

® Train the model : f; + Model.fit (Dyain, P;)
® Perf(i) + EvaluerPerf (D, f;)

© Select the performing model (best hyper-parameter) : p* < argmin Perf

Q f* < Model.fit (Dyain vais P*)
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W B GM  Practical methodology

[[lustration

K-Fold Cross-Validation Cross-Validation

dataset = cardio - cIf =SVM linear

dataset = mnist - clf =Reg log
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