

Deep learning: an introduction

Gilles Gasso

INSA Rouen - ITI Department
Laboratory LITIS

December 8, 2025

From Data...

- Text
- Audio
- Images
- Videos
- Graphs ...

to processing...

using algorithms

Complex, structured data

Image classification : bus $y = 1$ vs train $y = 0$

Text classification : spam vs non-spam

Machine Learning vs Deep Learning

Image

<https://labelyourdata.com/articles/machine-learning-and-training-data>

Text

Machine Learning vs Deep Learning

Today's IA is Deep Learning (a technique of Machine Learning)

<https://blog.alore.io/machine-learning-and-artificial-intelligence/>

- Deep Learning: nowadays most popular paradigm in machine learning
- Its rise dates back to 2006 (ImageNet dataset challenge)
- Has introduced a paradigm shift in the way one will exploit data

Deep Learning paradigm

End-to-end learning

- Learn automatically (and simultaneously) the data representation $\Phi(x)$ and the decision function f

Deep learning paradigm

Principle

- Neural networks: models with many layers to learn hierarchical representations of data
- Composition of simple functions $f = f_1 \circ f_2 \circ \dots \circ f_L$
- Learning based on data $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^N$
- Scales with data and compute

<https://www.go-rbcs.com/columns/deep-learning-to-the-rescue>

Various deep learning models I

- Multilayer perceptron
- Convolutional networks
- Recurrent networks
- Transformers and Attention
- Diffusion models...

https://www.researchgate.net/figure/illustrations-of-machine-learning-models-Details-about-each-model-can-be-found-in-fig3_353783898

Various deep learning models II

Deep learning for computer vision tasks

Various deep learning models III

Deep learning for graphs

<http://snap.stanford.edu/decagon/decagon-overview.png>

Various deep learning models IV

Deep learning for texts

https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/encoder_decoder/EncoderDecoder.png

Various deep learning models V

Deep learning for texts

<https://www.geeksforgeeks.org/artificial-intelligence/introduction-to-generative-pre-trained-transformer-gpt/>

Various deep learning models VI

Deep generative models (image generation)

prompt: generate a monkey with red sunglasses shaking hands of a robot

Neural network

- Dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^N$
- Goal: train a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ which prediction $f(\mathbf{x})$ approximates y as best as possible
- f is designed as a composition of functions, inspiring from human brains:

$$f(\mathbf{x}) = f_1(\mathbf{x}) \circ f_2(\mathbf{x}) \circ \cdots \circ f_L(\mathbf{x})$$
- Each function f_ℓ represents a layer

Artificial neuron [McCulloch et Pitts, 1943]

Formal neuron

- Input: $x \in \mathbb{R}^d$, Output: y
- Input-output relationship

$$f(x) = \varphi(w^\top x + b)$$

- φ : (non-linear) activation function

Activation functions

Examples

- Identity function: $\varphi(z) = z$
- Heaviside: $\varphi(z) = 0$ si $z < 0$, 1 sinon
- sigmoid: $\varphi(z) = \frac{1}{1+e^{-z}}$
- tanh: $\varphi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$
- ReLU: $\varphi(z) = \max(0, z)$

heaviside

tanh

ReLU

The formal neuron as a learning machine (Perceptron 1958)

- Dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^N$
- Decision function: $f(\mathbf{x}) = \text{sign}(\mathbf{w}^\top \mathbf{x} + b)$

Algorithm 1 Perceptron Algorithm

Initialize \mathbf{w}^0, b^0 , set the learning rate η , $t = 0$

repeat

 Draw randomly a sample (\mathbf{x}_j, y_j)

if $y_j ((\mathbf{w}^t)^\top \mathbf{x}_j + b^t) \leq 0$ **then**

 Update: $\begin{pmatrix} \mathbf{w}^{t+1} \\ b^{t+1} \end{pmatrix} = \begin{pmatrix} \mathbf{w}^t \\ b^t \end{pmatrix} + \eta \times y_j \times \begin{pmatrix} \mathbf{x}_j \\ 1 \end{pmatrix}$, $t = t + 1$

end if

until convergence

- The learning rule is a **stochastic gradient algorithm** for minimizing the number of wrongly predicted labels
- Under some mild conditions, the algorithm is guaranteed to converge after a finite number of iterations (Novikof, 1962)

Perceptron algorithm and stochastic gradient descent (SGD)

- Objective function: $J(\mathbf{w}) = \sum_{i=1}^N \mathbf{1}_{y_i(\mathbf{w}^\top \mathbf{x}_i + b) \leq 0} y_i (\mathbf{w}^\top \mathbf{x}_i + b) = \sum_{i=1}^N \text{cost}(y_i, \mathbf{x}_i)$
- Goal: minimize the overall classification error
- Gradient $\nabla_{\mathbf{w}} J = - \sum_{i=1}^N \mathbf{1}_{y_i(\mathbf{w}^\top \mathbf{x}_i + b) \leq 0} y_i \mathbf{x}_i$
- Learning scheme
 - Perform a gradient descent on a sample at a time
 - Pick a sample (\mathbf{x}_j, y_j) at random
 - Update $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} \text{cost}(y_j, \mathbf{x}_j)$. b is updated similarly
 - Perceptron algorithm performs a **stochastic gradient descent (SGD)**

Adaline (Widrow - Hoff 1959)

Similar algorithm has been derived for least squares problem

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (y_i - \varphi(\mathbf{w}^\top \mathbf{x}_i + b))^2$$

Batch vs Stochastic Gradient Descent

$$\text{Global loss } J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \text{cost}(y_i, \mathbf{x}_i)$$

Batch gradient
 $\mathbf{g} = \frac{1}{N} \sum_{i=1}^N \nabla_{\mathbf{w}} \text{cost}(y_i, \mathbf{x}_i)$

Stochastic gradient
 $\mathbf{g}_i = \frac{1}{N} \nabla_{\mathbf{w}} \text{cost}(y_i, \mathbf{x}_i)$

Mini-batch gradient
 $\mathbf{g}_{\mathcal{B}} = \frac{1}{N} \sum_{i \in \mathcal{B}} \nabla_{\mathbf{w}} \text{cost}(y_i, \mathbf{x}_i)$

<https://alwaysai.co/blog/what-is-gradient-descent>

Multi-layer perceptron (MLP)

Learning

Use backpropagation algorithm to compute the parameters (weights) W_1, W_2, W_3

Forward and Backward Propagation

Update of the parameters

$$\mathbf{W}_\ell^{t+1} \leftarrow \mathbf{W}_\ell^t - \eta \nabla_{\mathbf{W}_\ell^t} J(\mathbf{W}_\ell^t) \quad \text{pour } \ell = 1, 2, \dots, L$$

Training algorithm

Algorithm 2 Backpropagation algorithm

Initialize the weights \mathbf{W}_ℓ , set L , η the learning rate, the mini-batch size B

while non convergence **do**

for $t = 1 \rightarrow \text{round}(N/B)$ **do**

 Draw randomly a set of B samples $\mathcal{B}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^B$

 #Forward pass

 Compute the hidden vectors $\mathbf{h}^{(\ell)} = \varphi(\mathbf{W}^t \mathbf{h}^{(\ell-1)})$, $\forall \ell = 1, \dots, L$ and the loss $J(\mathbf{W}^t, \mathcal{B}_t)$ based on mini-batch \mathcal{B}_t

 #Backward pass

 Compute the gradients $\nabla_{\mathbf{W}_\ell^t} J(\mathbf{W}^t, \mathcal{B}_t)$ $\forall \ell$ based on mini-batch \mathcal{B}_t

 Update weights $\mathbf{W}_\ell^{t+1} \leftarrow \mathbf{W}_\ell^t - \eta \nabla_{\mathbf{W}_\ell} J(\mathbf{W}^t, \mathcal{B}_t)$ $\forall \ell = 1, \dots, L$

end for

end while

Learning rate

Several methods exist to set up the learning rate η : fixed, adaptive, momentum...

Optimization in deep learning: optimizer I

Optimizer Adagrad: SGD algorithms with Adaptive learning rate

AdaGrad adapts learning rates for each parameter w_k at each step t based on historical squared gradients. Let g_k^t the gradient of J w.r.t w_k , one computes:

$$G_k^t = G_k^{t-1} + (g_k^t)^2$$

with update rule:

$$w_k^{t+1} = w_k^t - \frac{\eta}{\sqrt{G_k^t + \epsilon}} g_k^t$$

Pros:

- Good for sparse data
- Per-parameter adaptive learning rate

Cons:

- Learning rate decays too aggressively.

Optimization in deep learning: optimizer II

Optimizer RMS Prop

RMSProp uses an exponential decaying average of past gradients:

$$E[g_k^2]_t = \rho E[g_k^2]_{t-1} + (1 - \rho)(g_k^t)^2$$

Update rule:

$$w_k^{t+1} = w_k^t - \frac{\eta}{\sqrt{E[g_k^2]_t + \epsilon}} g_k^t$$

Characteristics:

- Controls the unbounded growth of AdaGrad's accumulator.
- Works well for deep learning tasks where gradients vary over time.

Optimization in deep learning: optimizer III

Optimizer Adam

Adam combines Momentum and RMSProp:

$$m_k^t = \beta_1 m_k^{t-1} + (1 - \beta_1) g_k^t$$

$$v_k^t = \beta_2 v_k^{t-1} + (1 - \beta_2) (g_k^t)^2$$

Bias-corrected estimates: $\hat{m}_k^t = \frac{m_k^t}{1-\beta_1}$, $\hat{v}_k^t = \frac{v_k^t}{1-\beta_2}$, Update: $w_k^{t+1} = w_k^t - \eta \frac{\hat{m}_k^t}{\sqrt{\hat{v}_k^t} + \epsilon}$

<https://www.researchgate.net/publication/368951831/figure/fig71/AS:11431281233495765@1712057231036/Standard-SGD-and-SGD-with-momentum-vs-AdaGrad-RMSProp-Adam-on-CIFAR-10-dataset.tif>

11431281233495765@1712057231036/Standard-SGD-and-SGD-with-momentum-vs-AdaGrad-RMSProp-Adam-on-CIFAR-10-dataset.tif

Optimization in deep learning: regularization

Regularization schemes

- Explicit regularization: rather minimize $J(\mathbf{W}) + \lambda \|\mathbf{W}\|^2$ with $\lambda > 0$
- Dropout: Randomly drop some weights at training time
 - Parameter: dropout percentage p (percentage of parameters to deactivate)
 - Each weight is dropped with probability p (Bernouilli) i.e. is inactive in the forward and backward pass
- Batch Normalization

$$\hat{\mathbf{x}} = (\mathbf{x} - \boldsymbol{\mu}_{\mathcal{B}}) \oslash (\sqrt{\boldsymbol{\sigma}_{\mathcal{B}}^2 + \epsilon})$$

\oslash elementwise division

What if the inputs are images?

3	8	6	9	6	4	5	3	8	4	5	2	3	8	4	8
1	5	0	5	9	7	4	1	0	3	0	6	2	9	9	4
1	3	6	8	0	7	1	6	8	9	0	3	8	3	7	1
8	4	4	1	2	9	8	1	1	0	6	4	5	0	1	1
7	2	7	3	1	4	0	5	0	6	8	7	6	8	9	9
4	0	6	1	9	2	6	3	9	4	4	5	6	6	1	7
2	8	6	9	7	0	9	1	6	2	8	3	6	4	9	5
8	6	8	7	8	8	6	9	1	7	6	0	9	6	7	0

Use Convolutional Neural Network (CNN)

More on CNN |

Convolution: Given input I and filter K ,

$$(I * K)(i, j) = \sum_m \sum_n I(i + m, j + n)K(m, n)$$

Followed by pooling (max pooling): $\text{pool}(i, j) = \max_{(m, n) \in \text{window}} I(i + m, j + n)$

More on CNN II

Stacking several layers

- Each layer includes Convolution and Pooling to summarize spatial information
- Last layers are fully connected layers (MLP-like) to yield the output

animation : <http://cs231n.github.io/convolutional-networks/>

Recurrent networks

Many tasks involve sequential or temporal structure:

- Natural language: sentences, documents
- Time-series prediction: stock prices, weather
- Audio processing: speech, music
- Video: sequence of frames

RNNs introduce **recurrence**: each output depends on the current input *and* previous hidden state.

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

This allows information to persist across time.

<https://www.researchgate.net/publication/318332317/figure/fig1/AS:614309562437664@1523474221928/The-standard-RNN-and-unfolded-RNN.png>

318332317/figure/fig1/AS:

614309562437664@1523474221928/

The-standard-RNN-and-unfolded-RNN.png

Packages

- TensorFlow (Google, python) <https://www.tensorflow.org>
- Keras (Google, python) <https://keras.io/> (+ Theano ou TF)
- Pytorch