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Scope: interactions in social networks
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* Interactions in social networks:
- Messages, actions (Friend, Like, ...), ...

- Dynamic network

* |nteractions Iin social networks:
- Human-to-human mediated interaction, bots

-  Open world
* Interactions in social networks: graph representation
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Examples

o Community structure of political US blogs.

/ L. A. Adamic and N. Glance, “The political blogosphere and the 2004 U.S. election:
&1 L4y divided they blog”, In Proceedings of Link discovery (LinkKDD '05), ACM, pp. 36-43, 2005.
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,,,m.__h_u e e S Z. Yamak, J. Saunier, L. Vercouter, “Automatic detection of multiple account deception in
e Vi e social media”, in proceedings of Web Intelligence, pp. 219-231, 2017.
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Process

1) Dataset collection
- Anonymization and processing

2) Graph construction ° o
- Nodes (vertices)? Links (edges)?

() >

— Directed or undirected graph ? ®'\©

- Weighted graph ?

3) Filtering

. e, ¢
- Node/edge removing » e:;;f?_oﬁ
- Network decomposition e

4) Community detection
— Objective function?
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Graph: definition

A graph G can be represented with:
G(\V,E, ¥, v, w
* V Is the set of nodes (vertices);

* E Is the set of edges (links);
* Y is an incidence function WE - VXV,

* V Is the node-labelling function; | g fa
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* w Is the edge-labelling function; | @

Zachary’s Karate Club Network
W. W. Zachary, “An information flow model for @

conflict and fission in small groups”, Journal of @
Anthropological Research 33, pp. 452-473 (1977).
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Graph construction
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Graph construction

Can we study their
interactions as a

network!?

Graph

Communication

Anne: Jim, tell the Murrays they're invited

Jim:  Mary, you and your dad should come for dinner!

Jim:  Mr. Murray, you should both come for dinner

Anne: Mary, did Jim tell you about the dinner? You must come.

John: Mary, are you hungry?

Vertex / /

IIrI ﬂdE) ECIEE (IIHI’()

Adjacency matrix

Vertex| 1| 2 | 3 | 4
I I 0

- I I
0 - 0
0 I -

o o O

W M

Edge list

2

3
3
4
4
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Directed versus undirected graphs

Directed Edge list remains the same

(who contacts whom) NVoviex Vortex
But interpretation
| 2 is different now

W o N -
Bk W W

\ 4

Adjacency matrix becomes symmetric

Vertex| 1 | 2 | 3 [ 4 |
| o |

Undirected
(who knows whom)

c — — [}

8/30



Quizz

* When are edge lists different between directed
graphs and undirected graphs?
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Weighted edges

30 Edge list: add column of weights
: g I 2 30
I 3 5
2 3 21
37
2 4 2
Weights could be: 3 4 37

*Frequency of interaction in
period of observation Adjacency matrix: add weights instead of |
*Number of items
erwel St P Vertex [ 2 s [ E g
*Individual perceptions of 30 5 0
strength of relationship

30 - 22
*Costs in communication or
exchange, e.g. distance 22 = 37
*Combinations of these 2 37 -
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Quizz

Construct the interaction graph of these messages

Auteur Message Interaction | Théme
1 hello @2 viens sur mon site : http :url ME Autre
] hello @3 viens sur mon site : http :url ME Autre
1 hello @4 viens sur mon site : http :url ME Autre
6 un cinéma @57 ME Cinéma
5 @6 : quel film ? #Film, #F1lm1 ou photo_Film_27? RE Cinéma
8 allons au cinéma @4! @6 vient aussi ME Cinéma
4 @5 : ok RE Autre
4 super #F1lm, a la prochaine @6 ME Cinéma
2 RT @4 : super #Film, a la prochaine @6 RT, ME | Cinéma
6 RT @4 : super #F1lm, a la prochaine @6 RT, ME Cinéma
3 la bande-annonce de photo_Film_2 :)! #Film2 des demain ! Cinéma
4 RT @5 : la bande-annonce de photo_Film_2 :) ! #Film2 dés demain ! RT Cinéma
4 au fait, @8, tu devrais aller voir #F1lm ME Cinéma
5 le théatre ¢’est bien aussi Théatre
4 RT @5 : le théatre ¢ est bien aussi RT Théatre
7 RT @5 : le théatre ¢’ est bien aussi RT Théatre
8 RT @5 : le théitre ¢’est bien aussi RT Théatre
6 @7 : cinéma :-) theaadaatre :-( RE Cinéma
7] viens @8, allons au théatre ME Théatre
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ldentification of Key-users
Roles in Social Networks
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Identifying key users

In the network on the right,
node 10 is the most central
according to centrality

But nodes 3 and 5
together reach more nodes
with paths of length 2

Moreover, the tie between
them is critical; If removed,
the network will break into
two 1solated sub-networks

Other things being equal,
nodes 3 and 5 seems
more ‘important’ than 10

(Degree) Centrality
IS the number of links that
lead into and out of a hode
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Degree centrality

Degree Centrality for Zachary's Karate Club Network (Zachary, 1977)
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A node (in-) or (out-)degree is
the number of (weighted) links
that lead into or out of the node

In an undirected graph: d,, =d,,

Often used as measure of a
node connectedness and hence
of influence and/or popularity

Useful for assessing which
nodes are central in terms of
Information spread and influence
upon others in their immediate
‘neighborhood’
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Shortest paths and closeness

* Shortest paths:

A path between 2 nodes is a sequence of non-repeating edges connecting those 2 nodes

The shortest path between 2 nodes is the path that connects those 2 nodes with the shortest

number of edges (also called the distance between the nodes).

NB: Shortest paths are desirable when speed of communication or exchange is desired.

Closeness Centrality for Zachary's Karate Club Network (Zachary, 1977)

D
.

L@ ©

* Closeness centrality:

— Average length of the shortest path
between a node and all other nodes in
the graph. The more central a node is,
the closer it is to all other nodes.

- Itis a measure of the speed with which
information can reach other nodes from a
given starting node.

N
C(X)_Zd(y,X)
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Quizz

ldentify the key-users according to
degree centrality and closeness
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Betweenness centrality

Betweenness Centrality for Zachary’s Karate Club Network (Zachary, 1977)

@ @© - Betweenness:
O - Number of times a node acts as a
bridge along the shortest path between
2 nodes
© - Shows which nodes are:
® | | o
* more likely to be in communication paths
© between other nodes
(%) * breaking points of a network
®
® > oulv)
CB(V>: s#v;étec\;

st

1) For each pair of nodes, compute the shortest paths between them;

2) For each pair of nodes, determine the fraction of shortest paths
that pass through this very node (here, node/vertex v);

3) Sum these fractions over all pairs of nodes.
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Eigenvector centralities (or eigencentralities)

Eigenvector Centrality for Zachary's Karate Club Network (Zachary, 1977)
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* Eigenvector centrality:

Eigencentrality iIs a measure of
the influence of a node in a
network; a node with a high
eigencentrality Is connected to
other nodes with high
eigenvector centrality

This is similar to how Google
ranks web pages: links from

highly linked-to pages count

more (pagerank)

Useful in determining who Is
connected to the most
connected nodes
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Interpretations

Centrality measure Interpretation in social networks

v

Degree How many people can this person reach directly?

How likely is this person to be the most direct route

> Betweenness ‘
between two people in the network?

How fast can this person reach everyone in the
network?

* Closeness

How well is this person connected to other well-

.
Eigenvector connected people?

In network of music collaborations: how many

> Degree
& people has this person collaborated with?

In network of spies: who is the spy though whom most

> Betweenness L o
of the confidential information is likely to flow?

In network of sexual relations: how fast will an STD

* Closeness
spread from this person to the rest of the network?

In network of paper citations: who is the author that is

I
Eigenvector most cited by other well-cited authors?
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RolX [Henderson et al., 2012]

* Topological measures (degrees, centralities, ...)

e Selection of characteristics

* Non-negative factorization to extract characteristic

roles

NB: the number of
roles must be
fixed

3

@ Nceudde rile 1 : actifs
@ Nceud de réle 2 : actifs secondaires
@ Nceudde réle 3 : source
() Neeud de rile 4 : puits

— |iens :interaction
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Groups of users in Social Networks
Community Detection
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Homophily, transitivity, and bridging

« Homophily is the tendency to relate to
people with similar characteristics (status,
beliefs, etc.)

- It leads to the formation of homogeneous
groups (clusters) where relations are easier

- Homophilous ties can be strong or weak

* Transitivity in SNA is a property of ties: if
there is a tie between A and B and one
between B and C, then in a transitive
network A and C will also be connected

- Strong ties are more often transitive than weak

ties; transitivity is a hint of strong ties (but not a
necessary or sufficient condition)

— Transitivity and homophily together lead to the
formation of cliques (fully connected clusters)
* Bridges are nodes and edges that connect
across groups
- Facilitate inter-group communication, increase

social cohesion, and help stimulating
innovation

- They are usually weak ties, but not every weak
tie is a bridge

Interlinked
groups

Social
network
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Strong homophily: cliques of users

A clique is a subset of nodes in a network such that every two nodes in the subset are

connected by a tie. A k-clique is a clique of degree k.
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Types of networks

Types of Nvtwm ks

O

\,

Centralized

?  Decentralized

Distributed
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Small words: communities i1n SN

*A small world is a network that looks almost random but
exhibits a significantly high clustering coefficient (nodes
tend to cluster locally) and a relatively short average path
length (nodes can be reached in a few steps)

O local cluster
. bridge

eIt is a very common structure in social networks because
of transitivity in strong social ties and the ability of weak
ties to reach across clusters

*Such a network has many clusters but also many bridges
between clusters that help shorten the average distance (@)
between nodes

Sketch of small world
structure

REGULAR NETWORK SMALL-WORLD NETWORK RANDOM NETWORK
8 E [ ]
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i, e e o * ,--q__r-'
® =3 o B ® i\ e
L L] [ ] ¥ VR @
I __': = | .- "-._._
® @ 2 @ eI g
. \ T [V
e | : - - —t ey | | B
@ @ ® @ ® NET—®
. W, .\ 1 I"\ o
8 o o e @ " o e e @
@ & \|/ @
o " @ e o

28/30



Community detection algorithms

== = : Fig. 2. Detected communities (MLC aglorithm).
Fig. 1. Detected communities (Clauset&Newman aglorithm).
Markov CLustering for graphs (MCL)
FastGreedy o _ Van Dongen, S. M., “Graph clustering by flow simulation”, PhD thesis, 2000.
Clauset, A., Newman, M. E., and Moore, C. : “Finding community

structure in very large networks”, Physical review E, 70(6), 2004.

. Fig. 3. Detected communities (Blondel aglorithm).
Blondel/Louvain i

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.,
“Fast unfolding of communities in large networks”, Journal of
statistical mechanics : theory and experiment, volume 10, 2008. 29/30



Topological measures of communities

G=(V, E) with n=|V| nodes and m=|E| edges
A community S have ngs=|S| nodes, mq internal edges, cs external edges

* Internal density: ratio between the actual number of edges over the
maximum number of edges. q (S)= 2m,
directed _

ns(ns—l)

m

dundirected('s): n (n S_1>

* Triad participation ratio: number of nodes belonging to a triad in the

community. , .
TPR(g):HU-UES:{(V,W>.V,WES,(u,vLEE,(u,w)EE,(V,W)EE};éQ’}|

S

* Conductance: proportion of edges that are directed to other communities.

C(s)=—
_2ms+cs

* Modularity: number of internal edges to the groups, compared with a graph
model with random edges

M(8)=—+(m,—~E(m,))
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