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Data analysis: goals
Humans have habits:
• Habits  regularities, repetitions⇒
• Recurrent behaviors depends on
  similar contexts

Context: set of independent and 
sequential (or temporal) 
characteristics that can be 
represented in orthogonal 
spaces

http://ennokni.deviantart.com/art/Daily-Life-117834930
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Problem modeling
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Formal modeling of a problem
● Define formally the inputs

Ex: “input = {a1, …, an}n<20 a sequence of actions with each 
action ai in {up, down, left, right, space}”

● Define formally the outputs

Ex: “output = a class among {beginner, advanced}”

Ex: “output = a sequence of words generated as an 
answer to the user’s query {w1, …, wn}n>0”

● Define a class of problem / algorithm
– Ex (machine learning): classification problem, clustering 

problem, regression problem, …
– Ex (logic): induction / deduction problem, …
– Ex (algorithm): sorting, graph construction, ...
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Analysis of interaction data

The data to analyze can be collected from:
● External/internal sensors (context of use)
● Interaction data (log of user actions and/or activity)
● External data requested from the interactive system

Interactive 
System(s)Context

  
    Data

Interaction

Information 
System(s)

Data acquisition
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Input: discrete data (1/2)
● Discrete sequences

– Ex: sequence of visited web pages, of user actions

– Representation: ordered set {a1, a2, …, an}

● Discrete sequences of item-sets
– Ex: actions from left and right hands in a double-handed 

game or multiple paddles/keyboards
– Representations: 

● ordered set of item-sets 

{{a1,1, …, am,1}, {a1,2, …, am,2}, …, {a1,n, …, am,n}}
● matrix

{ai,j}i=1..m; j=1..n
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Input: discrete data (2/2)
● Independent sequences

– Ex: actions from two different players
– Representation: set of ordered sets

– {{a1,1, …, am1,1}, {a1,2, …, am2,2}, …, {a1,n, …, amn,n}}

Remarks:
● Time is not considered and delays may be different  

(or not) between two actions
● Different sampling are possible in independent 

sequences



9/59

Input: continuous and mixed data
● Continuous signal

– Ex: user’s voice volume
– Representation: function f(t)

● Continuous signals
– Ex: trajectories of two Wiimotes

– Representation: set of functions {f1(t), … fn(t)} 

Remarks:
● Any continuous signal can be discretized
● Mix of discrete sequences and continuous signals
● There always is sampling
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Goal / Objective (class of problem)
● Behavioral pattern extraction

– Intra- / Inter- user behavioral patterns
– (Multiple) Time scaling
– Frequent patterns / similar patterns

● User classification
– Clustering of users’ activity
– Segmentation and classification

of parts of users’ activity
● Generation

– Simulation of user’s behavior
– Generation of interactive behavior

● Combination of problems
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Exercise
● Let A = {a1, ..., an} be the set of n actions that users 

can perform. Let T be a set of r interaction traces 
from s different users u1, ..., us: 
T = {{a1,x1, …, am1,x1}ux1 … {a1,mr,…, amrxr}uxr }

● eg. HMI with 3 possible actions: {{a1 a2 a1 a3}u1 
{a2 a2 a2 a1 a3 }u2 {a2 a1 a2 a2 a1 a1 a3}u1 {a1 
a1 a3}u2 {a1 a1 a2 a1 a3}u1 }

● Formalize the problem that, from a given sequence 
of actions, predicts the next action
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Discrete sequences
Pattern extraction

Similarity-based approach
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Sequence alignment

... A C T G T C A T C A T C T T A C T C A T C A T C T T A C G C T
A T A G C T A T A G T C A T C A T C T T A C G C T A T A G C A C
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T C T T A C G C T A T A G C T A T A G T C T A C G A A T C A C ...
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String mining and sequence alignment
● Alignment of two sequences of characters

– Used to compare 2 sequences S1 (l=m) and S2 (l=n)

– How S1 can be transformed into S2?

– Based on a distance or a similarity measure
– A sequence alignment can be computed using dynamic 

programming in O(mn)

● 2 types of alignments:
– Global
– Local (Smith & Waterman, 1981)
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Sequence alignment

● (              ) is an alignment of the two sequences 
“ACGA” and “ATGCTA”.

● Algorithmically, it corresponds to an edition script 
(i.e. a computer program)

A C G - - A
A T G C T A

Operation Resulting sequence

Substitution of A by A A

Substitution of C by T AT

Substitution of G by G ATG

Insertion of C ATGC

Insertion of T ATGCT

Substitution of A by A ATGCTA
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Local alignments
● 3 editing operations

– Substitution of a symbol from S1 at a given position by a 
symbol from S2

– Deletion of a symbol from S1 at a given position

– Insertion of a symbol in S2 at a given position

● Scores
– Sub(a,b): score to substitute symbol a by symbol b
– Del(a): score to delete symbol a
– Ins(a): score to insert symbol a
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Similarity measure

Similarity measure between 2 sub-sequences

s(x,y) = max { score of e | e in Ex,y }

● Ex,y: series of editing operations that transform x  
into y

● A score of e is computed as the sum of all its 
elementary editing operations
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Dynamic programming 

t [−1 ,−1] = 0,
t [i ,−1] = 0,
t [−1 , j ] = 0,

t [i , j ] = max {
t [i−1 , j−1 ]+Subs(x [i ] , y [ j ]) ,

t [i−1 , j ]+Del (x [ i ]),
t [ i , j−1]+ Ins( y [ j ]) ,

0

Remarks:
● Subs/Del/Ins have negative values

● The value at (i,j) position in table t only 
depends on the 3 adjacent positions

● An optimal alignment (i.e. of maximum 
score) can be produced by performing a 
trace back in the values of table t from the 
(maximal) values up to a position of 0.

sub(x,x) = 1
sub(x,z) = 0
Ins = del = -1

Smith & Waterman
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Example
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Exercise
● Formalize the problem corresponding to the pattern 

extraction from discrete sequences using a 
similarity-based approach
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From patterns to frequent patterns  

(pattern 1, sequence 1)
(pattern 2, sequence 2)

(pattern 3, sequence 1)
(pattern 4, sequence 5)

...

(pattern n-1, sequence x)
(pattern n, sequence y)

Pattern database

Pattern
clustering

Sequence
alignments
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Discrete sequences
Pattern extraction

Frequency-based approach
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Approach

● Frequent sequential patterns
– Ex: users that perform action ‘A’, often perform action 

‘B’ shortly after
– Association rules (‘A’ => ‘B’ shortly after)
– Gap: number of elements (actions) between ‘A’ and ‘B’
– Confidence: how often a rule has been found to be true

● A simple structure: suffix tree
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Suffix trees
● The non-compact suffix tree of a word y is the 

deterministic finite automaton, having a single initial 
condition called root and where the terminal states 
correspond to the suffix of the word. The language 
recognized by this automaton is all suffixes of y.

● In practice a terminator is added at the end of the 
word (usually denoted $).

● Leaves are numbered according to the starting 
position of the suffix they recognize.

● To compact the tree, the internal nodes having 
only a single outgoing branch are removed and the 
branches are concatenated.
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Example of suffix tree (single word)
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Generalized suffix tree (multiple words)

a
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Application: CISMeF
● Extraction of recurrent behaviors in the navigations 

within an online health catalog (CISMeF)
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Application: CISMeF
● Data preparation

– Episode extraction: IP + semantic distance between 
documents + time between requests

– Resource identification: unique ID + delimiter

example of session: /59451/ /303901/ /170702/

● Recurrent pattern extraction
– Generalized suffix tree
– Longest repeated substrings
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Application: CISMeF

22 days of log analysis:
● 10mn max for an episode
● 48 168 episodes
● 17mn of data processing (2,39GHz/512Mo)
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Discrete sequences
● Pattern extraction:

– Sequence alignments

→similarity OK, but frequency is difficult to evaluate 
(should be paired with pattern clustering)

● Prediction:
– Generalized suffix trees
– Seq2seq, CRF, HMM, ...

→frequency OK, but only slight variations (similarity) 
can be taken into account
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Exercise
● Formalize the problem that consists in predicting 

the most probable action of user given the set of 
previous actions performed?

● What would be an algorithm to construct a 
(compact) suffix tree?
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Discrete sequences of item-sets
Pattern extraction

Similarity-based approach
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Approach (similar to sequences)

Decomposition in two separated steps
● Extraction of (pair of) interaction patterns
● Clustering of interaction patterns
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Routine extraction by matrix alignment

Rick Moritz (PhD thesis), Orange labs - Meylan
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Routine extraction by matrix alignment



36/59

 Routine extraction by matrix alignment
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 Routine extraction by matrix alignment
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 Routine extraction by matrix alignment
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Evaluation: usual measures
● Model evaluation: 

– Precision

– Recall

– F-measure

● Remarks:

– Unbalanced classes!
– Evaluation by class

https://en.wikipedia.org/wiki/Precision_and_recall
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Routine extraction by matrix alignment

Evaluation
● Data and ground truth
● Computation time
● Precision and recall for 

each pattern alignment
● Alignment size
● Number of alignments

(False Positives) (True Negatives)

(False Negatives) (True Positives)
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● Synthetic data generation

● Scenarios:
1) Regular activity, no noise
2) Regular activity, noise between patterns
3) Noisy patterns
4) Irregular pattern apparition
5) Faulty sensors (¾ random data)

Routine extraction by matrix alignment
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Exercise
● Formalize the problem of behavior pattern 

extraction from discrete sequences of set of 
actions, based on a similarity approach (looking for 
longest and more similar behaviors)
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Discrete sequences of item-sets
Pattern extraction

Frequency-based approach
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Data-mining sequences of item-sets
● Frequent item-sets

– Ex: users usually select A & B keys
– Association rules (‘A’ => ‘B’ in the same item-set)
– Support: how frequently an item-set appears in the 

dataset
– Confidence: how often a rule has been found to be true

● Frequent sequential patterns
– Ex: users that perform action ‘A’, often perform action 

‘B’ shortly after
– Association rules (‘A’ => ‘B’ in two following item-sets)
– Gap: item-sets appearing inside the association rules
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Definitions
● Item: minimal element
● Item-set: ordered (preference, …) set of items
● Sequence of item-sets: ordered set of item-sets
● Transaction: tuple in the database; a set of items 

or a sequence of item-sets.
– training set = set of transactions

– {{a1,1, …, a1,m1}, {a2,1, …, a2,m2}, …, {an,1, …, an,mn}}

– Or a sparse matrix…
● Association rule: application X→Y where X and Y 

are disjoint set of items or set of item-sets
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Evaluation of association rules (X→Y)
● Support: absolute probability P(X∪Y)

||X∪Y||/||BD|| = % of transactions satisfying the rule
● Confidence: conditional probability P(Y/X)

||X∪Y||/||X|| = % of transactions

verifying the implication

 = support(XY)/support(X)

● An interesting association rule is a rule whose 
Confidence > Minconf and Support > Minsup
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Apriori algorithm (Agrawal & Srikant, 1994)
● Idea: if an item-set is not frequent, then all its 

supersets are not frequent:
– If {A} is not frequent then {AB} cannot be frequent
– if {AB} is frequent then {A} and {B} are frequent

● Process:

1)Generate iteratively candidate item-sets:
● First pass: search for frequent 1-sets
● Generate a candidate of size k from two candidates of size k-1 

differentiated by the last element
● Filter the sets of items with minimum support (keeping frequent 

item-sets)

2)Use frequent item-sets to generate association rules
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Apriori
Apriori
Input: L1={frequent 1-itemsets};

Output: Lk={frequent k-itemsets};

for (k=2; Lk-1; k++) do {

  Ck=apriori-gen(Lk-1);

        // Generate new candidates
  }
  Lk={ cCk | numberOf(c,DB) >= 

minsup } ;
       // Filter candidates
}
return Lk;

Apriori-gen
Input: Lk-1={frequent (k-1)-itemsets};

Items of Lk-1 are ordered lexicographically

Output: Ck={candidates frequent (k)-
itemsets};

● Step 1: Self-join on Lk-1

For each (pk-1,qk-1) so that pk-1<qk-1 do {

  Ck={ ck | lexicographically ordered 
combinaison of pk-1 and qk-1}

}

● Step 2: Pruning
foreach ck in Ck do {

  foreach (k-1)-subsets tk-1 of Ck do {

    if (tk-1 is not in Lk-1) then 

      delete tk-1 from Ck

  }
}
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Apriori (exemple)

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

base D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1

L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

min_support=2
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Apriori (generating association rules)

//Input: MinConf, Lk (frequent item-sets)
//Output: R, set of association rules

R =  ;
foreach subsets S, SLk of Lk do {
    Confidence = Sup(S(Lk-S))/Sup(S)
    If Confidence >= MinConf then {
      R = R  {“ S  Lk-S ”} ;
    }
  }
}
return R ;

Example :

{2 3}  {5} confidence=2/2
{2 5}  {3} confidence=2/3
…
{2}  {3 5} confidence=2/3
...
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Exercise
● Formalize the problem of behavior pattern 

extraction from discrete sequences of set of 
actions, based on a frequency approach (looking 
for most frequent behaviors)
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Continuous signal(s)
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(Single) continuous signal

● Continuous numeric acquisition is impossible
– Discretize an analogical signal to numerical values 

along 2 dimensions:
● Continuous / discrete (alphabet)
● Time (sampling)

NB: a re-sampling can be necessary according to the goal

● Discretization process
– Heterogeneous sensors (unnormalized)
– Semantic information (analyze & user’s feedback)
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Example: GPS signal
Daniel Ashbrook & Thad Starner : « Using GPS to learn significant locations and predict 
movement across multiple users », Personal and Ubiquitous Computing, volume 7, number 5, 
pp. 275-286, Springer, 2003.

● Finding significant places / positions
 (time dependence: time threshold)

● Clustering places into locations / keypoints
 (spacial dependence: cluster radius)
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Example: GPS signal
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Example: GPS signal

Ashbrook & Starner, 2002

Probabilities for transitions in Markov models 
Key: A = “Home”
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Exercise
● Formalize the problem of finding keypoints from 

GPS data?
● Formalize the problem of behavior pattern 

extraction from a sequence of visited places? From 
GPS data?
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(Multiple) Continuous signals



62/59

Multiple sensors: (discrete) approaches
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