Advanced Human Machine Interaction

(Interaction) Data Analysis

Alexandre Pauchet

alexandre.pauchet@insa-rouen.fr - BO.B.RC18

Normandie Université

IHME/IDA: objectives

Data analysis: goals

Humans have habits:

- Habits \Rightarrow regularities, repetitions - Recurrent behaviors depends on similar contexts

Context: set of independent and sequential (or temporal) characteristics that can be represented in orthogonal spaces

Problem modeling

Formal modeling of a problem

- Define formally the inputs

Ex: "input $=\left\{a_{1}, \ldots, a_{n}\right\}_{n<20}$ a sequence of actions with each action a_{i} in $\{u p$, down, left, right, space\}"

- Define formally the outputs

Ex: "output = a class among \{beginner, advanced\}"
Ex: "output = a sequence of words generated as an answer to the user's query $\left\{w_{1}, \ldots, w_{n}\right\}_{n>0} "$

- Define a class of problem / algorithm
- Ex (machine learning): classification problem, clustering problem, regression problem, ...
- Ex (logic): induction / deduction problem, ...
- Ex (algorithm): sorting, graph construction, ...

Analysis of interaction data

The data to analyze can be collected from:

- External/internal sensors (context of use)
- Interaction data (log of user actions and/or activity)
- External data requested from the interactive system

Input: discrete data (1/2)

- Discrete sequences
- Ex: sequence of visited web pages, of user actions
- Representation: ordered set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Discrete sequences of item-sets
- Ex: actions from left and right hands in a double-handed game or multiple paddles/keyboards
- Representations:
- ordered set of item-sets

$$
\left\{\left\{a_{1,1}, \ldots, a_{m, 1}\right\},\left\{a_{1,2}, \ldots, a_{m, 2}\right\}, \ldots,\left\{a_{1, n}, \ldots, a_{m, n}\right\}\right\}
$$

- matrix

$$
\left\{a_{i, j}\right\}_{i=1 . . m ;} ;=1 . . n
$$

Input: discrete data (2/2)

- Independent sequences
- Ex: actions from two different players
- Representation: set of ordered sets
$-\left\{\left\{a_{1,1}, \ldots, a_{m 1,1}\right\},\left\{a_{1,2}, \ldots, a_{m 2,2}\right\}, \ldots,\left\{a_{1, n}, \ldots, a_{m n, n}\right\}\right\}$

Remarks:

- Time is not considered and delays may be different (or not) between two actions
- Different sampling are possible in independent sequences

Input: continuous and mixed data

- Continuous signal
- Ex: user's voice volume
- Representation: function $f(t)$
- Continuous signals
- Ex: trajectories of two Wiimotes
- Representation: set of functions $\left\{\mathrm{f}_{1}(\mathrm{t}), \ldots \mathrm{f}_{\mathrm{n}}(\mathrm{t})\right\}$

Remarks:

- Any continuous signal can be discretized
- Mix of discrete sequences and continuous signals
- There always is sampling

Goal / Objective (class of problem)

- Behavioral pattern extraction
- Intra- / Inter- user behavioral patterns
- (Multiple) Time scaling
- Frequent patterns / similar patterns
- User classification
- Clustering of users' activity
- Segmentation and classification of parts of users' activity
- Generation
- Simulation of user's behavior
- Generation of interactive behavior
- Combination of problems

Exercise

- Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be the set of n actions that users can perform. Let T be a set of r interaction traces from s different users u_{1}, \ldots, u_{s} :
$T=\left\{\left\{a_{1, \times 1}, \ldots, a_{m 1, x 1}\right\}_{u \times 1} \ldots\left\{a_{1, m r}, \ldots, a_{m r x x}\right\}_{u x r}\right\}$
- eg. HMI with 3 possible actions: \{\{a1 a2 a1 a3\}u1 \{a2 a2 a2 a1 a3 \}u2 \{a2 a1 a2 a2 a1 a1 a3\}u1 \{a1 a1 a3\}u2 \{a1 a1 a2 a1 a3\}u1 \}
- Formalize the problem that, from a given sequence of actions, predicts the next action

Discrete sequences Pattern extraction Similarity-based approach

Sequence alignment

TATGGTACATCTATGTACTACTCAC-TTTTAAC TCTTACGCTATAGCTATAGTCTACGAATCAC...

String mining and sequence alignment

- Alignment of two sequences of characters
- Used to compare 2 sequences $S_{1}(l=m)$ and $S_{2}(l=n)$
- How S_{1} can be transformed into S_{2} ?
- Based on a distance or a similarity measure
- A sequence alignment can be computed using dynamic programming in $O(m n)$
- 2 types of alignments:
- Global
- Local (Smith \& Waterman, 1981)

Sequence alignment

A C G - - A

- ($\left.{ }^{\boldsymbol{A} \boldsymbol{t} \boldsymbol{G C T}}{ }^{\text {a }}\right)$ is an alignment of the two sequences "ACGA" and "ATGCTA".
- Algorithmically, it corresponds to an edition script (i.e. a computer program)

Operation	Resulting sequence
Substitution of \mathbf{A} by \mathbf{A}	A
Substitution of \mathbf{C} by \mathbf{T}	AT
Substitution of \mathbf{G} by \mathbf{G}	ATG
Insertion of \mathbf{C}	ATGC
Insertion of	ATGCT
Substitution of \mathbf{A} by \mathbf{A}	ATGCTA

Local alignments

- 3 editing operations
- Substitution of a symbol from S_{1} at a given position by a symbol from S_{2}
- Deletion of a symbol from S_{1} at a given position
- Insertion of a symbol in S_{2} at a given position
- Scores
- Sub(a,b): score to substitute symbol a by symbol b
- Del(a): score to delete symbol a
- Ins(a): score to insert symbol a

Similarity measure

Similarity measure between 2 sub-sequences

$$
s(x, y)=\max \left\{\text { score of } e \mid e \text { in } E_{x, y}\right\}
$$

- $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$: series of editing operations that transform x into y
- A score of e is computed as the sum of all its elementary editing operations

Dynamic programming

Smith \& Waterman

$\operatorname{sub}(x, x)=1$
$\operatorname{sub}(x, z)=0$
Ins = del = -1

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{G}
\mathbf{A}	1	0	0	$\mathbf{9}$	0	0	1	0	0
\mathbf{C}	0	2	1	0	1	0	0	2	1
\mathbf{T}	0	1	2	2	1	1	0	1	2
\mathbf{C}	0	1	1	2	1	2	1	1	1
\mathbf{A}	1	0	1	1	2	3	3	2	1
\mathbf{C}	0	2	1	1	2	2	3	4	3
\mathbf{G}	0	1	3	2	1	3	2	3	5

Remarks:

- Subs/Del/Ins have negative values
- The value at (i, j) position in table tonly depends on the 3 adjacent positions
- An optimal alignment (i.e. of maximum score) can be produced by performing a trace back in the values of table t from the (maximal) values up to a position of 0 .

Example

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{G}
\mathbf{A}	1	0	0	0	0	0	1	0	0
\mathbf{C}	0	2	0	0	1	0	0	2	0
\mathbf{T}	0	0	0	1	0	0	0	0	0
\mathbf{C}	0	1	0	0	2	0	0	1	0
\mathbf{A}	1	0	0	0	0	0	1	0	0
\mathbf{C}	0	2	0	0	1	0	0	2	0
\mathbf{G}	0	0	3	1	0	2	0	0	3

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{G}
\mathbf{A}	1	0	0	0	0	0	1	0	0
\mathbf{C}	0	2	1	0	1	0	0	2	1
\mathbf{T}	0	1	2	2	1	1	0	1	2
\mathbf{C}	0	1	1	2	3	2	1	1	1
\mathbf{A}	1	0	1	1	2	3	3	2	1
\mathbf{C}	0	2	1	1	2	2	3	4	3
\mathbf{G}	0	1	3	2	1	3	2	3	5

Two accumulated similarity tables obtained using the Smith-Waterman algorithm. The left has been calculated using a similarity score of 1 for matches, and dissimilarity penalties of -2 for non-matching substitutions and indels. The right table has this penalty reduced to -1 . In each case, the alignments with a similarity score of at least 3 have been highlighted. Note how the higher penalty leads to smaller, more local alignments.

Exercise

- Formalize the problem corresponding to the pattern extraction from discrete sequences using a similarity-based approach

From patterns to frequent patterns

Sequence alignments

∇

Discrete sequences Pattern extraction Frequency-based approach

Approach

- Frequent sequential patterns
- Ex: users that perform action ' A ', often perform action 'B' shortly after
- Association rules ('A' => 'B' shortly after)
- Gap: number of elements (actions) between ' A ' and ' B '
- Confidence: how often a rule has been found to be true
- A simple structure: suffix tree

Suffix trees

- The non-compact suffix tree of a word y is the deterministic finite automaton, having a single initial condition called root and where the terminal states correspond to the suffix of the word. The language recognized by this automaton is all suffixes of y.
- In practice a terminator is added at the end of the word (usually denoted \$).
- Leaves are numbered according to the starting position of the suffix they recognize.
- To compact the tree, the internal nodes having only a single outgoing branch are removed and the branches are concatenated.

Example of suffix tree (single word)

Generalized suffix tree (multiple words)

Application: CISMeF

- Extraction of recurrent behaviors in the navigations within an online health catalog (CISMeF)


```
598 entrées trouvées en 0,63 s *** concept(s) identifié(s) : 0804493-asthme asthme
Vos recherches (1)
Meme recherche avec
Voir aussi
Votre sélection
Affiner
Editeur
(136) Centre Cochrane Francqais
(97) HAS - Haute Autorite de Sante
(29) Minerva - Revue dEvidence-Based Medicine
(2) Revue Medicale Suiss
Type de Ressource
(142) résumé ou synthèse en francais
\bigcirc ( 1 0 8 ) ~ a r i c l e ~ d e ~ p e ̂ i o d i q u e ~
(74) revue de la iltedrature
(73) avis de la commission de transparence
    \bigcirc ( 1 9 1 ) ~ a s t h m e
    (238) asthme/r
(195) entant
\bigcirc ( 1 6 9 ) ~ r e ́ s u l t a t ~ t h e ́ r a p e u t i q u e ~
Niveau d'études
    \bigcirc ( 1 5 ) ~ 2 e m e ~ c y c l e / m a s t e r ~
\bigcirc \text { (5) 3eme cycle/doctorat}
(2) 1er cycle/ /icence
Pays
    \square(398) France
\bigcirc ( 7 1 ) \text { Canada}
\bigcirc ( 5 4 ) ~ B e l g i q u e ~
\square ( 5 0 ) ~ S u i s s e
```

2. INNOVAIR FORMODUAL INNOVAIR NEXTHALER FORMODUAL NEXTHALER $200 / 6 \mu \mathrm{~g} / \mathrm{dose}$ Mise à disposition d'un nouveau dosage ($200 / 6 \mu \mathrm{~g} / \mathrm{dose}$) des en complément du dosage à $100 / 6 \mu \mathrm{~g} / \mathrm{dose}$. Ces nouvelles spécialités ont une AMM uniquement dans l'asthme HAS - Haute Autorite de Sante
```

```

avis de la commission de transparence

```


``` inhalation en flacon pressurise, INNOVAIR/FORMODUAL NEXTHALER \(100 / 6\) gg/dose, poudre pour inhalation et aux autres associations fixes corticoide + beta- 2 agoniste de longue duré
3. Quelle place prend l'immunothérapie par voie sous-cutanée ou sublinguale dans le traitement de l'asthme et de la rhinite allergique? in
PHARMACTUEL, Vol. 49, No. 1, 2016
Pharmactuel - la revue internationale francophone de Canada 2016
a pratique pharmaceutique en établissement de sante
*article de périodique;
"L'immunothérapie est pertinente lorsque 'arsenal habituel de médicaments ne permet pas d'obtenir une maitrise acceptable et suffisante des symptômes d'asthme et de rhinite allergique.
C'est egalement une option lorsque l'evitement de l'allergéne est impossible ou ne donne pas les résultats attendus. Les allergies affectent actuellementle quart de la population mondiale. est également une option Iorsque revitement del 'allergène est impossible ou ne donne pas les résultats attendus. Les allergies affectent actuellement le quart de la population mondial Cet article a pour objectif de répondre àla question suivante : « Quelle est la position de l'immunothérapie ciblée par rapport aux standards thérapeutiques pour l'asthme etla rhinite Voir IIndexation (12)
4. Asthme du nourrisson et de l'enfant
National des Enseigoogie de France et du Collège
Nucléaire
cours; epreuves classantes nationales;
Lasthme se definit comme la récidive d'au moins trois épisodes de dyspnée expiratoire sifflante avec sibilants, quel que soit le facteur déclenchant, et 'existence ou non dun terrain opique. Il est très tréquent et tait suite le plus souvent à un épisode typique de bronchiolite aiguê virale. L'asthme sévère se traduit par une insuffisance respiratoire aigué.
ir lindexation (5)
Asthme mal contrôlé sous CSI chez l'adulte : ajout de LAMA ou de LABA ?
Minerva - Revue d'Evidence-Based Medicine Belgique \(\underline{2016}\)
lecture critique d'article
Question clinique Chez les patients souffrant d'un asthme mal controlé sous CSI seuls, quelles sont 'efficacité etla sécurité de l'ajout d'un LAMA versus l'ajout d'un LABA ?
```

Traitement de l'asthme chronique chez l'enfant : ajout de bêta2-mimétiques à longue durée d'action (LABA) aux corticostéroìdes inhalés (CSI) ?

```
Traitement de l'asthme chronique chez l'enfant : ajout de bêta2-mimétiques à longue durée d'action (LABA) aux corticostéroìdes inhalés (CSI) ?
Minevva - Revue d'Evidence Based Medicine
Minevva - Revue d'Evidence Based Medicine
: ajout de beta
: ajout de beta
ecture critique d'article
ecture critique d'article
Cette synthèse méthodique avec méta-analyse de la Cochrane Collaboration de bonne qualite méthodologique rassemblant les meilleures preuves actuellement disponibles n'apporte
Cette synthèse méthodique avec méta-analyse de la Cochrane Collaboration de bonne qualite méthodologique rassemblant les meilleures preuves actuellement disponibles n'apporte
#ue peu de support tactuel a a'ajout d'un LABA aux C SI chez les entants asthmatques insuffisamment controles par un CSI seul. Aucune difference quant aux effets indesirables n'a e)
#ue peu de support tactuel a a'ajout d'un LABA aux C SI chez les entants asthmatques insuffisamment controles par un CSI seul. Aucune difference quant aux effets indesirables n'a e)
atention particuliere al l'avenir
atention particuliere al l'avenir
vir lindexation (11)
vir lindexation (11)
action dans le traitement continu de l'asthme persistan
action dans le traitement continu de l'asthme persistan
Voir IIndexation (19)
```

Voir IIndexation (19)

```

\section*{Application: CISMeF}
- Data preparation
- Episode extraction: IP + semantic distance between documents + time between requests
- Resource identification: unique ID + delimiter example of session: /59451/ /303901/ /170702/
- Recurrent pattern extraction
- Generalized suffix tree
- Longest repeated substrings

\section*{Application: CISMeF}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Nombre de \\
liens visités
\end{tabular} & \begin{tabular}{c}
Nombre \\
d'épisodes
\end{tabular} & Proportion \\
\hline 1 & 34005 & \(70,6 \%\) \\
2 & 8254 & \(17,1 \%\) \\
3 & 2940 & \(6,1 \%\) \\
4 & 1284 & \(2,7 \%\) \\
5 & 658 & \(1,4 \%\) \\
6 & 346 & \(0,7 \%\) \\
7 & 216 & \(0,4 \%\) \\
8 & 139 & \(0,3 \%\) \\
9 & 91 & \(0,2 \%\) \\
10 & 60 & \(0,1 \%\) \\
\(>10\) & 175 & \(0,4 \%\) \\
\hline
\end{tabular}

22 days of \(\log\) analysis:
-10mn max for an episode
- 48168 episodes
- 17 mn of data processing (\(2,39 \mathrm{GHz} / 512 \mathrm{Mo}\))
\begin{tabular}{|l|l|l|l|l|}
\hline Longueurs des motifs & 2 & 3 & 4 & 5 \\
\hline Nombres de motifs & 1557 & 146 & 20 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Episodes contenant un motif } \\
\cline { 2 - 5 } \multicolumn{1}{c|}{} & longueur 2 & longueur 3 & longueur 4 & longueur 5 \\
\hline Effectifs & 4127 & 326 & 42 & 8 \\
\hline \% épisodes & 8,568 & 0,677 & 0,087 & 0,017 \\
\hline \% épisodes \((\mathbf{l}>\mathbf{1})\) & 29,139 & 2,302 & 0,297 & 0,056 \\
\hline
\end{tabular}

\section*{Discrete sequences}
- Pattern extraction:
- Sequence alignments
\(\rightarrow\) similarity OK, but frequency is difficult to evaluate (should be paired with pattern clustering)
- Prediction:
- Generalized suffix trees
- Seq2seq, CRF, HMM, ...
\(\rightarrow\) frequency OK, but only slight variations (similarity) can be taken into account

\section*{Exercise}
- Formalize the problem that consists in predicting the most probable action of user given the set of previous actions performed?
- What would be an algorithm to construct a (compact) suffix tree?

\section*{Discrete sequences of item-sets Pattern extraction Similarity-based approach}

\section*{Approach (similar to sequences)}

Decomposition in two separated steps
- Extraction of (pair of) interaction patterns
- Clustering of interaction patterns

\section*{Routine extraction by matrix alignment}

\(\square\)

\section*{Routine extraction by matrix alignment}

\section*{Routine extraction by matrix alignment}

\section*{Routine extraction by matrix alignment}

\section*{Routine extraction by matrix alignment}
\[
\operatorname{sim}(a, b)=
\]

\(i\) lies on the x -axis \(j\) lies on the \(y\)-axis k lies on the z -axis

\section*{Evaluation: usual measures}

\section*{- Model evaluation:}
- Precision
precision \(=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { retrieved documents }\} \mid}\)
- Recall
recall \(=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { relevant documents }\} \mid}\)
- F-measure \(F=2 \cdot \frac{\text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}\)
- Remarks:
- Unbalanced classes!
- Evaluation by class

\section*{Routine extraction by matrix alignment}

\section*{Evaluation}
- Data and ground truth
- Computation time
- Precision and recall for each pattern alignment
- Alignment size
- Number of alignments

(False Positives)
Aligned cells outside pattern
Unaligned pattern cells
(False Negatives)

Total pattern cells: 24 Total aligned cells: 20
Aligned pattern cells \(=16\) Precision \(=16 / 20=4 / 5\)
Recall \(=16 / 24=2 / 3\)
Size ratio \(=20 / 24=5 / 6\)
(True Negatives)
Unaligned non-pattern cells
Aligned pattern cells
(True Positives)

\section*{Routine extraction by matrix alignment}
- Synthetic data generation

- Scenarios:
1) Regular activity, no noise
2) Regular activity, noise between patterns
3) Noisy patterns
4) Irregular pattern apparition
5) Faulty sensors (\(3 / 4\) random data)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Measure & Dataset 1 & Dataset 2 & Dataset 3 & Dataset 4 & Dataset 5 \\
\hline \hline \#alignments & \(0.31 \pm 0.26\) & \(0.69 \pm 0.29\) & \(0.041 \pm 0.054\) & \(0.31 \pm 0.26\) & \(0.22 \pm 0.32\) \\
\hline \#pairs of pat. & \(0.54 \pm 0.22\) & \(0.77 \pm 0.20\) & \(0.13 \pm 0.06\) & \(0.52 \pm 0.24\) & \(0.54 \pm 0.18\) \\
\hline precision & \(0.54 \pm .00 \pm 0.00\) & \(1.00 \pm 0.00\) & \(0.56 \pm 0.19\) & \(1.00 \pm 0.01\) & \(0.20 \pm 0.06\) \\
\hline recall & \(1.00 \pm 0.60 \pm 0.24\) \\
\hline\(\frac{\text { alignment size }}{\text { pattern size }}\) & \(5.66 \pm 4.48\) & \(2.45 \pm 2.51\) & \(6.72 \pm 3.96\) & \(6.65 \pm 6.08\) & \(1.60 \pm 0.24\) \\
\hline
\end{tabular}

\section*{Exercise}
- Formalize the problem of behavior pattern extraction from discrete sequences of set of actions, based on a similarity approach (looking for longest and more similar behaviors)

\section*{Discrete sequences of item-sets Pattern extraction Frequency-based approach}

\section*{Data-mining sequences of item-sets}
- Frequent item-sets
- Ex: users usually select A \& B keys
- Association rules (' A ' => ' B ' in the same item-set)
- Support: how frequently an item-set appears in the dataset
- Confidence: how often a rule has been found to be true
- Frequent sequential patterns
- Ex: users that perform action ' \(A\) ', often perform action 'B' shortly after
- Association rules (' A ' => ' B ' in two following item-sets)
- Gap: item-sets appearing inside the association rules

\section*{Definitions}
- Item: minimal element
- Item-set: ordered (preference, ...) set of items
- Sequence of item-sets: ordered set of item-sets
- Transaction: tuple in the database; a set of items or a sequence of item-sets.
- training set = set of transactions
\(-\left\{\left\{a_{1,1}, \ldots, a_{1, m}\right\},\left\{a_{2,1}, \ldots, a_{2, m 2}\right\}, \ldots,\left\{a_{n, 1}, \ldots, a_{n, m n}\right\}\right\}\)
- Or a sparse matrix...
- Association rule: application \(X \rightarrow Y\) where \(X\) and \(Y\) are disjoint set of items or set of item-sets

\section*{Evaluation of association rules \(\left(X_{\rightarrow} \mathrm{Y}\right)\)}
- Support: absolute probability \(\mathrm{P}(\mathrm{X} \cup \mathrm{Y})\)
\(\| X \cup Y| | /||B D||=\%\) of transactions satisfying the rule
- Confidence: conditional probability \(\mathrm{P}(\mathrm{Y} / \mathrm{X})\)
\(\|X \cup Y \mid / /\| X \|=\%\) of transactions
verifying the implication
= support(XY)/support(X)
- An interesting association rule is a rule whose Confidence > Minconf and Support > Minsup

\section*{Apriori algorithm (Agrawal \& Srikant, 1994)}
- Idea: if an item-set is not frequent, then all its supersets are not frequent:
- If \(\{A\}\) is not frequent then \(\{A B\}\) cannot be frequent
- if \(\{A B\}\) is frequent then \(\{A\}\) and \(\{B\}\) are frequent
- Process:
1)Generate iteratively candidate item-sets:
- First pass: search for frequent 1-sets
- Generate a candidate of size k from two candidates of size k-1 differentiated by the last element
- Filter the sets of items with minimum support (keeping frequent item-sets)
2)Use frequent item-sets to generate association rules

\section*{Apriori}

\section*{Apriori}

Input: \(L_{1}=\{\) frequent 1-itemsets\};
Output: \(L_{k}=\{f r e q u e n t ~ k\)-itemsets\};
for (\(k=2 ; L_{k-1} \neq \varnothing\); \(k++\)) do \{
\(\mathrm{C}_{\mathrm{k}}=\) apriori-gen \(\left(\mathrm{L}_{k-1}\right)\);
// Generate new candidates
\}
\(\mathrm{L}_{\mathrm{k}}=\left\{\mathrm{c} \in \mathrm{C}_{\mathrm{k}} \mid\right.\) numberOf(c,DB) >= minsup \};
// Filter candidates
\}
return \(\mathrm{L}_{\mathrm{k}}\);

\section*{Apriori-gen}

Input: \(L_{k-1}=\{\) frequent (k-1)-itemsets\}; Items of \(\mathrm{L}_{\mathrm{k}-1}\) are ordered lexicographically Output: \(C_{k}=\{\) candidates frequent (k)itemsets\};
- Step 1: Self-join on \(L_{k-1}\)

For each \(\left(p_{k-1}, q_{k-1}\right)\) so that \(p_{k-1}<q_{k-1}\) do \{ \(C_{k}=\left\{C_{k} \mid\right.\) lexicographically ordered combinaison of \(\mathrm{p}_{\mathrm{k}-1}\) and \(\left.\mathrm{q}_{\mathrm{k}-1}\right\}\)
\}
- Step 2: Pruning foreach \(\mathrm{c}_{\mathrm{k}}\) in \(\mathrm{C}_{\mathrm{k}}\) do \{
foreach (\(k-1\))-subsets \(t_{k-1}\) of \(C_{k}\) do \{ if \(\left(t_{k-1}\right.\) is not in \(\left.L_{k-1}\right)\) then delete \(t_{k-1}\) from \(C_{k}\)
\}
\}

\section*{Apriori (exemple)}
min_support=2
\begin{tabular}{|l|ll|}
\multicolumn{1}{c|}{ base D } \\
\begin{tabular}{|l|ll|}
\hline TID & Items \\
\hline 100 & 1 & 3 \\
\hline & 4 \\
200 & 2 & 3 \\
300 & 1 & 2 \\
300 & 3 \\
400 & 2 & 5 \\
\hline
\end{tabular}
\end{tabular}

\section*{Apriori (generating association rules)}
//Input: MinConf, \(L_{k}\) (frequent item-sets)
//Output: \(R\), set of association rules
\(\mathrm{R}=\varnothing\);
foreach subsets \(S \neq \varnothing, S \neq L_{k}\) of \(L_{k}\) do \(\{\)
Confidence \(=\operatorname{Sup}\left(S\left(L_{k}-S\right)\right) / \operatorname{Sup}(S)\)
If Confidence \(>=\) MinConf then \(\{\)
\(R=R \cup\left\{" S \rightarrow L_{k}-S\right.\) " \(\} ;\)
```

        }
    }
    } return R ;

```

\section*{Example:}
\(\{23\} \rightarrow\{5\} \quad\) confidence \(=2 / 2\)
\(\{25\} \rightarrow\{3\} \quad\) confidence \(=2 / 3\)
\(\{2\} \rightarrow\{35\} \quad\) confidence \(=2 / 3\)

\section*{Exercise}
- Formalize the problem of behavior pattern extraction from discrete sequences of set of actions, based on a frequency approach (looking for most frequent behaviors)

\section*{Continuous signal(s)}

\section*{(Single) continuous signal}
- Continuous numeric acquisition is impossible
- Discretize an analogical signal to numerical values along 2 dimensions:
- Continuous / discrete (alphabet)
- Time (sampling)

NB: a re-sampling can be necessary according to the goal
- Discretization process
- Heterogeneous sensors (unnormalized)
- Semantic information (analyze \& user's feedback)

\section*{Example: GPS signal}

Daniel Ashbrook \& Thad Starner : « Using GPS to learn significant locations and predict movement across multiple users », Personal and Ubiquitous Computing, volume 7, number 5, pp. 275-286, Springer, 2003.
- Finding significant places / positions (time dependence: time threshold)
- Clustering places into locations / keypoints (spacial dependence: cluster radius)

\section*{Example: GPS signal}

\section*{Example: GPS signal}

\begin{tabular}{|l|c|l|}
\hline Transition & Relative Frequency & Probability \\
\hline \hline\(A \rightarrow B\) & \(14 / 20\) & 0.7 \\
\hline\(A \rightarrow B \rightarrow A\) & \(3 / 14\) & 0.2142 \\
\(A \rightarrow B \rightarrow C\) & \(2 / 14\) & 0.1428 \\
\(A \rightarrow B \rightarrow D\) & \(3 / 14\) & 0.2142 \\
\(A \rightarrow B \rightarrow E\) & \(1 / 14\) & 0.0714 \\
\(A \rightarrow B \rightarrow F\) & \(1 / 14\) & 0.0714 \\
\(A \rightarrow B \rightarrow G\) & \(1 / 14\) & 0.0714 \\
\(A \rightarrow B \rightarrow H\) & \(1 / 14\) & 0.0714 \\
\(A \rightarrow B \rightarrow I\) & \(1 / 14\) & 0.0714 \\
\hline \hline\(B \rightarrow A\) & \(16 / 77\) & 0.2077 \\
\hline\(B \rightarrow A \rightarrow B\) & \(13 / 16\) & 0.8125 \\
\(B \rightarrow A \rightarrow J\) & \(3 / 16\) & 0.1875 \\
\hline \hline\(B \rightarrow C\) & \(10 / 77\) & 0.1298 \\
\hline\(B \rightarrow C \rightarrow A\) & \(6 / 10\) & 0.6 \\
\(B \rightarrow C \rightarrow K\) & \(4 / 10\) & 0.4 \\
\hline \hline\(D \rightarrow B\) & \(5 / 7\) & 0.7142 \\
\hline\(D \rightarrow B \rightarrow A\) & \(2 / 5\) & 0.4 \\
\(D \rightarrow B \rightarrow L\) & \(2 / 5\) & 0.4 \\
\(D \rightarrow B \rightarrow M\) & \(1 / 5\) & 0.2 \\
\hline
\end{tabular}

Probabilities for transitions in Markov models Key: A = "Home"

\section*{Exercise}
- Formalize the problem of finding keypoints from GPS data?
- Formalize the problem of behavior pattern extraction from a sequence of visited places? From GPS data?

\section*{(Multiple) Continuous signals}

\section*{Multiple sensors: (discrete) approaches}
```

