
Advanced Human Machine Interaction

(Interaction)
Data Analysis

Alexandre Pauchet
alexandre.pauchet@insa-rouen.fr - BO.B.RC18

mailto:alexandre.pauchet@insa-rouen.fr

2/59

IHME/IDA: objectives

 Information
System(s)

Interactive
System(s)Context

 Data

Interaction

Data acquisition

3/59

Data analysis: goals
Humans have habits:
• Habits regularities, repetitions⇒
• Recurrent behaviors depends on
 similar contexts

Context: set of independent and
sequential (or temporal)
characteristics that can be
represented in orthogonal
spaces

http://ennokni.deviantart.com/art/Daily-Life-117834930

4/59

Problem modeling

5/59

Formal modeling of a problem
● Define formally the inputs

Ex: “input = {a1, …, an}n<20 a sequence of actions with each
action ai in {up, down, left, right, space}”

● Define formally the outputs

Ex: “output = a class among {beginner, advanced}”

Ex: “output = a sequence of words generated as an
answer to the user’s query {w1, …, wn}n>0”

● Define a class of problem / algorithm
– Ex (machine learning): classification problem, clustering

problem, regression problem, …
– Ex (logic): induction / deduction problem, …
– Ex (algorithm): sorting, graph construction, ...

6/59

Analysis of interaction data

The data to analyze can be collected from:
● External/internal sensors (context of use)
● Interaction data (log of user actions and/or activity)
● External data requested from the interactive system

Interactive
System(s)Context

 Data

Interaction

Information
System(s)

Data acquisition

7/59

Input: discrete data (1/2)
● Discrete sequences

– Ex: sequence of visited web pages, of user actions

– Representation: ordered set {a1, a2, …, an}

● Discrete sequences of item-sets
– Ex: actions from left and right hands in a double-handed

game or multiple paddles/keyboards
– Representations:

● ordered set of item-sets

{{a1,1, …, am,1}, {a1,2, …, am,2}, …, {a1,n, …, am,n}}
● matrix

{ai,j}i=1..m; j=1..n

8/59

Input: discrete data (2/2)
● Independent sequences

– Ex: actions from two different players
– Representation: set of ordered sets

– {{a1,1, …, am1,1}, {a1,2, …, am2,2}, …, {a1,n, …, amn,n}}

Remarks:
● Time is not considered and delays may be different

(or not) between two actions
● Different sampling are possible in independent

sequences

9/59

Input: continuous and mixed data
● Continuous signal

– Ex: user’s voice volume
– Representation: function f(t)

● Continuous signals
– Ex: trajectories of two Wiimotes

– Representation: set of functions {f1(t), … fn(t)}

Remarks:
● Any continuous signal can be discretized
● Mix of discrete sequences and continuous signals
● There always is sampling

10/59

Goal / Objective (class of problem)
● Behavioral pattern extraction

– Intra- / Inter- user behavioral patterns
– (Multiple) Time scaling
– Frequent patterns / similar patterns

● User classification
– Clustering of users’ activity
– Segmentation and classification

of parts of users’ activity
● Generation

– Simulation of user’s behavior
– Generation of interactive behavior

● Combination of problems

11/59

Exercise
● Let A = {a1, ..., an} be the set of n actions that users

can perform. Let T be a set of r interaction traces
from s different users u1, ..., us:
T = {{a1,x1, …, am1,x1}ux1 … {a1,mr,…, amrxr}uxr }

● eg. HMI with 3 possible actions: {{a1 a2 a1 a3}u1
{a2 a2 a2 a1 a3 }u2 {a2 a1 a2 a2 a1 a1 a3}u1 {a1
a1 a3}u2 {a1 a1 a2 a1 a3}u1 }

● Formalize the problem that, from a given sequence
of actions, predicts the next action

12/59

Discrete sequences
Pattern extraction

Similarity-based approach

13/59

Sequence alignment

... A C T G T C A T C A T C T T A C T C A T C A T C T T A C G C T
A T A G C T A T A G T C A T C A T C T T A C G C T A T A G C A C
G C T A C G A A T C T C T G A A T A A C G C T A C G A A T C C ...

... C T G T C C T G C A T C A C T G G A T G T A C C A T C T T A C
T A T G G T A C A T C T A T G T A C T A C T C A C - T T T T A A C
T C T T A C G C T A T A G C T A T A G T C T A C G A A T C A C ...

14/59

String mining and sequence alignment
● Alignment of two sequences of characters

– Used to compare 2 sequences S1 (l=m) and S2 (l=n)

– How S1 can be transformed into S2?

– Based on a distance or a similarity measure
– A sequence alignment can be computed using dynamic

programming in O(mn)

● 2 types of alignments:
– Global
– Local (Smith & Waterman, 1981)

15/59

Sequence alignment

● () is an alignment of the two sequences
“ACGA” and “ATGCTA”.

● Algorithmically, it corresponds to an edition script
(i.e. a computer program)

A C G - - A
A T G C T A

Operation Resulting sequence

Substitution of A by A A

Substitution of C by T AT

Substitution of G by G ATG

Insertion of C ATGC

Insertion of T ATGCT

Substitution of A by A ATGCTA

16/59

Local alignments
● 3 editing operations

– Substitution of a symbol from S1 at a given position by a
symbol from S2

– Deletion of a symbol from S1 at a given position

– Insertion of a symbol in S2 at a given position

● Scores
– Sub(a,b): score to substitute symbol a by symbol b
– Del(a): score to delete symbol a
– Ins(a): score to insert symbol a

17/59

Similarity measure

Similarity measure between 2 sub-sequences

s(x,y) = max { score of e | e in Ex,y }

● Ex,y: series of editing operations that transform x
into y

● A score of e is computed as the sum of all its
elementary editing operations

18/59

Dynamic programming

t [−1 ,−1] = 0,
t [i ,−1] = 0,
t [−1 , j] = 0,

t [i , j] = max {
t [i−1 , j−1]+Subs(x [i] , y [j]) ,

t [i−1 , j]+Del (x [i]),
t [i , j−1]+ Ins(y [j]) ,

0

Remarks:
● Subs/Del/Ins have negative values

● The value at (i,j) position in table t only
depends on the 3 adjacent positions

● An optimal alignment (i.e. of maximum
score) can be produced by performing a
trace back in the values of table t from the
(maximal) values up to a position of 0.

sub(x,x) = 1
sub(x,z) = 0
Ins = del = -1

Smith & Waterman

19/59

Example

20/59

Exercise
● Formalize the problem corresponding to the pattern

extraction from discrete sequences using a
similarity-based approach

21/59

From patterns to frequent patterns

(pattern 1, sequence 1)
(pattern 2, sequence 2)

(pattern 3, sequence 1)
(pattern 4, sequence 5)

...

(pattern n-1, sequence x)
(pattern n, sequence y)

Pattern database

Pattern
clustering

Sequence
alignments

22/59

Discrete sequences
Pattern extraction

Frequency-based approach

23/59

Approach

● Frequent sequential patterns
– Ex: users that perform action ‘A’, often perform action

‘B’ shortly after
– Association rules (‘A’ => ‘B’ shortly after)
– Gap: number of elements (actions) between ‘A’ and ‘B’
– Confidence: how often a rule has been found to be true

● A simple structure: suffix tree

24/59

Suffix trees
● The non-compact suffix tree of a word y is the

deterministic finite automaton, having a single initial
condition called root and where the terminal states
correspond to the suffix of the word. The language
recognized by this automaton is all suffixes of y.

● In practice a terminator is added at the end of the
word (usually denoted $).

● Leaves are numbered according to the starting
position of the suffix they recognize.

● To compact the tree, the internal nodes having
only a single outgoing branch are removed and the
branches are concatenated.

25/59

Example of suffix tree (single word)

2

3

4

0

1

t

a

t

a

$

$

a

$
t

a

$

$

3

4

a

$

0
2

$

t a

t a$ t a$
$

1

Word: “tata”

26/59

Generalized suffix tree (multiple words)

a

$

t a$

$t

t a$

$

a

c a#

taca#

c a#

#

#

(2,0)

c a#

(2,3)

(1,0) (1,2) (2,1)

(1,3)

(1,1)

(2,2)

(2,4)

(1,4)

(2,5)

Generalized suffix tree for
{tata$, taca#}

27/59

Application: CISMeF
● Extraction of recurrent behaviors in the navigations

within an online health catalog (CISMeF)

28/59

Application: CISMeF
● Data preparation

– Episode extraction: IP + semantic distance between
documents + time between requests

– Resource identification: unique ID + delimiter

example of session: /59451/ /303901/ /170702/

● Recurrent pattern extraction
– Generalized suffix tree
– Longest repeated substrings

29/59

Application: CISMeF

22 days of log analysis:
● 10mn max for an episode
● 48 168 episodes
● 17mn of data processing (2,39GHz/512Mo)

30/59

Discrete sequences
● Pattern extraction:

– Sequence alignments

→similarity OK, but frequency is difficult to evaluate
(should be paired with pattern clustering)

● Prediction:
– Generalized suffix trees
– Seq2seq, CRF, HMM, ...

→frequency OK, but only slight variations (similarity)
can be taken into account

31/59

Exercise
● Formalize the problem that consists in predicting

the most probable action of user given the set of
previous actions performed?

● What would be an algorithm to construct a
(compact) suffix tree?

32/59

Discrete sequences of item-sets
Pattern extraction

Similarity-based approach

33/59

Approach (similar to sequences)

Decomposition in two separated steps
● Extraction of (pair of) interaction patterns
● Clustering of interaction patterns

34/59

Routine extraction by matrix alignment

Rick Moritz (PhD thesis), Orange labs - Meylan

35/59

Routine extraction by matrix alignment

36/59

 Routine extraction by matrix alignment

37/59

 Routine extraction by matrix alignment

38/59

 Routine extraction by matrix alignment

 39/59

Evaluation: usual measures
● Model evaluation:

– Precision

– Recall

– F-measure

● Remarks:

– Unbalanced classes!
– Evaluation by class

https://en.wikipedia.org/wiki/Precision_and_recall

40/59

Routine extraction by matrix alignment

Evaluation
● Data and ground truth
● Computation time
● Precision and recall for

each pattern alignment
● Alignment size
● Number of alignments

(False Positives) (True Negatives)

(False Negatives) (True Positives)

41/59

● Synthetic data generation

● Scenarios:
1) Regular activity, no noise
2) Regular activity, noise between patterns
3) Noisy patterns
4) Irregular pattern apparition
5) Faulty sensors (¾ random data)

Routine extraction by matrix alignment

43/59

Exercise
● Formalize the problem of behavior pattern

extraction from discrete sequences of set of
actions, based on a similarity approach (looking for
longest and more similar behaviors)

44/59

Discrete sequences of item-sets
Pattern extraction

Frequency-based approach

45/59

Data-mining sequences of item-sets
● Frequent item-sets

– Ex: users usually select A & B keys
– Association rules (‘A’ => ‘B’ in the same item-set)
– Support: how frequently an item-set appears in the

dataset
– Confidence: how often a rule has been found to be true

● Frequent sequential patterns
– Ex: users that perform action ‘A’, often perform action

‘B’ shortly after
– Association rules (‘A’ => ‘B’ in two following item-sets)
– Gap: item-sets appearing inside the association rules

46/59

Definitions
● Item: minimal element
● Item-set: ordered (preference, …) set of items
● Sequence of item-sets: ordered set of item-sets
● Transaction: tuple in the database; a set of items

or a sequence of item-sets.
– training set = set of transactions

– {{a1,1, …, a1,m1}, {a2,1, …, a2,m2}, …, {an,1, …, an,mn}}

– Or a sparse matrix…
● Association rule: application X→Y where X and Y

are disjoint set of items or set of item-sets

47/59

Evaluation of association rules (X→Y)
● Support: absolute probability P(X∪Y)

||X∪Y||/||BD|| = % of transactions satisfying the rule
● Confidence: conditional probability P(Y/X)

||X∪Y||/||X|| = % of transactions

verifying the implication

 = support(XY)/support(X)

● An interesting association rule is a rule whose
Confidence > Minconf and Support > Minsup

48/59

Apriori algorithm (Agrawal & Srikant, 1994)
● Idea: if an item-set is not frequent, then all its

supersets are not frequent:
– If {A} is not frequent then {AB} cannot be frequent
– if {AB} is frequent then {A} and {B} are frequent

● Process:

1)Generate iteratively candidate item-sets:
● First pass: search for frequent 1-sets
● Generate a candidate of size k from two candidates of size k-1

differentiated by the last element
● Filter the sets of items with minimum support (keeping frequent

item-sets)

2)Use frequent item-sets to generate association rules

49/59

Apriori
Apriori
Input: L1={frequent 1-itemsets};

Output: Lk={frequent k-itemsets};

for (k=2; Lk-1; k++) do {

 Ck=apriori-gen(Lk-1);

 // Generate new candidates
 }
 Lk={ cCk | numberOf(c,DB) >=

minsup } ;
 // Filter candidates
}
return Lk;

Apriori-gen
Input: Lk-1={frequent (k-1)-itemsets};

Items of Lk-1 are ordered lexicographically

Output: Ck={candidates frequent (k)-
itemsets};

● Step 1: Self-join on Lk-1

For each (pk-1,qk-1) so that pk-1<qk-1 do {

 Ck={ ck | lexicographically ordered
combinaison of pk-1 and qk-1}

}

● Step 2: Pruning
foreach ck in Ck do {

 foreach (k-1)-subsets tk-1 of Ck do {

 if (tk-1 is not in Lk-1) then

 delete tk-1 from Ck

 }
}

50/59

Apriori (exemple)

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

base D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1

L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

min_support=2

51/59

Apriori (generating association rules)

//Input: MinConf, Lk (frequent item-sets)
//Output: R, set of association rules

R = ;
foreach subsets S, SLk of Lk do {
 Confidence = Sup(S(Lk-S))/Sup(S)
 If Confidence >= MinConf then {
 R = R {“ S Lk-S ”} ;
 }
 }
}
return R ;

Example :

{2 3} {5} confidence=2/2
{2 5} {3} confidence=2/3
…
{2} {3 5} confidence=2/3
...

52/59

Exercise
● Formalize the problem of behavior pattern

extraction from discrete sequences of set of
actions, based on a frequency approach (looking
for most frequent behaviors)

55/59

Continuous signal(s)

56/59

(Single) continuous signal

● Continuous numeric acquisition is impossible
– Discretize an analogical signal to numerical values

along 2 dimensions:
● Continuous / discrete (alphabet)
● Time (sampling)

NB: a re-sampling can be necessary according to the goal

● Discretization process
– Heterogeneous sensors (unnormalized)
– Semantic information (analyze & user’s feedback)

57/59

Example: GPS signal
Daniel Ashbrook & Thad Starner : « Using GPS to learn significant locations and predict
movement across multiple users », Personal and Ubiquitous Computing, volume 7, number 5,
pp. 275-286, Springer, 2003.

● Finding significant places / positions
 (time dependence: time threshold)

● Clustering places into locations / keypoints
 (spacial dependence: cluster radius)

58/59

Example: GPS signal

59/59

Example: GPS signal

Ashbrook & Starner, 2002

Probabilities for transitions in Markov models
Key: A = “Home”

60/59

Exercise
● Formalize the problem of finding keypoints from

GPS data?
● Formalize the problem of behavior pattern

extraction from a sequence of visited places? From
GPS data?

61/59

(Multiple) Continuous signals

62/59

Multiple sensors: (discrete) approaches

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62

