
Distributed Computing
Chapter 5 – REST Web Services

ITI 4 – INSA Rouen Normandie / 2020-2021
Cecilia ZANNI-MERK

What is REST?
• REST stands for REpresentation State Transfer, which
requires clarification because the central abstraction
in REST—the resource—does not occur in the acronym.

•A resource in the RESTful sense is anything that has an
URI; that is, an identifier that satisfies formatting
requirements.
• The formatting requirements are what make URIs uniform.

• Recall, too, that URI stands for Uniform Resource Identifier;
hence, the notions of URI and resource are intertwined.

• In practice, a resource is an informational item that has
hyperlinks to it.

2

What is REST?

• RESTful web services are lightweight, highly scalable
and maintainable and are very commonly used to create
APIs for web-based applications.

3

REST vs SOAP
•REST and SOAP are quite different.

•SOAP is a messaging protocol, whereas REST is a style
of software architecture for distributed hypermedia
systems -> the World Wide Web

•In the Web, HTTP is both a transport protocol and a
messaging system because HTTP requests and responses
are messages.

•The real data in HTTP messages can be conveyed using
the MIME type system, and HTTP provides response status
codes to inform the requester about whether a request
succeeded and, if not, why.

4

More on resources
•As Web-based informational items, resources are without
any interest unless they have at least one
representation.

• In the Web, representations are MIME-typed. The most common type of resource
representation is probably still text/html, but nowadays resources tend to
have multiple representations.

•Resources have state. A useful representation must
capture a resource’s state.

5

More on resources

•In a RESTful request targeted at a resource, the
resource itself remains on the service machine. The
client typically receives a representation of the
resource if the request succeeds.
• It is the representation that transfers from the server machine to
the client machine

•RESTful web services require not just resources to
represent but also client-invoked operations on such
resources. In other words, in a REST architecture, a
REST Server simply provides access to resources and the
REST client accesses and presents the resources.

6

More on resources

•Keep in mind that HTTP is an API and not simply a
transport protocol, with its own verbs (also called
methods or CRUD operations)

7

Representation of resources
•Once a resource is identified then its representation
is to be decided using a standard format so that the
server can send the resource in the above said format
and client can understand the same format.

•REST does not impose any restriction on the format of a
resource representation.

•Some important regarding the representation format of a
resource in RESTful Web Services.

• Understandability

• Completeness

• Linkablity

8

Messages
•HTTP Request

•HTTP Response

9

Addressing
•Addressing refers to locating a resource or multiple
resources lying on the server.

•Each resource in REST architecture is identified by its
URI that has the following format

<protocol>://<service-name>/<ResourceType>/<ResourceID>

•Constructing good URIs
• Use plural nouns
• Avoid using spaces
• Use lowercase letters
• Maintain backward compatibility

• Use HTTP verbs

10

Addressing
•Addressing refers to locating a resource or multiple
resources lying on the server.

•Each resource in REST architecture is identified by its
URI that has the following format

<protocol>://<service-name>/<ResourceType>/<ResourceID>

•Constructing good URIs
• Use plural nouns
• Avoid using spaces
• Use lowercase letters
• Maintain backward compatibility

• Use HTTP verbs
http://localhost:8080/UserManagement/rest/UserService/getUser/1

http://localhost:8080/UserManagement/rest/UserService/users/1

11

Methods
•As we have discussed so far that RESTful web service
makes heavy uses of HTTP verbs to determine the
operation to be carried out on the specified
resource(s).

•Here are important points to be considered:
• GET operations are read only and are safe.

• PUT and DELETE operations are idempotent means their result will
always be the same no matter how many times these operations are
invoked.

• PUT and POST operations are nearly same with the difference lying
only in the result where PUT operation is idempotent and POST
operation can cause different results.

12

Statelessness
• A RESTful Web Service should not keep a client state on
the server. This restriction is called Statelessness.
It is the responsibility of the client to pass its
context to the server.

•Advantages
• Web services can treat each method request independently.

• Web services need not maintain the client's previous interactions.
It simplifies the application design.

• As HTTP is itself a statelessness protocol, RESTful Web Services
work seamlessly with the HTTP protocols.

13

Statelessness

•Disadvantages
• Need of extra information in each request <- more bandwidth needed

• Need to interpret the client's state if the client interactions are
to be taken care of.

14

Security
•As RESTful Web Services work with HTTP URL Paths, it is
very important to safeguard a RESTful Web Service in
the same manner as a website is secured.
• Validation

• Session based authentication

• Restriction on method execution

• Validate malformed XML/JSON

• Throw generic error messages

15

The HTTP codes
•When accessing a resource, a numeric code is received
with the message

•HTTP codes are always three-digit and are categorized
according to the number of hundreds.
• 2xx indicates success.

• 3xx redirects the client elsewhere.

• 4xx indicates an error a client error

• 5xx indicates a server error.

16

The HTTP codes
•When accessing a resource, a numeric code is received
with the message

•HTTP codes are always three-digit and are categorized
according to the number of hundreds.
• 2xx indicates success.

• 3xx redirects the client elsewhere.

• 4xx indicates an error a client error

• 5xx indicates a server error.

Depending on the HTTP code
received, the client application
may decide what to do next. For
example, if a server responds
with a code 500, the client will
not be able to assign the
anticipated data to a variable.
On the other hand with a code
200, the client will know that
the answer was good and that he
will be able to proceed to the
interpretation of the received
information !

17

More on HTTP codes

•200 OK
•201 CREATED
•204 NO CONTENT
•304 NOT MODIFIED
•400 BAD REQUEST
•401 UNAUTHORIZED
•403 FORBIDDEN
•404 NOT FOUND
•409 CONFLICT
•500 INTERNAL SERVER ERROR

18

Summary of the RESTful Features
• In a request, the pairing of an HTTP verb such as GET
with a URI such as http://.../users specifies a CRUD
operation against a resource; in this example, a
request to read available information about the users.

• The service uses HTTP status codes such as 404
(resource not found) and 405 (method not allowed) to
respond to bad requests.

•If the request is a good one, the service responds with
an XML representation that captures the state of the
requested resource.

19

Summary of the RESTful Features

• The service can take advantage of MIME types. A client
can issue a request indicating a preference for the
type of representation returned (for instance,
text/plain as opposed to text/xml or text/html).

• The RESTful service implementation is not constrained
in the same way as a SOAP based service precisely
because there is no formal service contract.
• The implementation is flexible but, of course,
likewise ad hoc.

20

Java Clients Against Real-World RESTful Services
•First, we need a tool for HTTP request transmission and
analysis

•There are several plugins for Firefox or Chrome …
for example RESTClient, a debugger for RESTful web
services.

•Curl (https://curl.haxx.se/) , a command line tool
and library for transferring data with URLs

21

GoRest
•GoRest proposes an online free REST API for Testing and
Prototyping Web and Android applications

•They also provide an online REST console for rapid
testing

•However, signing up is necessary to get an
“authentication token” to be used in the queries

https://gorest.co.in/

22

GoRest
•They propose several resources

•And support all the HTTP verbs

23

Up to you!!

• Familiarize yourself with the GoRest console on the website
• Retrieve all the users that are called Victor

• Modify user 1622’s name to “ZZZ Johnston”

• There are also some plugins for Firefox or other browsers that
allow to test REST queries
• See, for example, RESTClient

• Reproduce the two proposed queries

24

A first Java client
•Using integrated libraries for HTTP clients, to send
GET and POST requests

• java.net.URL

• java.net.HttpURLConnection

26

A first Java client
•Using integrated libraries for HTTP clients, to send
GET and POST requests

• java.net.URL

• java.net.HttpURLConnection

26

A first Java client
•Using integrated libraries for HTTP clients, to send
GET and POST requests

• java.net.URL

• java.net.HttpURLConnection

26

Other available APIs to explore

•Gmail
https://developers.google.com/gmail/api/

•OpenStreetMaps
https://wiki.openstreetmap.org/wiki/API

31

https://developers.google.com/gmail/api/

A more sophisticated way: JAX-RS
•JAX-RS : Java API for RESTful Web Services

•JAX-RS is integrated into Java since Java EE 6

•The development of REST Web Services with JAX-RS is
based on Java annotations

• Several implementations exist: JERSEY (Oracle, that is
the reference), CXF (Apache), RESTEasy (JBoss/WildFly),
RESTlet

•The specification only describes the server part, the
client part depends on each implementation

32

A more sophisticated way: JAX-RS
•The JAX-RS API uses Java annotations to simplify the
development of RESTful web services.

•Developers decorate Java class files with JAX-RS
annotations to define resources and the actions that
can be performed on those resources.

•JAX-RS annotations are runtime annotations; therefore,
runtime reflection will generate the helper classes and
artifacts for the resource.

•A Java EE application archive containing JAX-RS
resource classes will have the resources configured,
the helper classes and artifacts generated, and the
resource exposed to clients by deploying the archive to
a Java EE server.

32

© M. Baron 33

•Web Services development with JAX-RS is based on POJOs
using JAX-RS specific annotations

•No description required in configuration files

• Only the configuration of a JAX-RS Servlet is required
to perform the bridge between HTTP requests and
annotated Java classes

• A REST Web Service is deployed in a Web application

Development

34

A word about servlets and containers
•A Java servlet is a Java program that extends the
capabilities of a server. Although servlets can respond
to any types of requests, they most commonly implement
applications hosted on Web servers

•To deploy and run a servlet, a web container (also
known as a servlet container) must be used.

•A web container is essentially the component of a web
server that interacts with the servlets.

•It is responsible for managing the lifecycle of
servlets, mapping a URL to a particular servlet and
ensuring that the URL requester has the correct access
rights.

35

A word about servlets and containers
•Apache Tomcat is the reference implementation for
servlet containers (http://tomcat.apache.org)

• TOMCAT_HOME/bin, contains startup and shutdown scripts

• TOMCAT_HOME/logs, contains logs to allow monitoring and diagnosis

• TOMCAT_HOME/webapps, servlets are deployed as WAR (Web ARchive)
files, which are JAR files with a .war extension in this folder.

• Almost every production-grade servlet has a
configuration file named web.xml, that generally needs
to be edited

• The servlet needs to be packaged (as a .war file) and
deployed in the TOMCAT_HOME/webapps folder

You can use WildFly as a servlet container if
you feel more comfortable with it 36

http://tomcat.apache.org/

Development
•Unlike SOAP Web Services there is no possibility to
develop a REST service from the service description
file

•Only a Bottom / Up approach is available
• Create and annotate a POJO

• Compile, Deploy and Test

•Possibility to access the WADL document
• The WADL description file is automatically generated by JAX-RS

•It is possible to use the WADL to generate the client
• However, most of the frameworks provide APIs to generate the client

37

Annotation Description

@Path The @Path annotation’s value is a relative URI path indicating where the Java class will be hosted: for example, /helloworld. You can also embed

variables in the URIs to make a URI path template. For example, you could ask for the name of a user and pass it to the application as a variable in

the URI: /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP GET requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP POST requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP PUT requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated

with this request method designator will process HTTP DELETE requests. The behavior of a resource is determined by the HTTP method to which

the resource is responding.

@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP HEAD requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your resource class. URI path parameters are extracted from

the request URI, and the parameter names correspond to the URI path template variable names specified in the @Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your resource class. Query parameters are extracted from the

request URI query parameters.

@Consumes The @Consumes annotation is used to specify the MIME media types of representations a resource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations a resource can produce and send back to the client: for

example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS runtime, such as MessageBodyReader and MessageBodyWriter.

For HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to method parameters. On the response side, a return

value is mapped to an HTTP response entity body by using a MessageBodyWriter. If the application needs to supply additional metadata, such as

HTTP headers or a different status code, a method can return a Response that wraps the entity and that can be built using

Response.ResponseBuilder.
38

Annotation Description

@Path The @Path annotation’s value is a relative URI path indicating where the Java class will be hosted: for example, /helloworld. You can also embed

variables in the URIs to make a URI path template. For example, you could ask for the name of a user and pass it to the application as a variable in

the URI: /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP GET requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP POST requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP PUT requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated

with this request method designator will process HTTP DELETE requests. The behavior of a resource is determined by the HTTP method to which

the resource is responding.

@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly named HTTP method. The Java method annotated with

this request method designator will process HTTP HEAD requests. The behavior of a resource is determined by the HTTP method to which the

resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your resource class. URI path parameters are extracted from

the request URI, and the parameter names correspond to the URI path template variable names specified in the @Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your resource class. Query parameters are extracted from the

request URI query parameters.

@Consumes The @Consumes annotation is used to specify the MIME media types of representations a resource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations a resource can produce and send back to the client: for

example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS runtime, such as MessageBodyReader and MessageBodyWriter.

For HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to method parameters. On the response side, a return

value is mapped to an HTTP response entity body by using a MessageBodyWriter. If the application needs to supply additional metadata, such as

HTTP headers or a different status code, a method can return a Response that wraps the entity and that can be built using

Response.ResponseBuilder.

http://docs.oracle.com/javaee/7/api/.

39

http://docs.oracle.com/javaee/7/api/

Most commonly used annotations
• @Path Relative path of the resource class/method.
• @GET HTTP Get request, used to fetch resource.
• @PUT HTTP PUT request, used to create resource.
• @POST HTTP POST request, used to create/update resource.
• @DELETE HTTP DELETE request, used to delete resource.
• @HEAD HTTP HEAD request, used to get status of method
availability.

40

Most commonly used annotations
• @Produces States the HTTP Response generated by web
service.

• For example, APPLICATION/XML, TEXT/HTML, APPLICATION/JSON etc.

• @Consumes States the HTTP Request type.
• For example,
application/x-www-formurlencoded to accept form data in HTTP body
during POST request.

• @PathParam Binds the parameter passed to the method to
a value in path.

• @QueryParam Binds the parameter passed to method to a
query parameter in the path.

41

Most commonly used annotations
• @MatrixParam Binds the parameter passed to the method
to a HTTP matrix parameter in path.

• @HeaderParam Binds the parameter passed to the method
to a HTTP header.

• @CookieParam Binds the parameter passed to the method
to a Cookie.

• @FormParam Binds the parameter passed to the method to
a form value.

• @DefaultValue Assigns a default value to a parameter
passed to the method.

• @Context Context of the resource.
• For example, HTTPRequest as a context.

42

Two main concepts
•Root resource classes

• Are POJOs

• Are either annotated with @Path

• Or have at least one method annotated with @Path

• Or have a request method designator, such as @GET, @PUT, @POST or
@DELETE.

•Resource methods
• Are methods of a resource class

• Are annotated with a request method designator

43

Jersey
•Jersey is the centerpiece project for JAX-RS (Java API
for XML-RESTful Web Services).

•Jersey applications can be deployed through familiar
commercial-grade containers such as standalone Tomcat,
but Jersey also provides the lightweight Grizzly
container that is well suited for learning the
framework. It also works well with Maven.

•A deployed Jersey service automatically generates a
WADL, which is then available through a standard GET
request.

44

Jersey
•A Jersey service adheres to the REST principles.

•A service accepts the usual RESTful requests for CRUD
operations specified with the standard HTTP verbs GET,
POST, DELETE, and PUT.

•A request is targeted at a Jersey resource, which is a
POJO.

• A good place to start is
https://docs.oracle.com/cd/E19776-01/820-4867/ggnyk/index.html

45

https://docs.oracle.com/cd/E19776-01/820-4867/ggnyk/index.html

Implementation: Environment Setup
•Be sure you have Eclipse IDE for Enterprise Java
Developers installed

•Setup the Jersey Framework Libraries
• Download the Jersey 2.35 (implementing JAX-RS 2.1) framework binaries
from the following link – https://eclipse-ee4j.github.io/jersey/

• Decompress and check that you have the following folder structure

Jersey libraries

Jersey dependencies

46

Implementation: Environment Setup
•Setup Apache Tomcat

• Download Tomcat versions 9 or 10 from https://tomcat.apache.org/.
Once you downloaded the installation, unpack the binary
distribution into a convenient location.

• Set the CATALINA_HOME environment variable pointing to the
installation location.

• The /bin folder contains scripts for launching and stopping Tomcat

• After a successful startup, the default web applications included
with Tomcat will be available by visiting http://localhost:8080/.

47

https://tomcat.apache.org/

Implementation: Environment Setup
•Setup Apache Tomcat

• Download Tomcat version 10 from https://tomcat.apache.org/. Once
you downloaded the installation, unpack the binary distribution
into a convenient location.

• Set the CATALINA_HOME environment variable pointing to the
installation location.

• The /bin folder contains scripts for launching and stopping Tomcat

• After a successful startup, the default web applications included
with Tomcat will be available by visiting http://localhost:8080/.

48

https://tomcat.apache.org/

A first example
• The first step is to create a Dynamic Web Project using
Eclipse IDE. Follow the option File → New → Other → Web
→ Dynamic Web Project wizard from the wizard list.
• If you don’t have “Dynamic Web Project”
you need to update your Eclipse.

• Go to Help → Install new software,
choose “All available sites” in
Work with and download “Web, XML,
Java EE and OSGi Enterprise
Development”

• Create your project and call it
“Hello”

49

A first example
•Your project structure
should look similar to
this

50

Adding the required libraries
•As a second step let us add Jersey Framework and its
dependencies (libraries) in our project. Copy all the
.jars of the following directories of the downloaded
jersey zip folder in the src/main/webapp/WEB-INF/lib
directory of the project (do not copy the folders, only
the .jars).

• \jaxrsFOLDER\jaxrs-ri\api

• \jaxrsFOLDER\jaxrs-ri\ext

• \jaxrsFOLDER\jaxrs-ri\lib

Do not copy the folders, only the .jars

51

Adding the required libraries

• Now, right click on your project name Hello and then
follow the option available in the context menu − Build
Path → Configure Build Path to display the Java Build
Path window.

• Finally use the Add External JARs button available
under Libraries tab (at the level of Classpath) to add
the JARs present in WEB-INF/lib directory.

52

Creating the source files

• Create a new package examples.hello

• Create the class Hello.java in the package.

•You can download it from moodle

•Remark that it is a POJO

• There are some important points to be noted about the
main program, Hello.java

•The JAX-RS annotations ensure the connection between
the POJO class and the HTTP request or response

53

Creating the source files
• The first step is to
specify a path for the
web service using the
@Path annotation. The URI
for requests ends with
“bonjour”

• @GET specifies that the
method answers to a GET
request.

• @Produces specifies the
type of the response

54

Creating the web.xml configuration file
•The Web XML Configuration file which is an XML file to
specify the Jersey framework servlet for the
application.

• Create a new file under the src/main/webapp/WEB-INF

folder named web.xml in Eclipse with the following text

55

Creating the web.xml configuration file
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>

<display-name>Hello</display-name>

<servlet>

<servlet-name>jersey-servlet</servlet-name>

<servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-value>examples.hello</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>jersey-servlet</servlet-name>

<url-pattern>/rest/*</url-pattern>

</servlet-mapping>

</web-app>

56

Creating the web.xml configuration file
•This file describes the servlet

• <servlet-class> is the name of the Jersey servlet container

• <param-value> is the package name of the service POJOs

• <url-pattern> specifies the URI patterns that can be served

• <servlet-name> must be the same in the <servlet> and in the
<servlet-mapping> sections

57

Deploying the program
• Once we are done with creating the source and web
configuration files, we need to export the application
as a war file and deploy the same in Tomcat.

• Do File → export → Web → War File and finally select
the project Hello and the destination folder.

• This destination folder is

• Tomcat Installation Directory → webapps directory (for Tomcat
9)

• Tomcat Installation Directory → webapps-javaee directory (for
Tomcat 10)

•Start Tomcat

58

Understanding how it works
• The project is called Hello

• It is the base of the path to the REST resource

•Doing http://localhost:8080/Hello/rest/bonjour

• Launches the Hello servlet using Jersey

• As the URI is /rest/* , in the package indicated in web.xml, a
method accepting a GET request is looked for, with bonjour in its
path

• If you test the URI with a browser, implicitly the GET request
producing an HTML output is chosen

59

http://localhost:8080/Hello/rest/bonjour

Testing the application with a client
•JAX-RS provides elements to write a Client application
to consume a REST service

• In the same examples.hello package create a new class
ClientApp.java

• You can download it

•Run it as a Java Application and analyse the results

60

Testing the application with a client

61

Testing the application with a client

62

How to build the ClientApps

• Create an Instance of a Client

• Once you have the Client instance, you can create a
WebTarget using the URI of the targeted web resource.

• Using WebTarget, you can define a path to a specific resource

•Build an HTTP Request Invocation
• An invocation builder instance is created with one of the
WebTarget.request() methods

• Analyse the different formats.

• You can also use MediaType.APPLICATION.JSON

63

How to build the ClientApps
•Invoke HTTP Requests

• HTTP GET: Response response =
invocationBuilder.get(XXX.class);

• HTTP POST: Response response
=invocationBuilder.post

(Entity.entity(XXX,MediaType.APPLICATION_JSON);

•XXX is generally the name of the class whose objects are
to get or to send

64

Passing parameters in the GET query
•At the server side, add

@Path("/mme_m/{nom}")

@GET

@Produces(MediaType.TEXT_PLAIN)

public String sayPlainTextHello2(@PathParam("nom") String nom) {

return "bonjour " + nom;

}

•Test on a browser

65

Passing parameters in the GET query
•At the client side, add

WebTarget helloTargetParam =
webTarget.path("rest").path("bonjour").path("mme_m").path("cecilia");

Invocation.Builder invocationBuilder4 =
helloTargetParam.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder4.get();

System.out.println(response.getStatus());

System.out.println(response.readEntity(String.class));

System.out.println();

66

Passing parameters in the GET query
•At the client side, add

WebTarget helloTargetParam =
webTarget.path("rest").path("bonjour").path("mme_m").path("cecilia");

Invocation.Builder invocationBuilder4 =
helloTargetParam.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder4.get();

System.out.println(response.getStatus());

System.out.println(response.readEntity(String.class));

System.out.println();

67

Passing parameters in the ?param=value part

•At the server side,
add
@Path("/other")

@GET

@Produces(MediaType.TEXT_PLAIN)

public String sayPlainTextHello3(@DefaultValue("inconnu")

@QueryParam("prenom") String pre) {

return "bonjour " + pre;

}

68

Passing parameters in the ?param=value part

•At the server side,
add
@Path("/other")

@GET

@Produces(MediaType.TEXT_PLAIN)

public String sayPlainTextHello3(@DefaultValue("inconnu")

@QueryParam("prenom") String

prenom) {

return "bonjour " + prenom;

}

69

Passing parameters in the ?param=value part

•At the client side, add
WebTarget helloTargetParam2 =

webTarget.path("rest").path("bonjour").path("other");

WebTarget helloWithparamTarget =

helloTargetParam2.queryParam("prenom", "cecilia");

Invocation.Builder invocationBuilder5 =

helloWithparamTarget.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder5.get();

…

Invocation.Builder invocationBuilder6 =

helloTargetParam2.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder6.get();

…

70

Passing parameters in the ?param=value part

•At the client side, add
WebTarget helloTargetParam2 =

webTarget.path("rest").path("bonjour").path("other");

WebTarget helloWithparamTarget =

helloTargetParam2.queryParam("prenom", "cecilia");

Invocation.Builder invocationBuilder5 =

helloWithparamTarget.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder5.get();

…

Invocation.Builder invocationBuilder6 =

helloTargetParam2.request(MediaType.TEXT_PLAIN_TYPE);

response = invocationBuilder6.get();

…

71

Summarizing: @Path

@Path("/bonjour")

public class Hello {

@Path("/other")

@GET

public String sayPlainTextHello3(…

…

@Path("/mme_m/{nom}")

@GET

public String sayPlainTextHello2 ...

72

Summarizing: @PathParam

@Path("/mme_m/{nom}")

@GET

public String sayPlainTextHello2(@PathParam("nom")

String nom) {

...

Attention:
The types that can be passed as parameters are
1. Primitive types
2. String
3. Type/Class having a constructor with an only argument of type String
4. Type/Class having a static method ValueOf(String)
5. Among other more complex combinations ..

https://docs.oracle.com/javaee/7/api/javax/ws/rs/PathParam.html
73

https://docs.oracle.com/javaee/7/api/javax/ws/rs/PathParam.html

Summarizing: @QueryParam @DefaultValue

@Path("/other")

@GET

public StringsayPlainTextHello3(@DefaultValue("inconnu")

@QueryParam("prenom") String prenom)

{

74

Summarizing: @Produces @Consumes

@GET

@Produces(MediaType.TEXT_PLAIN)

public String sayPlainTextHello() {

...

75

Summarizing: @GET @POST @PUT @DELETE

@GET

public String sayPlainTextHello() {

...

76

Up to you!!!
•Redo the exercise done with SOAP web services.

•Develop a REST web service to calculate the body mass index of
a client. The body mass index is calculated as the ratio
between the weight of the person (in kg) and the square of his
or her height (in m).

•Your server, therefore, should have a method that receives two
parameters.

77

Passing objects as parameters
•JAX-RS allows to pass objects of type other than those
mentioned above, by relying on the
marshalling/unmarshalling provided by JAXB (Java
Architecture for XML Binding): serialization of a JAVA
object into an XML document and inversely

•JAX-RS is also able to serialize/deserialize in JSON.

•JAXB provides annotations that, when applied to a POJO,
simplify the transformation.

• @XmlRootElement defines the root of the XML document generated from
this class.

78

An more complex example
• Let us create a web service called User Management with
the following functionalities

Service HTTP Method URI Operation Operation Type

1 GET /UserService/users Get list of users Read Only

2 GET /UserService/users/1 Get User with Id 1 Read Only

3 PUT /UserService/users/2 Update User with Id 2 Idempotent

4 POST /UserService/users/2 Create User with Id 2 N/A

5 DELETE /UserService/users/1 Delete User with Id 1 Idempotent

79

Implementing service 1
• Organize a new Eclipse project, with a package named
examples.simple

•You will need these 3 classes (that you can download)
• User.java ← This is the root resource class, as already discussed
(slide 43)

• UserDao.java ←This class manages the file where the users will be
stored

• UserService.java ← This is the “real” server class

• Remember to edit the web.xml file to update the package
name

80

Root resource class

Automatic serialization to use structured objects

81

82

83

Up to you!!!
•Create a client to consume this service 1

•Update the server to implement service 2 (get the user
with ID 1 in users.dat)

•Create a client to consume service 2

84

Implementing services 4 and 5
• You will need to update UserDao.java and UserService.java

• In UserDao.java, add methods to add and to delete a user.

85

Implementing services 4 and 5
• You will need to update UserDao.java and UserService.java

• In UserDao.java, add methods to add and to delete a user.

public int addUser(User pUser){

List<User> userList = getAllUsers();

boolean userExists = false;

for(User user: userList){

if(user.getId() == pUser.getId()){

userExists = true;

break;

}

}

if(!userExists){

userList.add(pUser);

saveUserList(userList);

return 1;

}

return 0;

}

public int deleteUser(int id){

List<User> userList = getAllUsers();

for(User user: userList){

if(user.getId() == id){

int index = userList.indexOf(user);

userList.remove(index);

saveUserList(userList);

return 1;

}

}

return 0;

}

86

Implementing services 4 and 5
• In UserService.java, you need to add the services. First of
all, after the initialisation of the UserDao, add 2 constants
private static final String

SUCCESS_RESULT="<result>success</result>";

private static final String

FAILURE_RESULT="<result>failure</result>";

87

Implementing services 4 and 5
• In UserService.java, you need to add the services. First of
all, after the initialisation of the UserDao, add 2 constants
private static final String

SUCCESS_RESULT="<result>success</result>";

private static final String

FAILURE_RESULT="<result>failure</result>";

@POST

@Path("/users")

@Produces(MediaType.APPLICATION_XML)

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

public String createUser(@FormParam("id") int

id,

@FormParam("name") String name,

@FormParam("profession") String

profession,

@Context HttpServletResponse

servletResponse) throws IOException{

User user = new User(id, name,

profession);

int result = userDao.addUser(user);

if(result == 1){

return SUCCESS_RESULT;

}

return FAILURE_RESULT;

}

@DELETE

@Path("/users/{userid}")

@Produces(MediaType.APPLICATION_XML)

public String

deleteUser(@PathParam("userid") int

userid){

int result =

userDao.deleteUser(userid);

if(result == 1){

return SUCCESS_RESULT;

}

return FAILURE_RESULT;

}

88

Implementing services 4 and 5
• In UserService.java, you need to add the services. First of
all, after the initialisation of the UserDao, add 2 constants
private static final String

SUCCESS_RESULT="<result>success</result>";

private static final String

FAILURE_RESULT="<result>failure</result>";

@POST

@Path("/users")

@Produces(MediaType.APPLICATION_XML)

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

public String createUser(@FormParam("id") int

id,

@FormParam("name") String name,

@FormParam("profession") String

profession,

@Context HttpServletResponse

servletResponse) throws IOException{

User user = new User(id, name,

profession);

int result = userDao.addUser(user);

if(result == 1){

return SUCCESS_RESULT;

}

return FAILURE_RESULT;

}

@DELETE

@Path("/users/{userid}")

@Produces(MediaType.APPLICATION_XML)

public String

deleteUser(@PathParam("userid") int

userid){

int result =

userDao.deleteUser(userid);

if(result == 1){

return SUCCESS_RESULT;

}

return FAILURE_RESULT;

}

88

Remark:
MediaType.APPLICATION_FORM_URLENCODED

The parameters will be passed through 'Form' values as key-
value pair. 'Key' should match with the @FormParam
annotation value.

Testing …
• Download and test UserManagementTester.java

• All the code necessary to test all the services is already
there. Analyse it carefully.

89

Testing …
• Download and test UserManagementTester.java

• All the code necessary to test all the services is already
there. Analyse it carefully.

89

Up to you!!!
•Implement the PUT service (service number 3)

• Modify the UserManagementTester.java class to test the
new service you have implemented

•The POST service we have implemented expects arguments
as FORM-URLENCODED. Develop another service for the
POST method, where the arguments are in XML format, so
that you can test it with the RESTClient plug-in for
Firefox

•Test it!!!

93

Some Final Remarks
•The implementation of RESTful services avoids the
creation of many Java servlets for ordinary web form
actions

•Implementation in JAX-RS with Jersey is almost
transparent

•However, care must be taken to properly manage the
idempotence of requests in order to avoid duplicates or
copies.

94

