Informatigue Repartie
Chapitre 4 : SOAP

Cecilia Zanni-Merk
cecilia.zanni-merk@insa-rouen.fr
Bureau BO B R1 04

References

* Architectures réparties en Java
Annick Fron
ISBN 9782100738700
Ed Dunod

 Java Web Services Up and Running
Martin Kalin
ISBN 9780596521127
O’Reilly

References in the Web

e https://www.w3schools.com/xml/xml soap.asp

* http://apiacoa.org/publications/teaching/webservices/SOAP.pdf

* http://mbaron.developpez.com/cours/soa/soap/
* https://members.loria.fr/OPerrin/LProCisii/fichiers/SOAP.pdf

https://www.w3schools.com/xml/xml_soap.asp
http://apiacoa.org/publications/teaching/webservices/SOAP.pdf
http://mbaron.developpez.com/cours/soa/soap/
https://members.loria.fr/OPerrin/LProCisii/fichiers/SOAP.pdf

Introduction

Motivation

* Communication between applications on the Internet
* B to B : carry out transactions or data exchanges between companies
(business to business)

 Communicate large amounts of data in loose coupling, with minimal
knowledge of the other party and without being able to impose any service

constraints. .
| . CLIENTS
Agence de Voyage I \ ”‘f‘r v \X
(plateforme technique 1) A
E e 2 X ~~ . Application Web
N T~ Tarifs
Compagnies aériennes Réservations T~ .

(plateforme technique 2)

Compagnies d’assurance
(plateforme technique 5)

Promotions

Compagnies de location de voitures \
(plateforme technique 3) Chaine hételiere

(plateforme technique 4)

What is a Web Service ?

* Informal definition
* |tis a kind of webified application, that is, an application typically delivered

over HTTP.
* AWS is thus a distributed application whose components can be deployed

and executed on distinct devices

* Formal definition (from the W3C)

* A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in @ machine-processable format. Other systems interact with the Web
service in a manner prescribed by its description using messages, typically
conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards.
https://www.w3.org/TR/ws-arch/#whatis

https://www.w3.org/TR/ws-arch/#whatis

Types of Web Services

° TWO types Service client SOAP-based service
« SOAP-based R
* REST-based kil S L

* SOAP-based WS
* |nitially, Simple Object Access Protocol
* Now, Service Oriented Architecture (SOA) Protocol
* For now, SOAP is just an XML dialect in which documents are messages

* |n a typical SOAP-based web service, a client transparently sends a SOAP
document as a request to a web service, which transparently returns another
SOAP document as a response.

Types of Web Services

e REST-based WS

* Representational State Transfer

* Less standardized than SOAP, REST has few toolkits and “skinny” software
libraries

The REST style is often seen as an antidote to the complexity of SOAP-based
web services.

In a REST-style service, a client might send a standard HTTP request to a web
service and receive an appropriate XML document as a response.

Key Features of WS

* Distinguishing them from other distributed software systems

* Open infrastructure

* Web services are deployed using industry-standard, vendor-independent protocols
such as HTTP and XML, which are ubiquitous and well understood.

* Language transparency

* Web services and their clients can interoperate even if written in different
programming language, that provide libraries, utilities, and even frameworks in
support of web services.

* There should be an intermediary to handle the differences in data types between the
languages ... they are the XML technologies

* Modular design

* Web services are meant to be modular in design so that new services can be
generated through the integration and layering of existing services

Standardization of Web Services

e Several norms
* W3C
* The OASIS consortium (http://www.oasis-open.org)

* Serveral actors
* Microsoft .Net
e Apache : Axis, CXF
e Sun : JAX-WS and Metro
* JBoss/WildFly
e Other open-source implementations

* Interoperability
* The idea is that the services can be used by everybody
* WS-l.org : Web Service Interoperability organization (http://www.ws-i.org)

Why use Web Services?

* Modern software systems are written in a variety of languages. These
software systems will continue to be hosted on a variety of platforms.

 Companies generally have significant investment in legacy software
systems whose functionality is useful and perhaps mission critical

* Additionally, interoperability is not just a long-term challenge but also
a current requirement of production software

* Web services address these issues directly because such services are,
first and foremost, language- and platform-neutral.
* |f a legacy COBOL system is exposed through a web service, the system is

thereby interoperable with service clients written in other programming
languages.

SOAP

Introduction — A first example — A word about WSDL — The hidden SOAP - A richer
example

12

SOAP

* SOAP is an RPC protocol that uses XML to serialize methods and their

arguments, as well as their return values. With SOAP, XML transits
over HTTP

e W3C references

XML (Extensible markup Language)
http://www.w3.org/XML/
http://www.w3.org/XML/Schema

 HTTP (Hypertext Transfer Protocol)
http://www.w3.org/Protocols/

* SOAP (Simple Object Access Protocol)
https://www.w3.org/TR/soapl?2

13

http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/Protocols/
https://www.w3.org/TR/soap12

4
I Services
1 Web
I Informations
I transmises
: SOAP
I -
- déepend de
applications HTTP FTP TFTP I'application
transfére un message
transport ou un flot de données ﬂg;:s;zgteests
entre émetteur et récepteur
) achemine un paquet entre
reseau deux hotes sur des réseaux paquets
interconnectés / \
liaison envoie une suite de bits trames
hvsi entre deux hétes sur Ethernet FDDI bits
physique . e
un méme réseau speécifié

HTTP : HyperText Transfer Protocol : protocole du Web
TFTP, FTP : (Trivial) File Transfer Protocol) : transfert de fichiers
TCP : Transmission Control Protocol : fransport en mode connecte

UDP : User Datagram Protocol : transport en mode non connecté
IP : internet Protocol : Interconnexion de réseaux, routage

Cours Intro aux Réseaux — Olivier Dalle — Université de Nice

14

A first SOAP example

* All the examples can be compiled and deployed using core Java SE
(Java Standard 6 or greater) without any additional software, until
Java version 8.

» Afterwards, an application server (such as Apache Tomcat, is necessary)

 All of the libraries required to compile, execute, and consume web
services are available in core Java, which supports JAX-WS (Java API
for XML-Web Services).

* JAX-WS supports SOAP-based and REST-style services and is
commonly shortened to JWS for Java Web Services.

A note about compilation and execution

 All the development of SOAP web services will be done by hand
during this course, meaning that we will need to use Java version 8

(normally available in the school network)

* Todo so:
1. First, look for the installation folder of Java version 8 in your system.
Normally, itis /opt/Jjre-XXX/

2. Update your PATH environment variable doing export PATH=<the
folder you have found in 1>:SPATHIin aterminal. You should

have something like this:
export PATH=/opt/jre-XYZ/bin/:S$SPATH.

To compileyoudo javac —--release 8 <files to compile>
4. To execute you that normally: java <class to execute>

w

A note about compilation and execution

e Asindicated in the previous slide, we will use Java version 8 to facilitate
the implementation of the source code to develop

o Please install OpenJDK version 8 in your personal laptops

o A step by step tutorial done by an ITI student in 2021 is available on Moodle

e You can also visit https://adoptopenjdk.net/index.html

17

https://adoptopenjdk.net/index.html

A first SOAP example

* Generally, a Java-based web service consists of an interface and an
implementation.

* The interface declares the methods, which are the web service operations.
The interface is called the SE/: Service Endpoint Interface.

* The implementation defines the methods declared in the interface. The
implementation is called the SIB: Service Implementation Bean.

* The SIB can be either a POJO (a Plain Old Java Object) or a Stateless
Session EJB (Enterprise Java Bean).

* For the moment, the SOAP-based web services will be implemented as
POJOs, that is, as instances of regular Java classes.

A first SOAP example

* Implement a web service that returns the current time as either a
string or as the elapsed milliseconds from the Unix epoch, midnight
January 1, 1970 GMT.

* Procedure
1. Develop the SEl and the SIB
2. Implement an application to publish the web service
3. Develop the client to consume the service

The SEl and the SIB

TimeServerjava 3 TimeServerlmpljava 3£
1 backage examples.ts; f/ time server 1 package examples.ts; // time server
2 2
3 import javax.jws.WebService: 3 import java.util.Date;
4 import javax.jws.WebMethod: 4 import javax.jws.WebService;
= import javax.jws.scap.S5CAPBinding; =
[import javax.jws.soap.S0RAPBinding.Style: &
T 7 The EF=sbSsrvice property endpointInterface links the
8 = 8 S5IE (this class) to the S5EI (examples.ts.TimeServer).
9 The annotation EFsebSsrvice signals that this is the 9 Hote that the method implementations are not annotated
10 SETI (Service Endpoint Interface) EF=bM=thod signals 10 as @EW=sbM=thods
11 that each method i=z a service operation 11
12 12
13 he ESC0APEBinding annotation impacts the under-the-hood 13 BWebService (endpointInterface = "examples.ts.TimeServer™)
14 construction of the service contract, the WS5DL 14 public class TimeServerlmpl implements TimeServer {
15 (Wek Services Definition Language) document. Style.RPC 15 public S5tring getTimefsString() { retorn new Date () .toStringi() s
1& # gimplifies the contract and makes deployment sasier. 1& public long getTimeisElapsed() { return new Date () .getTime ()
17 ahli 17 }
18 18
19 EWebService
20 BSCAPBinding (3tyle = Style.RPC) /F more on this later
21 public interface TimeServer {
22 EWebMethod String getTimelsString()
23 EWebMethod long getTimelLsElapsed()
24 }
25

20

JWS annotations

* The API for the Web services annotationsis: javax. jws
* @WebService
* @SOAPBinding
* @WebParam
* @WebResult

* Java 6 provides a mini web server with the class
Endpoint.publish ()

A word about publication ...

* Once the SEl and SIB have been compiled, the web service is ready to
be published.

* To compile the SEl and the SIB, from the working directory, that has
the examples folder inside, do

©)

% javac —--release 8./examples/ts/*.java

* In full production mode, a Java Application Server such as BEA
WebLogic, GlassFish, JBoss, or WebSphere might be used; but in
development and even light production mode, a simple Java
application can be used.

The publisher application

TimeServerPublisher.java 3

1

0 =] M N s La B

o

11
12
13
14
15
le
17
18
19
20
21
22
23
24
25
26
27

a8

package exanples.ts;

import javax.xml.ws.Endpoint;
EI,."I'"
This application puklishes the wek service whose 5IB is exanples.ts.TimeServerImpl. For now, the
serxrvice is published at network address 127.0.0.1., * which i=s localhost, and at port number 9576,
* a5 this port iz likely availabkle on any desktop machine. The *# publication path is fts, an arbitrary name.

The Endpoint class has an overloaded publish method. In this two—-argument wversion, the first argument is the
publication URL as a string and the second argument is an instance of the service 5IB, in this case
exanples.ts. TimeServerImpl.

The application runs indefinitely, awaiting service requests. It needs| to be terminated at the command prompt
with control-C * or the equivalent.

IL"
(Wi}

Cnce the applicatation is started, open a browser to the TURL * http://127.0.0.1:9876/ts?wsadl
“* to wview the service contract, the WSDL document. This iz an sasy test to determine whether the service has
¥ deployed successfully. If the test succeeds, a client then can he|execated against the service.

ﬁpﬂblic class TimeServerPublisher |

lpoblic =tatic volid main(String[] args) {

/f lst argument is the publication URL

F/P 2nd argument iz an S5IB instance
Endpoint.publish("http://127.0.0.L:227e/t=", new TimeServerImpl({));
mk

}

Ao

The publisher application

TimeServerPublisher.java 3

[

package exanples.ts;

import javax.xml.ws.Endpoint;
B,/

o — - = - = T L, -— o - = %= T s - - T
S & 1icatlio ablisnes the e SEeIV1ICE S 10 15 cXamples.Ce.limeoeIverimpl. e . Lhe
o T & = I (I, - ST o Tor—]] e oy 1 " = - y S R - T == T o Ep—— — I —— o T = = - =
service is published at network address 127.0.0.1., Wnich 15 l1ocallostT, and at poItT number o o
- =T . - TS =T 1r =tr=49 7 =2k 1 = - e S T — T Ny 3 S T [S — s = = T E. s J— . =
as this port i=s likely availakle on any desktop machine. The pulication path 15 JTsS, an arbltrar 1ame

wom =] MmN e L

= i

publication U1 @ Compile from the working directory as you did before
for the SEI and the SIB
e Execute

©)

% Java examples.ts.TimeServerPublisher

[S e S R S e
[T S T R % I O T N
(] N =]
= (SO
] [
1 i)
ot [y}
¥ [m]
T i
ot |
A | | i
i Al
| 3
I

[
=]
1
d
!
it
!
A

L w L

[
(]
fu
1

I '}
[
1

=N
]
L

0
i

[RS8 R
= &
T

ﬁpmblic class TimeServerPublisher {
lpoblic =tatic volid main(String[] args) {
'/ 13t argument is the publication URL

[R5 8
L k)

Foomy

Z2nd argument is an 5IB instance

[[
[I

Endpoint ..publish | y Diew TimeServerImpl()) !

SN 8
=1 M

)
n
T

4D

Testing the Web Service with a Browser

* We can test the deployed service by opening a browser and viewing
the WSDL (Web Service Definition Language) document, which is an
automatically generated service contract.

* The browser is opened to a URL that has two parts. The first part is
the URL published in the Java TimeServerPublisher
application: http://127.0.0.1:9876/ts.

* Appended to this URL is the query string ?wsd/
* The result is http://127.0.0.1:9876/ts?wsdl.

Testing the Web Service with a Browser

Testing the

127.0.0.1:9876/ts?wsdl x

<« c @ ® 127.0.0.1:987

& project @ Bievenue chez Arpege) Alaune) Flux d'événements Dr...

—er__
-
—eroo

Generated by JAXK-WS RI (http://Jjax-ws.java.

-3

Published by JAX-WS RI (http://jax-vs.java.

net}).

ne

n=t).

RI's wversien

RI's version

A CMRS - Direction Euro...

is JAK-WS

is JAX-WS

— <definitions targetNamespace="http://ts examples/" name="TimeServerImplService =

<types/>
<message name="getTimeAsElapsed”/=
—<message name="getimeAsElapsedResponse">
<part name="return" type="xsd:long"/>
</message=
<message name="getTimeAsString"/>
—<message name="getTimeAsStringResponse"=>
<part name="return" type="xsd:string" />
</message=
—<portType name="TimeServer">
— <operation name="getTimeAsElapsed">

e @ H

Lt Les plus visités 0 Bring! Web @ Débuter avec Firefox @ Débuter avec Firefox @ Speedtest.net by Ook

RI

Svn-revision#bEL61 96 2b80=8460065a4c2f4=30s065b245e51..

svn-revision#Ef6196f2b90=9460066adc2f4de302066b24b=h1e.

<input wsam:Action="http://'ts.examples/ TimeServer/getTimeAsElapsedRequest” message="tns:getTineAsElapsed” />
<putput wsam:Action="http:/'ts.examples/ TimeServer/getTimeAsElapsedResponse” message="tns:getTuneAsElapsedResponse” />

</operation>
— <operation name="getTimeAsString">

<input wsam:Action="http://ts examples/ TimeServer/get TimeAsStringRequest” message="tns:getTimeAsString"/~
<putput wsam:Action="http://ts examples/TimeServer/getTimeAsStringResponse” message="tns getTimeAsStringResponse” />

</operation=
</portType=

—<binding name="TimeServerImplPortBinding" type="tns: TimeServer"=
=<soap:binding transport="http://schemas xmlsoap org/soap/http” style="rpc"/>

— <pperation name="getTimeAsElapsed">
<spap:operation soapAction=""/>
—<input>

<soap:body use="literal" namespace="http://ts examples/>

</input>
— <output>

<soap:body use="literal" namespace="http://ts.examples/"/>

</output=
</operation>
— <pperation name="getTimeAsString">
<soap:operation soapAction=""/>
—<input>

<soap:body use="literal" namespace="http://ts examples/>

</input>
— <output=

<soap:body use="literal" namespace="http://ts.examples/"/>

</output=
</operation>
</binding>

A word about WSDL ...

e Web services interfaces are described in WSDL.
* https://www.w3.org/TR/wsdl20/

* This description is sufficient to use the service without knowing its
implementation.

* The purpose is to enable an application to communicate on the
Internet with the service it needs and to exchange data with it

* The implementation infrastructure is heavier than for RMI (we need a web
server); but it is essential if we want to pass information through a firewall.

https://www.w3.org/TR/wsdl20/

A word about WSDL ...

* Two sections deserve a quick look

* The portType section groups the operations that the web service
delivers, in this case the operations getTimeAsString and
getTimeAsElapsed, which are the two Java methods declared in
the SEl and implemented in the SIB.

— <portType name="TimeServer">
— <pperation name="getTimeAsString >
<input wsam:Action="http-//'ts examples/ TimeServer/getTimeAsStringRequest” message="tns getTimeAsString” /=
<putput wsam:Action="http://ts examples/ TimeServer/getTimeAsStringResponse” message="tns getTimeAsStringBesponse” /=
</operation>
—<pperation name="getimeAsElapsed"=
<input wsam:Action="http://ts examples TimeServer/getTimeAsElapsedRequest” message="tns:getTimeAsElapsed”/ >
<putput wsam:Action="http://ts examples TimeServer/getTimeAsElapsedResponse” message="tns:getTimeAsElapsedResponse” /=
</operation=
</portType=

A word about WSDL ...

* The other WSDL section of interest is the service section, and in

particular the service location, in this case the URL
http://localhost:9876/ts.

* The URL is called the service endpoint and it informs clients about
where the service can be accessed

— <service name— [imeServerlmplService"=
— <port name="TimeServerImplPort” binding="tns: TimeServerlmplPortBinding">
<soap:address location="http://localhost: 98 76/ts" /=
</port=
</service>=

28

A word about WSDL ...

* The WSDL document is useful for both creating and executing clients
against a web service.

* The core Java utility for generating client-support code from a WSDL
document is called wsimport.

e At runtime, a client can consume the WSDL document associated
with a web service in order to get critical information about the data
types associated with the operations bundled in the service.

* For example, a client could determine from our first WSDL that the operation
getTimeAsElapsed returns an integer and expects no arguments.

A word about WSDL ...

* The WSDL document is useful for both creating and executing clients
against a web service.

* The core Java utility for generating client-support code from a WSDL
document is called wsimport.

e At runtime, a client can consume the WSDL document associated
with a web service in order to get critical information about the data
types associated with the operations bundled in the service.

* For example, a client could determine from our first WSDL that the operation
getTimeAsElapsed returns an integer and expects no arguments.

e Where in the WSDL document? To do later!

A Java client for the Time server

TimeClientjava ¥

1 package examples.ts;
2
3 import javax.xml.namespace.Name;
4 import javax.xml.ws.Service;
= import java.net.URL;
&
7 Eclass TimeClient {
8 = public static void main(String args[1) throws Exception {
9 URL url = new URL(Vo
10
11 Cualified name of the service:
12 1=zt arg is the service URI
13 2nd is the service name published in the W5SDL
14 OName gname = new QOName | R |
15
16 Create, in effect, a factory for the service.
17 Service service = Service.create(url, gqname);
18
15 Extract the endpoint interface, the service "port®.
20 TimeServer eif = service.getPort (TimeServer.class);
21
22 System.out.println(eif.getTimel=sString ()) -
23 System.out.println{eif.getTimelksElapsed())
249 -)
25

A Java client for the Time server

TimeClientjava ¥

1 package examples.ts; — <definitions targetNamespace="http://ts examples" name="TimeServerlmplService"=
- ! . <types/>

3 import javax.xml.namespace.QName; " . -

4 import javax.xml.ws.Service; “message name= gEtTﬂn'EASSHmE =

5 import java.net.URL: — <message name= get[imeAsStringResponse™>
6 <part name="return" type="xsd:string"/>

7 Eulass TimeClient { </message>

g = public static void main(S5tring args[1) throws Exception { <message name="getTimeAsElapsed”/=

9 URL url = mew URL("http: localhos=st: 98376/ t3?wsdl™) ; — <message name="getTﬂneAsElapsedRESPDﬂSE"}
10 S)] <part name="return" type="xsd:long"/>=

11 Cualified name of the service: </message>

12 1=zt arg is the service URI)

13 2nd is the service name published in the W5SDL

14 OName gname = new QName ("http: ts.examples/", "TimeServerImplService™):

1L

16 Create, in effect, a factory for the service.

17 Service service = Service.create(url, gqname);

18

15 Extract the endpoint interface, the service "port®.

20 TimeServer eif = service.getPort (TimeServer.class);

21

22 System.out.println(eif.getTimel=sString ()) -

23 System.out.println{eif.getTimelksElapsed())

24 - I

25

30

A Java client for the Time server

TimeClientjava ¥

1 package examples.ts; — <definitions targetNamespace="http://ts examples" name="TimeServerlmplService"=
=] . {t}-'pesl."}

3 import javax.xml.namespace.Name; " . cns

= import javax.xml.ws.Service; “message name= gEtT]_In'EASSH%ng =

5 import java.net.URL: — <message name= get[imeAsStringResponse™>
6 <part name="return" type="xsd:string"/>

7 Eulass TimeClient | </message>

g = public static void main(String args[1) throws Exception { <message name="getTimeAsElapsed”/=

s URL url = new URL({)i — <message name="getTimeAsElapsedResponse">
10 _ <part name="return" type="xsd:long"/>=

11 of the service)

1z service URI </message=

13 rvice name published in the WSDL

14 OName gname = new QOName | R |

1L

16 Create, in effect, a factory for the service.

17 Service service = Service.create(url, gqname);

18

15 Extract the endpoint interface, the service "port®.

20 TimeServer eif = service.getPort (TimeServer.class) ;

21

22 System.out.println(eif.getTimel=sString ()) -

23 System.out.println{eif.getTimelksElapsed())

24 - I

25 B Invite de commandes — O ot

INSA Rouen'2817-2818\Informatique Répartie’\chapitre 4 - S0AP>java ex: es.ts.TimeClient

A Java client for the Time server

* The Java client uses the URL with a query string
(http://localhost:9876/ts?wsdl) and explicitly creates an XML
qualified name for the service, which has the syntax
namespace URI:local name.

* The Javaclass java.xml.namespace.QName represents an XML-
qualified name.

* In this example, the namespace URI is provided in the WSDL, and the local
name is the SIB class name TimeServerImpl withthe word Service
appended.

 The local name occurs in the service section, the last section of the WSDL document.

A Java client for the Time server

* Once the URL and QName objects have been constructed and the
Service.create method has been invoked, we have the statement of
interest:

TimeServer port =
service.getPort (TimeServer.class)

e Recall that, in the WSDL document, the portType section describes, in
the style of an interface, the operations included in the web service.

* The getPort method returns a reference to a Java object that can
invoke the portType operations.

* The port object reference is of type examples.ts.TimeServer,
which is the SEI type.

32

The hidden SOAP

* In SOAP-based web services, a client typically makes a remote

procedure call against the service by invoking one of the web service
operations.

 As mentioned earlier, this back and forth between the client and
service is the request/response message exchange pattern, and the
SOAP messages exchanged in this pattern allow the web service and a
consumer to be programmed in different languages.

* Typically, a client generates an HTTP request, which is itself a
formatted message whose body is a SOAP message.

exemnpleRequeteHTTPxml 3

1

The hidden SOAP

0 =1 & s L R

2

* The SOAP document or i

11
12

or message is commonly -

14

called SOAP envelope. 15

16
17

* In this SOAP envelope, the 8

20

SOAP body contains a single -
element whose local name

is getTimeAsString, which is the name of the web service

|

POST http://127.0.0.1:9876/ts HITES 1.1
Locept: text/xml

Bocept: multipart/*

Locept: application/soap

User-Agent: Javaxxx

Content-Length: 434

Content-Type: text/xml; charset=utf-8
SCAPAction: "

<?xml version="1.0" encoding="UTLF-2"7>
<soap:Envelope

zoap:encodingsStyle="http:// schemas. E G I
xming:gcap="http://schemas.xmlsocap.oxrg/soap/envelope,/"

xmlns: scapenc="http://schemas.xmlsoap.org/ socap/ encodingys "
xmlns :xsi="http://www.w3.0rg/2001/XMLSchema—-instance™

xmlns:tns="http://ts.examples/ /"
xmlns i xsd ="http://fwww.w3.o0rg/ 2001/ XML5chema™
<soap:Body>
<tns:getTimeAsString x=si:nil="tru=" fﬂ
</=zoap:Body>
< /=oap:Envelope>

operation that the client wants to invoke.

34

FFFFFFFFFFF

The hidden SOAP

* On the web service side, the underlying Java libraries process the
HTTP request, extract the SOAP envelope, determine the identity of
the requested service operation, invoke the corresponding Java
method exempleReponseHTTPaxml 3

. . 1 HTTE/1.1l 200 OK
getTlmeAS Strll’lg’, 2 Content-Length: 323
3 Content-Type: text/xml; charset=utf-38
and then generate the - Client-Date: Sat, 24 Feb 2018 02:12:54 GMT
. = Client-FPeer: 127.0.0.1:587¢6
apprOprlate SOAP L Client-Response-Hum: 1
7
message tO Ca rry the i <?xml wversion="1.0" 7>
) 2 <soapenv: Envelope
mEthOd S retU rn 10 xmlns: =oapenv="http://schenas.xmlscap.org/ scap/envelope/;"
11 xmlng i xsd="http://wwWww.Ww3.org/ 2001/ XMLSchema™>
Value baCk tO the 12 <soapenv:Body>
. 13 <an=:getTimeA=sS5tringResponse xmlns:ans="http://ts.exanples,/ ">
client. 14 <return>Sat Feb 24 14:12:54 CST 2018</return>
15 {fans:getTimehsStringRespunseﬂ
16 < fsoapenv:Body>

17 </soapenv:Envelope>

The hidden SOAP

* Once again, the SOAP envelope is the body of an HTTP message, in
this case the HTTP response to the client.

* The HTTP start line now contains the status code as the integer 200 and the
corresponding text OK, which signal that the client request was handled
successfully.

* The SOAP envelope in the HTTP response’s body contains the current
time as a string named return.

* The Java SOAP library on the client’s side extracts the SOAP envelope
from the HTTP response and, because of information in the WSDL
document, expects the desired return value from the web service
operation to occur in the XML return element.

The SOAP envelope

SOAP Header

* The SOAP envelope is a wrapper element that identifies
the subordinate elements as a SOAP message and
provides namespace declarations. Namespaces provide
semantic context for elements within the SOAP body.

SOAP Body

* The SOAP header is an optional element that can contain metadata,

such as authentication information, localization support, and delivery
routes.

* The SOAP body contains the payload of the message, which is either
the web service request or web service response. The response can
be a processing error, which is called a SOAP fault.

Error management

e <soap:fault> contained in the body.

* The error element is optional and appears only in response messages and
only once.

* Four optional sub-tags
* faultcode
 faultstring
* faultactor
* detail

* Four types of error codes
soap:Server

soap:Client
soap:VersionMismatch
soap:MustUnderstand

A richer example

* The operations in the TimeServer service take no arguments and
return simple types, a string and an integer.

* The Teams web service is a richer example with several differences

* The Teams service is implemented as a single Java class rather than as a
separate SEl and SIB. This is done simply to illustrate the possibility.

* A more important difference is in the return types of the two Teams
operations.

* The operation getTeam is parameterized and returns an object of the programmer-
defined type Team, which is a list of P1ayer instances, another programmer-defined
type.

* The operation getTeams returns a List<Team>, thatis,a Java Collection.

A richer example

Teamns,java 3 TeamsUtility.java 3 Playerjava 3 Team.java 3 TeamsPublisherjava 3

Woe =] o N oW L B

R S = = R A S
O S O T B T, M T BT S PR Ry S

=

package examples.team;

import java.util.Lis=st:
import javax.jws.WebService;
import Jjavax.jws.WebMethod:

EWebService
public class Teams |
private TeamsUtility utils;

public Teams () {
utils = new TeamsUtility ()
atils.make_test_teams(];

EWebMethod
public Team getTeam(String name) { retuorn utils.getTeamname) ;

EWebMethod
bublic List<Team> getTeams() { retorn utils.getTeams () :

57

A richer example

* The utility class TeamsUtility generates the data. In a production
environment, this utility might retrieve a team or list of teams from a
database.

* To keep this example simple, the utility instead creates the teams and
their players on the fly.

TeamsUtility java 3 Teamsjava ¥ Playerjava 3 Teamjava 3 TeamsPublisherjava 3

= import java.util.Arraylist:
[import java.util.Map:
N 7 import java.util.HashMap:
8
A rl C h e r exa I I I p | e 4 Hpoblic class TeamsUtility {
10 private Map<String, Team> team map;
11
1z H public TeamsUtility () {
13 team map = new HashMap<String, Team:>();
14 -]
15
16 public Team getTeam(String name) { retorn team map.get (names);
17
18 [public List<Team> getTeams () {
18 List«<Team> list = new ArrayList<Team> () ;
20 Sec<3tring> keys = team map.keySet();
21 for (String key : kevys)
22 list.add (team map.get (key))
23 retorn list:;
249 -)
25
26 = public void make test teams () {
27 List<Team> teams = new ArraylList<Team> () ;
28
29 Player chico = new Player ("Leonazd Mazx", ' ica™);
30 Player groucho = new Player (" Julius "Er ho™)
31 Player harpo = new Player ("Zdolph Marx", "Harpo™):
32
33 Lizt<Player> mb = new ArrayList<Player>():
34 mb. add (chico) ; mb.add{groucho) ; mbk.add (harpo)
35
36 Team marx brothers = new Team("lMarx Erothers", mb);
37 teams.add (marx brothers);
38 Store_teams (teams);
35 -
40
41 = private void store_teams (List<Team> teams) |
42 for (Team team : teams)
43 team map.put (team.getMames (), team):
a4 -

Publishing the service and writing the client

e Recall that the SEl for the TimeServer service contains the
annotation:
@SOAPBinding (style = Style.RPC)

* This annotation requires that the service use only very simple types
such as string and integer.

* By contrast, the Teams service uses richer data types, which means
that Style.DOCUMENT, the default, should replace Style.RPC.

* The document style requires more setup, to be explained later

Publishing the service and writing the client

* The steps to have the service deployed and a sample client written
quickly are:

1. The source files are compiled in the usual way. From the working
directory, which has examples as a subdirectory, the command is:
% jJavac —--release 8 examples/team/*.java
In addition to the @WebService-annotated Teams class, the
examples/team directory contains the Team, Plaver,
TeamsUtility,and TeamsPublisher classes, that you will

find in Moodle

Publishing the service and writing the client

2. Inthe working directory, invoke the wsgen utility, which comes with
core Java 6:
% wsgen —-cp . examples.team.Teams

This utility generates various artifacts; that is, Java types needed by the

method Endpoint.publish to generate the service’s WSDL.
3. Execute the TeamsPublisher application.

4. For preparing the development of the client, in its working directory,

invoke the wsimport utility, which also comes with core Java 6:
% wsimport -p teamsC -keep http://localhost:8888/teams?wsdl

5. Write the client

http://localhost:8888/teams?wsdl

The client

TeamClientjava 3

1 package teamsC:

2

3 import teamsC.TeamsService;

o1 import teamsC.Teams;

5 import teamsC.Team;

& import teamsC.Plaver:

7 import java.util.List;

8

9 [Hpublic class TeamClient {

10

11 = public static volid main(String[1 args) {

12 TeamsService service = new TeamsServicel():

13 Teams port = service.getTeamsPort ()

14 List«<Team> teams = port.getTeams|() :

15 ﬁ for (Team team : teams)

le — System.out.println("Team name: " + team.getName () + " (zoster count:
17 B team.getRosterCount () +
18 for (Player player : team.getPlavers())
15 System.out.println(" Flaver: " + plaver.getNickname());
20 B]
21 B
22

23 =

ent INSA Rouen’2817-2818)

. [:."._ o ."._: =T 3 .. ."._' r .. r
| h e Cl ‘E.arn name: Abbott and Costello (roster count: 2)
: Bud

Player: Lou
fTeam name: Burns and Allen (roster count: 2)

TeamClientjava 3

[

package teamsC:

® Brothers (roster count: 3)

i

3 import teamsC.TeamsS:|ji

o1 import teamsC.Teams;

5 import teamsC.Team;

& import teamsC.Plaver:

7 import java.util.List;

9 [Hpublic class TeamClient
10
11 = public static void main(String[] args)
12 TeamsService service = new TeamsServicel():
13 Teams port = service.getTeamsPort ()
14 List«<Team> teams = port.getTeams|() :
15 ﬁ for (Team team : tCeams)
le — System.out.println| + team.getMHame () + +
17 - team.getRosterCount () +)2
18 for (Player player : team.getPlavers())
15 System.out.println| + player.getNickname ()) ;
20 -
21 B
22
23 =

Some final remarks

* Developing a web service with JAX-WS requires several steps:
* Code the class that encapsulates the service
* Compile the class

e Use the wsgen command to generate the files required for deployment (schemas,
WSDL, classes, ...)

* To define an endpoint with JAX-WS, there are several constraints :

* The class that encapsulates the endpoint must be public, not static, not
final, not abstract and be annotated with @WebService

It must have a default constructor (without parameters)
It is recommended to explicitly define the SEl interface

Methods exposed by the web service must be public, not static, not final
and annotated with @WebMethod

The parameter and return value types of these methods must be supported by JAXB

WSDL

A few recalls

* Let’s see again the code of the client against the TimeServer service

URL url = new URL("http://localhost:9876/ts?wsdl");
OName gname = new QName ("http://ts.examples/", "TimeServerImplService");
Service service = Service.create(url, dgname);

* The client invokes the Service.create method with two arguments:

* a URL, which provides the endpoint at which the service can be accessed, and

e an XML-qualified name (a Java QName), which in turn consists of the service’s local
name (in this case, TimeServerImplService) and a namespace identifier (in
this case, the URI http://ts.examples/).

location
Method where resource resides

defines how to access resource resource

A few recalls 1 e

— v
http://thinkzarahatke.com/author/amty.html#posts

— B

URI

* Let’s see again the code of the client against the TimeServer service

URL url = new URL("http://localhost:9876/ts?wsdl");
OName gname = new QName ("http://ts.examples/", "TimeServerImplService");
Service service = Service.create(url, dgname);

* The client invokes the Service.create method with two arguments:

* a URL, which provides the endpoint at which the service can be accessed, and

e an XML-qualified name (a Java QName), which in turn consists of the service’s local
name (in this case, TimeServerImplService) and a namespace identifier (in
this case, the URI http://ts.examples/).

49

Generating Client-Support Code from a WSDL

* As seen before, the use of wsimport can ease the writing of a client
to consume a SOAP web service

* Let’s analyse in detail what happens

e After the examples.ts.TimeServerPublisher application

has been started, the command:
% wsimport -keep -p client http://localhost:9876/ts?wsdl

generates two source and two compiled files in the subdirectory
client.

Generating Client-Support Code from a WSDL

TimeServer.java #&

1 package client:

2

3 import javax.jws.WebMethod:;

4 import javax.jws.WebResult:

S import javax.jws.WebService;

o import javax.jws.soap.SC0APBIinding:

7

8 EWebService (name = , LargetHamespace =)
g

10 @SOAPBinding (style = S50APBinding.Style.RFPC)
11 Hpublic interface TimeEerved {

1z EWebMethod

13 EWebResult (partlame =)

14 public String getTimehAsString():

15

16 EWebMethod

17 EWekbEResult (partHame =)

18 public long getTimefsElap=sed() !

15

20 -

51

Generating Client-Support Code from a WSDL

TimeServer.java #&

1 package client:

2

3 import javax.jws.WebMethod:;

4 import javax.jws.WebResult:

S import javax.jws.WebService;

o import javax.jws.soap.SC0APBIinding:

7

8 EWebService (name = , LargetHamespace =)
g

10 @SOAPBinding (style = S50APBinding.Style.RFPC)
11 Hpublic interface TimeEerved {

1z EWebMethod

13 EWebResult (partlame =)

14 public String getTimehAsString():

15

16 EWebMethod

17 EWekbEResult (partHame =)

18 public long getTimefsElap=sed() !

15

20 -

51

Generating Client-Support Code from a WSDL

TimeServer.java #&

1 package client:

2

3 import javax.jws.WebMethod:;

4 import javax.jws.WebResult:

S import javax.jws.WebService;

o import javax.jws.soap.SC0APBIinding:

7

8 EWebService (name = , LargetHamespace =)
g

10 @SOAPBinding (style = S50APBinding.Style.RFPC)
11 Hpublic interface TimeEerved {

1z EWebMethod

13 EWebResult (partlame =)

14 public String getTimehAsString():

15

16 EWebMethod

17 EWekbEResult (partHame =)

18 public long getTimefsElap=sed() !

15

20 -

51

Generating Client-Support Code from a WSDL

G

TimeServerlmplService,java 3

Wl =1 Mo b L B

(S
oo

12
13
14
15
la
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
35

package client;

import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import javax.xml.ws.WebEndpoint:
import javax.xml.ws.WebServicelClient;

H@WebServiceClient (name = "TimeServerImplSezvice™,
targetlamespace = "LTTp: ts.

376/ te?wadl™)

~wadlLocation = "http: localhost: %
Hpoblic class TimeServerImplService extends Service |

= static {
URL url = mmll;
= try |
url = new URL("http: localbhost:9376/ts?wsdl™) ;
= catch (MalformedURLException e)

e.printStackTrace () :

TIMESEEVERIMPLSERVICE WSDL LOCATICON = wurl;

CCATIOH,

super (TTMESERVERTMPLSERVICE WSDL L

EWebEndpoint (name = "TimeServerImplFort™)
= public TimeServer getTimeServerImplPort ()
return (TimeServer) super.getPort (new QName ("LTtp:

private final static URL TIMESERVERTMPLSERVICE WSDL. LOCATION:

B ﬂ

= public TimeServerImplService (UREL wsdlLocation, QName serviceName)
super (wsdlLocation, serviceMName) ;

E public TimeServerImplService() {

B new QName ("http: t2.examples/", TimeServerImpls

TimeServer.class) ;

JL

52

G

TimeServerlmplService,java 3

Wl =1 Mo b L B

(S
oo

12
13
14
15
la
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
35

=

=

=

package client;

import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import javax.xml.ws.WebEndpoint:
import javax.xml.ws.WebServicelClient;

EWebServiceClient (name = "TimelerverImpliervice",
targetlamespace = "LTTp: ts. c T
wadlLocation = "http: localhost i 9376/ t37?wsadl™)
public class TimeServerlmplService extends Service {

private final static URL TIMESERVERTMPLSERVICE WSDL. LOCATION:

static {
URL url = mmll;
try |
url = new URL("http: localbhost:9376/ts?wsdl™) ;

catch (MalformedURLException e)
e.printStackTIrace () :

TIHESER?ERIHPLSER?ICE_WSDL_LDCETIDN = url:;
\

public TimeServerImplService (UREL wsdlLocation, QName serviceName) {
super (wsdlLocation, serviceMName) ;

public TimeServerImplService() {
super (TIMESERVERIMPLSERVICE W5SDL LOCATION,
new QName ("http: t2.examples/", "TimeServerImplService™));
EWebEndpoint (name = "TimeServerImplFort™)
public TimeServer getTimeServerImplPort ()
return (TimeServer) super.getPort (new QName ("LTtp: ts.examples,/", "TimeServerImpl

TimeServer.class) ;

JL

52

G

TimeServerlmplService,java 3

Wl =1 Mo b L B

(S
oo

12
13
14
15
la
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
35

=

package client;

import
import
import
import
import
import

targetlamespace = "LTTp: ts.

java.net.MalformedURLException;
java.net.URL;

javax.xml .namespace . QName ;
Javax.xml.ws.5ervice;

javax.xml .ws.WebEndpoint;
jJavax.xml.ws.WebServicelClient:

-wadlLocation =

H@WebServiceClient (name = "TimeServerImplSezvice™,

"Thttp://localhost: 98376/ t3Twsdl™)

Hpoblic class TimeServerImplService extends Service |

private final static URL TIMESERVERTMPLSERVICE WSDL. LOCATION:

static {
URL url = mmll;
try |
url = new URL("http: localbhost:9376/ts?wsdl™) ;
catch (MalformedURLException e)

\

public TimeServerImplService (UREL wsdlLocation,

e.printStackTrace () :

TIMESEEVERIMPLSERVICE WSDL LOCATICON = wurl;

super (wsdlLocation, serviceMName) ;

public TimeServerImplService() {

super (TIMESERVERIMPLSERVICE W5SDL L
new QName ("http: t2.examples/", TimeServ

CCATIOH,

EWebEndpoint (name = "TimeServerImplFort™)
public TimeServer getTimeServerImplPort ()

return

(TimeServer) super.getPort (new OName ("I

CHame serviceMame) {

TimeServer.class) ;

JL

52

Generating Client-Support Code from a WSDL

* Together the two generated types, the interface
client.TimeServer and the class
client.TimeServerImplService, ease the task of writing a
Java client against the web service.

Generating Client-Support Code from a WSDL

* Together the two generated types, the interface
client.TimeServer and the class
client.TimeServerImplService, ease the task of writing a
Java client against the web service.

Generating Client-Support Code from a WSDL

TimeClientWsDL.java 3

* Together tl
client.'
client.'
Java client

L e ¢ N I Ty Y -y R I G I S

I N I = I R SR S
TR S T M T BT S VR A SVt

WO
= =3

package client;

Eclass TimeClientWsSDL {
- ublic =static void main(String[] args) {

The TimeServerImplService class is the Java type bound to
the =service section of the WSDL document.
TimeServerlmplService service = new limeServerImplService() !

The TimeServer interface is the Java type bound to
the portIvpe section of the WSDL document.
TimeServer eif = service.getTimeServerImplPort () »

Invoke the methods.

System.out.println(eif.getTimeAsString())
System.out.println(eif.getTimefAsElapsed())

5 |}

Generating Client-Support Code from a WSDL

* Troublesome details such as the appropriate QName and service
endpoint now are hidden in the wsimport-generated class,
client.TempServerImplService

Generating Client-Support Code from a WSDL

* Troublesome details such as the appropriate QName and service
endpoint now are hidden in the wsimport-generated class,
client.TempServerImplService

 Steps for writing clients with the help from WSDL-based artifacts

 First, construct a Service object using one of two constructors in the
wsimport generated class. The no-argument constructor is preferable because
of its simplicity.

* Invoke the get...Port method on the constructed Service object. The
method returns an object that encapsulates the web service operations,
declared in the original SEI.

55

The structure of a WSDL document

* At a high level, a WSDL document is a contract between a service and
Its consumers.

* The contract provides such critical information as the service

endpoint, the service operations, and the data types required for
these operations.

* The service contract also indicates, in describing the messages
exchanged in the service, the underlying service pattern.

* The outermost element (called the document or root element) in a
WSDL is named definitions because the WSDL provides
definitions grouped five sections:

The structure of a WSDL document

1. The types section, which is optional, provides data type
definitions under some data type system such as XML Schema. A
particular document that defines data types is an XSD (XML Schema
Definition). The t ypes section holds, points to, or imports an XSD.

* |f the types section is empty, the service uses only simple data types such as
xsd:string and xsd:long.

2. The message section defines the messages that implement the
service. Messages are constructed from data types either defined in
the types section or, if empty, available as defaults. Recall the use

of the directional properties in and out for the message order,
that defines the service pattern

The structure of a WSDL document

3. The portType section presents the service as named operations,
with each operation as one or more messages.

* Note that the operations are named after methods annotated as
@WebMethods.

4. The binding section is where the WSDL definitions become
concrete, it must specify implementation details

* The transport protocol to be used in sending and receiving the underlying
SOAP messages.

* The style of the service takes either rpc or document as a value.

* The data format to be used in the SOAP messages. There are two choices,
literal and encoded.

The structure of a WSDL document

5. The service section specifies one or more endpoints at which
the service’s functionality is available.

* The service section lists one or more port elements, where a port consists
of aportType (interface)together with a corresponding binding
(implementation).

— <service name=" [imeServerlmplService">
— <port name="TimeServerlmplPort” binding="tns: TimeServerlmplPortBinding ">
<soap:address location="http://localhost:9876/ts" /=
</port=

</service=

59

The structure of a WSDL document

|¢dEﬁHMDﬂ5}

|
deﬂni- Endpoints

publishes

=hinding=

implements

describes

<pperation:=

defines

| <porTypes

¥ <soap:operation>

—u| <input= |

-4 <soap:body>

—f <output>

-4 <soap:hody>

lass

defines

4’|-| <operations

defines

—.| =input= I

1
1
-3 <message>

—.| =output=

+| <IMEssages

Interface

http://download.oracle.com/otn_hosted doc/jdev
eloper/1012/web_services/ws_wsdlstructure.html

60

A Closer Look at WSDL Bindings

* Inthe WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

* The use attribute has 1iteral and encoded as possible values,
with 1iteral as the default.

* In theory, there are four possibilities

style use

document literal
document encoded
rpc literal

rpc encoded

A Closer Look at WSDL Bindings

* Inthe WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

* The use attribute has 1iteral and encoded as possible values,
with 1iteral as the default.

* In theory, there are four possibilities

style use k//////////////
document literal

document encoded
rpc literal

rpc encoded

A Closer Look at WSDL Bindings

* Inthe WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

* The use attribute has 1iteral and encoded as possible values,
with 1iteral as the default.

* In theory, there are four possibilities
style use k//////////////
document literal
document encoded */////////////////////
literal

rpC

rpc encoded

A Closer Look at WSDL Bindings

* The document style indicates that a SOAP-based web service’s
underlying messages contain full XML documents

* The rpc style indicates that the underlying SOAP messages contain
parameters in the request messages and return values in the

response messages
<types></types>

e The TimeServer WSDL <message name="getTimeAsString"></message>

: <message name="getTimeAsStringResponse">

N rpc Style <part name="time response" type="xsd:string"></part>
</message>
<message name="getTimeAsElapsed"></message>
<message name="getTimeAsElapsedResponse"”>

<part name="time response" type="xsd:long"></part>
</message>

A Closer Look at WSDL Bindings

* The TimeServer WSDL in document style

<types>
<xsd:schema>
<xsd:import schemalocation="http://localhost:9876/ts?xsd=1"
namespace="http://ts.cho2/">
</xsd:import>
</xsd:schema>
</types>
<message name="getTimeAsString">
<part element="tns:getTimeAsString" name="parameters"></part>
</message>
<message name="getTimeAsStringResponse™>
<part element="tns:getTimeAsStringResponse" name="parameters"></part>
</message>
<message name="getTimeAsElapsed">
<part element="tns:getTimeAsElapsed" name="parameters"></part>
</message>
<message name="getTimeAsElapsedResponse™>
<part element="tns:getTimeAsElapsedResponse" name="parameters"></part>

</message>
63

A Closer Look at WSDL Bindings

* The document style deserves to be the default.

* This style can support services with rich, explicitly defined data
types because the service’s WSDL can define the required types in an
XSD document.

* From an architectural perspective, the document styleis the
simpler of the two in that the body of a SOAP message is a self-
contained, precisely defined document.

* The rpc style requires messages with the names of the associated
operations (the @WebMethods) with parameters as sub-elements.

A Closer Look at WSDL Bindings

* The document style deserves to be the default.

* This style can support services with rich, explicitly defined data
types because the service’s WSDL can define the required types in an
XSD document.

* From an architectural perspective, the document styleis the
simpler of the two in that the body of a SOAP message is a self-
contained, precisely defined document.

* The rpc style requires messages with the names of the associated
operations (the @WebMethods) with parameters as sub-elements.

Final Remarks

Limitations of the WSDL

* WSDL documents, as web service descriptions, should be publishable
and discoverable. A UDDI (Universal Description Discovery and
Integration) registry is one way to publish WSDLs so that potential
clients can discover them and ultimately consume the services that
the WSDLs describe.

* Once a WSDL has been located, critical questions remain about the
service described in the WSDL.

 The WSDL does not explain the service semantics, what the service is about.
Figuring this out is left to the programmer.

* The service providers usually give supplementary material such as
documentation, tutorials, and sample code libraries

Limitations of the WSDL

* The W3C is pursuing initiatives in web semantics under the rubric of
WSDL-S (Semantics).

* As of now, a WSDL typically is useful only if the client programmer
already understands what the service is about

A tool to test: SOAP Ul

* SOAP Ul is a graphical test tool for Web Services
* WWW.SOapui.org

* Available as standalone or integrated in development environments (such as
Eclipse)

e Can be used on any development platform

* Main features
e Supports Extended Web Services (WSDL + SOAP + UDDI) or REST
* Inspect Web Services
* Invoking Web Services
* Develop Web Services
e Simulate Web Services
* Perform quality tests (response time, etc.)

Inspecting an existing

* We can create a new SoapUIl project to test it.

* This is done by entering the URL of the wsdl file
http://localhost:8888/teams?wsd]

* Once the project is created, the main window gives us several
possibilities
* The endpoints
* The wsdl file
* WS-I compliance tests

70

http://localhost:8888/teams?wsdl

File Project Suite Case 5Step Jools Desktop Help

E B AR X2 g © 9 & |

Empty SOAP REST Import Save All Forum Trial Preferences Proxy

=|| == . %= TeamsPortBinding
2 .
5| Projects _ Overview | Service Endpoints | WSDL Content | WS- Compliance
§ E—J. Sample SOAP Project Core
E—Jz ServiceSoapBinding
= 7 login (%) WSDL Definition
WSDL URL http://lecalhost: 3888 teamswsdl
MNamespace http://team/
Binding TeamsPortBinding
&-mm Simple TestSuite SOAP Version SOAP 1.1
[TestSuite fails if we don't get faults Style Document
23 Expanded TestSuite WS-A version NONE
[4= ServiceSoapBinding MockService
= examplel Definition Parts
- %2 TeamsPortBindi
E gr::ﬂzan:n " teamsiwsdl http://localhost: 8888/ teams fwsdl
i.30 Request 1 teamsixsd=1 http://localhost: 8888 teamsTxsd=1
El’,j getTeams [¥) Operations
L3R Request 1 .
_____ examplel | Name " Use || Gne-Way" Action
..... examplel getTeam Lfteral false
getTeams Literal false

Project Properties r Custorn Properties
Property | Value
MName examplel
Description
File
Resource Root
Cache Definitions true
Project Password
Script Language Groowvy
Hermes Config §{#SystemFuser.home...

71

File Project Suite Case Step Tools Desktop Help

vy g &' -
- H ~ @ ﬁ @ﬁ Search Forum A
Empty S0AP REST Import Save All Forum Trial Preferences Proxy Online Help

oo B

= [o TeamsPortBinding

s 5
& ; =
5y Projects _ [Overview | Service Endpoints | WSDL Content | WS-l Compliance 2
B - Sample SOAP Project Core S
s ServiceSoapBinding «= @EE .
- login (= TeamsPortBindi N
£50 1ogi eamsPortBinding - (teams':‘wsdl rlﬂan'ls':‘xsdz‘l
ir loginrg
=& SDFh::asﬁt y http://localhost:8888/teamsTwsdl |
g ://team,
oW, P 1 | «!--Published by JAX-WS RI (http://jax-vs.java.net). RI's version is JAX-WS RI 2.2_9-b1305926.1035 svn-revision#Sf6196f2b90a3460065a4c2f4a30e065b245a51a. -~
~ Messages 2 «<I--Generzted by JAX-WS RI (http://jas-vs.javs.nst). RI's version is JAX-F5 RI 2.2.5-b130826.1035 svn-revision#Sf6156£2b30e3460065245254230e0650245e51s.
i S e TestSui = getTeam jEl <definitions targetNamespace="http:/ team/" name="TeamsService" xmlns:wsu="http://docs.oesis-open.org/wss/Z004/01/0a3is-200401l-wss-wssecurity-utility-1.
imple TestSuite part: name=[parameters] type=[] element=[tns:getTeam] i <types>
G TestSuite fails if we don't get faults - getTeamResponse 5@ cy=d-schemas
] P -
28 = Expanded TestSuite ‘[] part: name=[parameters] type=[] element=[tns:getTeamResponse] 6 <xsd:import namespace="hTttp://team/" schemaLocation="http://localhost:S888/Teams?xsd=1"/>
[g ServiceSoapBinding MockService (= getTeams 7 </xsd:schema>
= examplel [] part: name=[parameters] type=[] element=[tns:getTeams] N </types>
£+ %= TeamsPortBinding [getTeamsResponse 8 <message name="getTeam">
5. 10 <part name="parameters" element="tns:getTeam"/>
& bl geotTeam [] part: name=[parameters] type=[] element=[tns:getTeamsResponse] 1 < mecaages
| A8 Request & & PortTypes 20 o s amaegat TeanRespanse™s
= getTeams &3 Teams " " " "
S0 R] - 13 <part name="parameters" element="tns:getTeamResponse” />
ap Request B[getTeam 14 </messager
examplel O [input], message=[tns:getTeam] 158 <message name="getTeams">
examplel [output], message=[tns:getTeamResponse] 16 <part name="parameters" element="tns:getTeams"/>
TS 17 </message>
" 123 = tT 2! "o
0 [input], message=[tns:getTeams] pemem e ne
19 <part name="parameters” element="tns:getTeamsResponse”/>
D [output], message=[tnsigetTeamsResponse] 20 </message>
- Bindings 21E <portType name="Tezms">
== TeamsPortBinding [style=document] 228 <operation name="getTezm">
(= getTeam [soapAction=] 23 <input wsam:Action="http://team/Teams/getTeamRequest” message="tns:getTeam"/>
D [input] 24 <putput wsam:AZction="http://team/Teams/getTeamResponse” message="tns:getTeamResponse” />
O [output] 25 </operaticn>
(= getTeams [soaphction=] 26 <operation name="getTeams">
D [input] 27 <input wsam:Action="http:/ team/Teams/getTeamsRequest"” message="tns:getTeams"/ >
28 <output wsam:Action="http://team/Teams/getTeamsResponse"” message="tns:getTeamsResponse"/>
[output] 29 </operation>
Bl Services 30 </portTypes
03 TeamsService 31 <binding name="TeamsDortBinding” type="tn=z:Teams">
=R Complex Types 32 <soap:binding transport="http://schemas_ xmlsosp.org/soep/http” style="document™/>
D getTeam 3ig <operation name="getTeam">
D getTearmResponse 34 <scap:ioperation scaplotion=""/>
3sg <input>
- getTeams
36 < zbod ="1it 1"y
D getTeamsResponse 32 . e ¥ omes rEEReL
Project Properties r/ Custemn Properties - player ' =/input>
3EE <output>
Property | Value [team 39 <spap:body use="literal"/>
MName examplel =[5 Global Elements 40 </ outputs
D_E‘C”pt"‘” | getTeam 41 </operation>
File D getTeamResponse 42[E <gperation name="getTezms">
Resource Root D getTeams 43 <gpap:operation socaphction=""/>
Cache Definitions true 44 ;
Project P 4 -[] getTeamsResponse 440 “inpuss
roject Passwor 45 <spap:body use="literal"™/>
Script Language Groovy 46 </input>
: -
Hermes Config S{#System#user.home... sm— D
getTeams@http://team/
Properties SoapUllog http log jettylog errorlog wsrmlog memory log tools

[L 71

File

Project Suite Case Step Tools

E B R X

Empty S0AP REST Import Save All
5 =
Projects
% =8 . Sample SOAP Project Core

Iogln
i login rgq
logout

[Simple TestSuite
- @ TestSuite fails if we don't get faults
[.= Expanded TestSuite
[ServiceSoapBinding MockService
[] examplel
E}z TeamsPortBinding
E} (o] getTeam
: .---,.Pp Request 1
=X getTeam;
,.p Request 1
examplel

examplel

Forum Trial

Desktop Help

T 3 =

Preferences Proxy

2= Team sPortBinding

Project Properties r/ Custemn Properties
Property | Value
MName examplel
Description
File
Resource Root
Cache Definitions true
Project Password
Script Language Groovy
Hermes Config S[#System#Fuser.home...

-[] getTeamsResponse

r Overvi r Service Endpoil r WSDL Content r WS-l Compliance
«= HHDB
BTeamsPortBinding N teams?
=8 E' Schemas http://1d
----- [http://team/ P
B B Messages 3 |
(= getTeam 5E<d
b D part: name=[parameters] type=[] element=[tns:getTeam] =
[getTeamResponse E=|
- D part: name=[parameters] type=[] element=[tns:getTeamResponse] g
E‘ (= getTeams 7
- D part: name=[parameters] type=[] element=[tns:getTeamns] ;
E| (= getTeamsResponse 1;|E|
e D part: name=[parameters] type=[] element=[tns:getTeamsResponse] 1i
B PortTypes 120
(2 Teams 13
E} [getTeam 14
P D [input], message=[tns:getTeam] 158
0 [output], message=[tnsigetTeamResponse] 8
& > fgetTeams] o
0 [input], message=[tns:getTeams] 1;‘3
D [output], message=[tnsigetTeamsResponse] 2;|
(& Bindings g
== TeamsPortBinding [style=document] 220
£ getTeam [soapAction=] 23
- =1 finput] 24
D [output] 23
[=Rr=4 getTeams [soaphction=] EEE
01 finput] e
D [output] :
B Services ’ ;:
-3 TeamsService 310
B Complex Types z
[getTeam 33
| getTeamResponse 34
- getTeams 3‘35
| getTeamsResponse 3:
D player -
D team 39
== Global Elements a0
| getTeam
-] getTeamResponse
| getTeams

getTeams@http:/fteam/

Properties

SoapUllog http log jettylog errorlog wsrmlog memory log tools

= TearmsPortBinding

= Schemas

- http://team/

Bl Messages

E} B getTeam

P e D part: name=[parameters] type=[] element=[tns:getTeam)]

E} IE' getTeamResponse

Db D part: names=[parameters] type=[] element=[tns:getTearmResponse]
E} IE' getTeams

B IE' getTeamsResponse
------ D part: names=[parameters] type=[] element=[tns:getTeamsResponse]
B PortTypes
Ié} (= Teamns
E} = getTeam
D [input], message=[tns:getTeam]
: D [cutput], message=[tnsigetTeamResponse]
=8 [E' getTeams
D [input], message=[tns:getTeams]
----- D [output], message=[tns:getTeamsResponse]

E—}"IE' Bindings
= E' TearnsPortBinding [style=document]
E} [E' getTeam [soaphction=]
5 O [input]
: D [output]
B- [E? getTeams [soapiction=]
=0 [input]
D [output]
(= Services
=8 IE' TeamsService
----- D port: name=[TeamsPort] binding=[tns: TeamsPortBinding]
B-l= Complex Types
getTeam

D

D getTeamResponse
-] getTeams
[getTeamsResponse
- player
D team
-l Global Elements

| getTeam

[getTeamResponse

[getTeams

[getTeamsResponse

]
Online Help
-

th Forum

Jopadsuy)

(7)

ionFEL6196f2bI0a5460065a4c2f40300065b 245051l (&
on#Sf6196f2bA0e84600652402f4e30e065b245051a.
wss/2004/01/0asis-200401-wss-wssecurity-utility-1.

71

Mavigatar

reates an empty project h
Projects
= Sample SOAP Project Core
2 ServiceSoapBinding
E}Cj legin

= logout

7 search

< buy

m Simple Test5uite

m TestSuite fails if we don't get faults
B Expanded TestSuite

H- 32 ServiceSoapBinding MockService

examplel

_2 TeamsPortBinding
':_3 getTeamn

-s,,% Request 1
) getTeamns

37 Request |

examplel

----- examplel

Request Properties

A4 Request 1

Property | Value

Mame Request 1
Description

Message Size 208

Encoding UTF-8

Endpoint http://localhost:288...
Timeout

Bind Address

Fellow Redirects true

Username

Password

Domain

Authentication Type Mo Authorization
W55-Password Type

WSS TimeToLive

by @OL e

http://localhost:8888/teams

<spapenv:iHeader/>

= <spapenv:Body>

Raw | XML

</ soapenv:Body>

</spapenv:Enveloper

<team:getTeams/>

= ksuapenv:Envelupe xmlns:scapenv="http://schemas_xmlsoap.org/scap/envelope/" xmlns:tear="http://te

4

VA
Raw | XML

[E <8:Envelope xmlns:S="http://schemas._xmlscap_org/soap/fenvelope/">
= <5:Body>
= <nsZ:getTeamsBesponse xmlns:nsZ="http: / tezam/ ">
= <return>
<nameribbott and Costello</namer
= <players>
<namerWilliam Abbott</namer
<nickname>Bud</nickname>
</players>
= <playerss

<name>Louis Cristillo</mname>
<nicknamer>Lou</nickname>
“/players>
<rosterCount>2</rosterCount>
</return>
=] <returnr
<namerBurns and Rllen</names
= <players>
<namerGeorge Burns</name>
<nicknamer>Gecrge</nickname:>
</players>
= <players>
<namerEracie Allen</name>
<nickname>CGracie</nicknama>
“/players>
<rosterCount>Z</rosterCount>
</returnr
=] <returnr
<namerMarx Brothers</name>
= <players>
<name>Leonard Marx</name>
<nicknamerChico</nickname>
</players>
= <players>
<namerJulius Marx</name>
<nickname>Groucho</nickname>
</players>
= <players>
<namexhdolph Marx</names
<nicknamerHarpo</nickname>
</players>
<rosterCount>3</rosterCount>
</return>
</nai:getTeamsPesponses
</5:Body>
</8:Envelope>

4

4

72

Mavigatar

reates an empty project h
Projects
= Sample SOAP Project Core
2 ServiceSoapBinding
E}Cj legin

= logout

7 search

< buy

m Simple Test5uite

m TestSuite fails if we don't get faults
B Expanded TestSuite

H- 32 ServiceSoapBinding MockService

examplel

_2 TeamsPortBinding
':_3 getTeamn

-s,,% Request 1
) getTeamns

37 Request |

examplel

----- examplel

Request Properties

A4 Request 1

Property | Value

Mame Request 1
Description

Message Size 208

Encoding UTF-8

Endpoint http://localhost:288...
Timeout

Bind Address

Fellow Redirects true

Username

Password

Domain

Authentication Type Mo Authorization
W55-Password Type

WSS TimeToLive

by @OL e

http://localhost:8888/teams

<spapenv:iHeader/>

= <spapenv:Body>

Raw | XML

</ soapenv:Body>

</spapenv:Enveloper

<team:getTeams/>

= ksuapenv:Envelupe xmlns:scapenv="http://schemas_xmlsoap.org/scap/envelope/" xmlns:tear="http://te

4

VA
Raw | XML

[E <8:Envelope xmlns:S="http://schemas._xmlscap_org/soap/fenvelope/">
= <5:Body>
= <nsZ:getTeamsBesponse xmlns:nsZ="http: / tezam/ ">
= <return>
<nameribbott and Costello</namer
= <players>
<namerWilliam Abbott</namer
<nickname>Bud</nickname>
</players>
= <playerss

<name>Louis Cristillo</mname>
<nicknamer>Lou</nickname>
“/players>
<rosterCount>2</rosterCount>
</return>
=] <returnr
<namerBurns and Rllen</names
= <players>
<namerGeorge Burns</name>
<nicknamer>Gecrge</nickname:>
</players>
= <players>
<namerEracie Allen</name>
<nickname>CGracie</nicknama>
“/players>
<rosterCount>Z</rosterCount>
</returnr
=] <returnr
<namerMarx Brothers</name>
= <players>
<name>Leonard Marx</name>
<nicknamerChico</nickname>
</players>
= <players>
<namerJulius Marx</name>
<nickname>Groucho</nickname>
</players>
= <players>
<namexhdolph Marx</names
<nicknamerHarpo</nickname>
</players>
<rosterCount>3</rosterCount>
</return>
</nai:getTeamsPesponses
</5:Body>
</8:Envelope>

4

4

72

Request 1
YaEOoO& e http://localhost:2888/teams % + @

POST http://localhost:8888/teams HTTP/1.1 14 ; HTTR/1.1 200 OK |4
Accept-Encoding: gzip,deflate Date: Mon, 27 Feb 2017 12:02:02 GMT
Content-Type: text/xml;charset=UTF-8 Transfer-enceding: chunked
SOAPAction: "" Content-type: text/xml; charset=utf-8
Content-Length: 208

Host: localhost: 3883

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

Rawr | XML

<Hml version="1.0" > <%:Envelope xmins:5="http://schemas.xmlsoap.org/scap/envelope/* <5:Body> <ns2:getTeamsResponse xmins:ins="http://tea

al

al

SSL Info

A word to finish

* The big difficulty of SOAP is not to implement the code, but to
choose one of the multiple ways to do it.

* There are several SOAP implementations in Java since Java 6
* Oracle has its own with JAX-WS, which we have just explored

» Axis (http://ws.apache.org/axis2/) in the Apache world; and its new
version 2 which does not strictly impose the data model

o CXF (http://cxf.apache.org), an alternative to Axis2 on Apache

http://ws.apache.org/axis2/
http://cxf.apache.org/

