
Informatique Repartie
Chapitre 4 : SOAP

Cecilia Zanni-Merk

cecilia.zanni-merk@insa-rouen.fr

Bureau BO B R1 04

References

• Architectures réparties en Java
Annick Fron
ISBN 9782100738700
Ed Dunod

• Java Web Services Up and Running
Martin Kalin
ISBN 9780596521127
O’Reilly

2

References in the Web

• https://www.w3schools.com/xml/xml_soap.asp

• http://apiacoa.org/publications/teaching/webservices/SOAP.pdf

• http://mbaron.developpez.com/cours/soa/soap/

• https://members.loria.fr/OPerrin/LProCisii/fichiers/SOAP.pdf

3

https://www.w3schools.com/xml/xml_soap.asp
http://apiacoa.org/publications/teaching/webservices/SOAP.pdf
http://mbaron.developpez.com/cours/soa/soap/
https://members.loria.fr/OPerrin/LProCisii/fichiers/SOAP.pdf

Introduction

4

Motivation

• Communication between applications on the Internet
• B to B : carry out transactions or data exchanges between companies

(business to business)

• Communicate large amounts of data in loose coupling, with minimal
knowledge of the other party and without being able to impose any service
constraints.

5

What is a Web Service ?

• Informal definition
• It is a kind of webified application, that is, an application typically delivered

over HTTP.
• A WS is thus a distributed application whose components can be deployed

and executed on distinct devices

• Formal definition (from the W3C)
• A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described
in a machine-processable format. Other systems interact with the Web
service in a manner prescribed by its description using messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.
https://www.w3.org/TR/ws-arch/#whatis

6

https://www.w3.org/TR/ws-arch/#whatis

Types of Web Services

• Two types
• SOAP-based

• REST-based

• SOAP-based WS
• Initially, Simple Object Access Protocol

• Now, Service Oriented Architecture (SOA) Protocol

• For now, SOAP is just an XML dialect in which documents are messages

• In a typical SOAP-based web service, a client transparently sends a SOAP
document as a request to a web service, which transparently returns another
SOAP document as a response.

7

Types of Web Services

• REST-based WS
• Representational State Transfer

• Less standardized than SOAP, REST has few toolkits and “skinny” software
libraries

• The REST style is often seen as an antidote to the complexity of SOAP-based
web services.

• In a REST-style service, a client might send a standard HTTP request to a web
service and receive an appropriate XML document as a response.

8

Key Features of WS

• Distinguishing them from other distributed software systems
• Open infrastructure

• Web services are deployed using industry-standard, vendor-independent protocols
such as HTTP and XML, which are ubiquitous and well understood.

• Language transparency
• Web services and their clients can interoperate even if written in different

programming language, that provide libraries, utilities, and even frameworks in
support of web services.

• There should be an intermediary to handle the differences in data types between the
languages … they are the XML technologies

• Modular design
• Web services are meant to be modular in design so that new services can be

generated through the integration and layering of existing services

9

Standardization of Web Services

• Several norms
• W3C
• The OASIS consortium (http://www.oasis-open.org)

• Serveral actors
• Microsoft .Net
• Apache : Axis, CXF
• Sun : JAX-WS and Metro
• JBoss/WildFly
• Other open-source implementations

• Interoperability
• The idea is that the services can be used by everybody
• WS-I.org : Web Service Interoperability organization (http://www.ws-i.org)

10

Why use Web Services?

• Modern software systems are written in a variety of languages. These
software systems will continue to be hosted on a variety of platforms.

• Companies generally have significant investment in legacy software
systems whose functionality is useful and perhaps mission critical

• Additionally, interoperability is not just a long-term challenge but also
a current requirement of production software

• Web services address these issues directly because such services are,
first and foremost, language- and platform-neutral.
• If a legacy COBOL system is exposed through a web service, the system is

thereby interoperable with service clients written in other programming
languages.

11

SOAP
Introduction – A first example – A word about WSDL – The hidden SOAP - A richer
example

12

SOAP

• SOAP is an RPC protocol that uses XML to serialize methods and their
arguments, as well as their return values. With SOAP, XML transits
over HTTP

• W3C references
• XML (Extensible markup Language)

http://www.w3.org/XML/
http://www.w3.org/XML/Schema

• HTTP (Hypertext Transfer Protocol)
http://www.w3.org/Protocols/

• SOAP (Simple Object Access Protocol)
https://www.w3.org/TR/soap12

13

http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/Protocols/
https://www.w3.org/TR/soap12

14

Cours Intro aux Réseaux – Olivier Dalle – Université de Nice

A first SOAP example

• All the examples can be compiled and deployed using core Java SE
(Java Standard 6 or greater) without any additional software, until
Java version 8.
• Afterwards, an application server (such as Apache Tomcat, is necessary)

• All of the libraries required to compile, execute, and consume web
services are available in core Java, which supports JAX-WS (Java API
for XML-Web Services).

• JAX-WS supports SOAP-based and REST-style services and is
commonly shortened to JWS for Java Web Services.

15

A note about compilation and execution

• All the development of SOAP web services will be done by hand
during this course, meaning that we will need to use Java version 8
(normally available in the school network)

• To do so :
1. First, look for the installation folder of Java version 8 in your system.

Normally, it is /opt/jre-XXX/
2. Update your PATH environment variable doing export PATH=<the

folder you have found in 1>:$PATH in a terminal. You should
have something like this:
export PATH=/opt/jre-XYZ/bin/:$PATH.

3. To compile you do javac --release 8 <files to compile>

4. To execute you that normally: java <class to execute>

16

A note about compilation and execution

● As indicated in the previous slide, we will use Java version 8 to facilitate
the implementation of the source code to develop

● Please install OpenJDK version 8 in your personal laptops

○ A step by step tutorial done by an ITI student in 2021 is available on Moodle

● You can also visit https://adoptopenjdk.net/index.html

17

https://adoptopenjdk.net/index.html

A first SOAP example

• Generally, a Java-based web service consists of an interface and an
implementation.
• The interface declares the methods, which are the web service operations.

The interface is called the SEI: Service Endpoint Interface.

• The implementation defines the methods declared in the interface. The
implementation is called the SIB: Service Implementation Bean.

• The SIB can be either a POJO (a Plain Old Java Object) or a Stateless
Session EJB (Enterprise Java Bean).
• For the moment, the SOAP-based web services will be implemented as

POJOs, that is, as instances of regular Java classes.

18

A first SOAP example

• Implement a web service that returns the current time as either a
string or as the elapsed milliseconds from the Unix epoch, midnight
January 1, 1970 GMT.

• Procedure
1. Develop the SEI and the SIB

2. Implement an application to publish the web service

3. Develop the client to consume the service

19

The SEI and the SIB

20

JWS annotations

• The API for the Web services annotations is : javax.jws
• @WebService

• @SOAPBinding

• @WebParam

• @WebResult

• …

• Java 6 provides a mini web server with the class
Endpoint.publish()

21

A word about publication …

• Once the SEI and SIB have been compiled, the web service is ready to
be published.

• To compile the SEI and the SIB, from the working directory, that has
the examples folder inside, do
% javac --release 8./examples/ts/*.java

• In full production mode, a Java Application Server such as BEA
WebLogic, GlassFish, JBoss, or WebSphere might be used; but in
development and even light production mode, a simple Java
application can be used.

22

The publisher application

23

The publisher application

23

• Compile from the working directory as you did before
for the SEI and the SIB

• Execute
% java examples.ts.TimeServerPublisher

Testing the Web Service with a Browser

• We can test the deployed service by opening a browser and viewing
the WSDL (Web Service Definition Language) document, which is an
automatically generated service contract.

• The browser is opened to a URL that has two parts. The first part is
the URL published in the Java TimeServerPublisher
application: http://127.0.0.1:9876/ts.

• Appended to this URL is the query string ?wsdl

• The result is http://127.0.0.1:9876/ts?wsdl.

24

Testing the Web Service with a Browser

25

Testing the Web Service with a Browser

25

A word about WSDL …

• Web services interfaces are described in WSDL.
• https://www.w3.org/TR/wsdl20/

• This description is sufficient to use the service without knowing its
implementation.

• The purpose is to enable an application to communicate on the
Internet with the service it needs and to exchange data with it
• The implementation infrastructure is heavier than for RMI (we need a web

server); but it is essential if we want to pass information through a firewall.

26

https://www.w3.org/TR/wsdl20/

A word about WSDL …

• Two sections deserve a quick look

• The portType section groups the operations that the web service
delivers, in this case the operations getTimeAsString and
getTimeAsElapsed, which are the two Java methods declared in
the SEI and implemented in the SIB.

27

A word about WSDL …

• The other WSDL section of interest is the service section, and in
particular the service location, in this case the URL
http://localhost:9876/ts.

• The URL is called the service endpoint and it informs clients about
where the service can be accessed

28

A word about WSDL …

• The WSDL document is useful for both creating and executing clients
against a web service.

• The core Java utility for generating client-support code from a WSDL
document is called wsimport.

• At runtime, a client can consume the WSDL document associated
with a web service in order to get critical information about the data
types associated with the operations bundled in the service.
• For example, a client could determine from our first WSDL that the operation
getTimeAsElapsed returns an integer and expects no arguments.

29

A word about WSDL …

• The WSDL document is useful for both creating and executing clients
against a web service.

• The core Java utility for generating client-support code from a WSDL
document is called wsimport.

• At runtime, a client can consume the WSDL document associated
with a web service in order to get critical information about the data
types associated with the operations bundled in the service.
• For example, a client could determine from our first WSDL that the operation
getTimeAsElapsed returns an integer and expects no arguments.

• Where in the WSDL document? To do later!

29

A Java client for the Time server

30

A Java client for the Time server

30

A Java client for the Time server

30

A Java client for the Time server

• The Java client uses the URL with a query string
(http://localhost:9876/ts?wsdl) and explicitly creates an XML
qualified name for the service, which has the syntax
namespace URI:local name.

• The Java class java.xml.namespace.QName represents an XML-
qualified name.

• In this example, the namespace URI is provided in the WSDL, and the local
name is the SIB class name TimeServerImpl with the word Service
appended.
• The local name occurs in the service section, the last section of the WSDL document.

31

A Java client for the Time server

• Once the URL and QName objects have been constructed and the
Service.create method has been invoked, we have the statement of
interest:
TimeServer port =

service.getPort(TimeServer.class)

• Recall that, in the WSDL document, the portType section describes, in
the style of an interface, the operations included in the web service.

• The getPort method returns a reference to a Java object that can
invoke the portType operations.

• The port object reference is of type examples.ts.TimeServer,
which is the SEI type.

32

The hidden SOAP

• In SOAP-based web services, a client typically makes a remote
procedure call against the service by invoking one of the web service
operations.

• As mentioned earlier, this back and forth between the client and
service is the request/response message exchange pattern, and the
SOAP messages exchanged in this pattern allow the web service and a
consumer to be programmed in different languages.

• Typically, a client generates an HTTP request, which is itself a
formatted message whose body is a SOAP message.

33

The hidden SOAP

34

• The SOAP document or
or message is commonly
called SOAP envelope.

• In this SOAP envelope, the
SOAP body contains a single
element whose local name
is getTimeAsString, which is the name of the web service
operation that the client wants to invoke.

The hidden SOAP

• On the web service side, the underlying Java libraries process the
HTTP request, extract the SOAP envelope, determine the identity of
the requested service operation, invoke the corresponding Java
method
getTimeAsString,
and then generate the
appropriate SOAP
message to carry the
method’s return
value back to the
client.

35

The hidden SOAP

• Once again, the SOAP envelope is the body of an HTTP message, in
this case the HTTP response to the client.
• The HTTP start line now contains the status code as the integer 200 and the

corresponding text OK, which signal that the client request was handled
successfully.

• The SOAP envelope in the HTTP response’s body contains the current
time as a string named return.

• The Java SOAP library on the client’s side extracts the SOAP envelope
from the HTTP response and, because of information in the WSDL
document, expects the desired return value from the web service
operation to occur in the XML return element.

36

The SOAP envelope

37

• The SOAP envelope is a wrapper element that identifies
the subordinate elements as a SOAP message and
provides namespace declarations. Namespaces provide
semantic context for elements within the SOAP body.

• The SOAP header is an optional element that can contain metadata,
such as authentication information, localization support, and delivery
routes.

• The SOAP body contains the payload of the message, which is either
the web service request or web service response. The response can
be a processing error, which is called a SOAP fault.

Error management

• <soap:fault> contained in the body.
• The error element is optional and appears only in response messages and

only once.
• Four optional sub-tags

• faultcode
• faultstring
• faultactor
• detail

• Four types of error codes
• soap:Server
• soap:Client
• soap:VersionMismatch
• soap:MustUnderstand

38

A richer example

• The operations in the TimeServer service take no arguments and
return simple types, a string and an integer.

• The Teams web service is a richer example with several differences
• The Teams service is implemented as a single Java class rather than as a

separate SEI and SIB. This is done simply to illustrate the possibility.

• A more important difference is in the return types of the two Teams
operations.
• The operation getTeam is parameterized and returns an object of the programmer-

defined type Team, which is a list of Player instances, another programmer-defined
type.

• The operation getTeams returns a List<Team>, that is, a Java Collection.

55

A richer example

57

A richer example

• The utility class TeamsUtility generates the data. In a production
environment, this utility might retrieve a team or list of teams from a
database.

• To keep this example simple, the utility instead creates the teams and
their players on the fly.

41

A richer example

42

Publishing the service and writing the client

• Recall that the SEI for the TimeServer service contains the
annotation:
@SOAPBinding(style = Style.RPC)

• This annotation requires that the service use only very simple types
such as string and integer.

• By contrast, the Teams service uses richer data types, which means
that Style.DOCUMENT, the default, should replace Style.RPC.
• The document style requires more setup, to be explained later

43

Publishing the service and writing the client

• The steps to have the service deployed and a sample client written
quickly are:

1. The source files are compiled in the usual way. From the working
directory, which has examples as a subdirectory, the command is:
% javac --release 8 examples/team/*.java

In addition to the @WebService-annotated Teams class, the
examples/team directory contains the Team, Player,
TeamsUtility, and TeamsPublisher classes, that you will
find in Moodle

44

Publishing the service and writing the client

2. In the working directory, invoke the wsgen utility, which comes with
core Java 6:
% wsgen -cp . examples.team.Teams

This utility generates various artifacts; that is, Java types needed by the
method Endpoint.publish to generate the service’s WSDL.

3. Execute the TeamsPublisher application.

4. For preparing the development of the client, in its working directory,
invoke the wsimport utility, which also comes with core Java 6:
% wsimport -p teamsC -keep http://localhost:8888/teams?wsdl

5. Write the client

45

http://localhost:8888/teams?wsdl

The client

46

The client

46

Some final remarks

• Developing a web service with JAX-WS requires several steps:
• Code the class that encapsulates the service

• Compile the class

• Use the wsgen command to generate the files required for deployment (schemas,
WSDL, classes, ...)

• To define an endpoint with JAX-WS, there are several constraints :
• The class that encapsulates the endpoint must be public, not static, not
final, not abstract and be annotated with @WebService

• It must have a default constructor (without parameters)

• It is recommended to explicitly define the SEI interface

• Methods exposed by the web service must be public, not static, not final
and annotated with @WebMethod

• The parameter and return value types of these methods must be supported by JAXB
47

WSDL

48

A few recalls

• Let’s see again the code of the client against the TimeServer service
URL url = new URL("http://localhost:9876/ts?wsdl");

QName qname = new QName("http://ts.examples/", "TimeServerImplService");

Service service = Service.create(url, qname);

• The client invokes the Service.create method with two arguments:
• a URL, which provides the endpoint at which the service can be accessed, and

• an XML-qualified name (a Java QName), which in turn consists of the service’s local
name (in this case, TimeServerImplService) and a namespace identifier (in
this case, the URI http://ts.examples/).

49

A few recalls

• Let’s see again the code of the client against the TimeServer service
URL url = new URL("http://localhost:9876/ts?wsdl");

QName qname = new QName("http://ts.examples/", "TimeServerImplService");

Service service = Service.create(url, qname);

• The client invokes the Service.create method with two arguments:
• a URL, which provides the endpoint at which the service can be accessed, and

• an XML-qualified name (a Java QName), which in turn consists of the service’s local
name (in this case, TimeServerImplService) and a namespace identifier (in
this case, the URI http://ts.examples/).

49

Generating Client-Support Code from a WSDL

• As seen before, the use of wsimport can ease the writing of a client
to consume a SOAP web service

• Let’s analyse in detail what happens

• After the examples.ts.TimeServerPublisher application
has been started, the command:
% wsimport -keep -p client http://localhost:9876/ts?wsdl

generates two source and two compiled files in the subdirectory
client.

50

Generating Client-Support Code from a WSDL

51

Generating Client-Support Code from a WSDL

51

Generating Client-Support Code from a WSDL

51

Generating Client-Support Code from a WSDL

52

Generating Client-Support Code from a WSDL

52

Generating Client-Support Code from a WSDL

52

Generating Client-Support Code from a WSDL

52

Generating Client-Support Code from a WSDL

• Together the two generated types, the interface
client.TimeServer and the class
client.TimeServerImplService, ease the task of writing a
Java client against the web service.

53

Generating Client-Support Code from a WSDL

• Together the two generated types, the interface
client.TimeServer and the class
client.TimeServerImplService, ease the task of writing a
Java client against the web service.

54

Generating Client-Support Code from a WSDL

• Together the two generated types, the interface
client.TimeServer and the class
client.TimeServerImplService, ease the task of writing a
Java client against the web service.

54

Generating Client-Support Code from a WSDL

• Troublesome details such as the appropriate QName and service
endpoint now are hidden in the wsimport-generated class,
client.TempServerImplService

55

Generating Client-Support Code from a WSDL

• Troublesome details such as the appropriate QName and service
endpoint now are hidden in the wsimport-generated class,
client.TempServerImplService

• Steps for writing clients with the help from WSDL-based artifacts
• First, construct a Service object using one of two constructors in the

wsimport generated class. The no-argument constructor is preferable because
of its simplicity.

• Invoke the get...Port method on the constructed Service object. The
method returns an object that encapsulates the web service operations,
declared in the original SEI.

55

The structure of a WSDL document

• At a high level, a WSDL document is a contract between a service and
its consumers.

• The contract provides such critical information as the service
endpoint, the service operations, and the data types required for
these operations.

• The service contract also indicates, in describing the messages
exchanged in the service, the underlying service pattern.

• The outermost element (called the document or root element) in a
WSDL is named definitions because the WSDL provides
definitions grouped five sections:

56

The structure of a WSDL document

1. The types section, which is optional, provides data type
definitions under some data type system such as XML Schema. A
particular document that defines data types is an XSD (XML Schema
Definition). The types section holds, points to, or imports an XSD.
• If the types section is empty, the service uses only simple data types such as
xsd:string and xsd:long.

2. The message section defines the messages that implement the
service. Messages are constructed from data types either defined in
the types section or, if empty, available as defaults. Recall the use
of the directional properties in and out for the message order,
that defines the service pattern

57

The structure of a WSDL document

3. The portType section presents the service as named operations,
with each operation as one or more messages.
• Note that the operations are named after methods annotated as
@WebMethods.

4. The binding section is where the WSDL definitions become
concrete, it must specify implementation details
• The transport protocol to be used in sending and receiving the underlying

SOAP messages.

• The style of the service takes either rpc or document as a value.

• The data format to be used in the SOAP messages. There are two choices,
literal and encoded.

58

The structure of a WSDL document

5. The service section specifies one or more endpoints at which
the service’s functionality is available.
• The service section lists one or more port elements, where a port consists

of a portType (interface) together with a corresponding binding
(implementation).

59

The structure of a WSDL document

60

http://download.oracle.com/otn_hosted_doc/jdev
eloper/1012/web_services/ws_wsdlstructure.html

A Closer Look at WSDL Bindings

• In the WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

• The use attribute has literal and encoded as possible values,
with literal as the default.

• In theory, there are four possibilities

61

A Closer Look at WSDL Bindings

• In the WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

• The use attribute has literal and encoded as possible values,
with literal as the default.

• In theory, there are four possibilities

61

A Closer Look at WSDL Bindings

• In the WSDL binding section, the style attribute has rpc and
document as possible values, with document as the default.

• The use attribute has literal and encoded as possible values,
with literal as the default.

• In theory, there are four possibilities

61

A Closer Look at WSDL Bindings

• The document style indicates that a SOAP-based web service’s
underlying messages contain full XML documents

• The rpc style indicates that the underlying SOAP messages contain
parameters in the request messages and return values in the
response messages

• The TimeServer WSDL
in rpc style

62

A Closer Look at WSDL Bindings

• The TimeServer WSDL in document style

63

A Closer Look at WSDL Bindings

• The document style deserves to be the default.

• This style can support services with rich, explicitly defined data
types because the service’s WSDL can define the required types in an
XSD document.

• From an architectural perspective, the document style is the
simpler of the two in that the body of a SOAP message is a self-
contained, precisely defined document.

• The rpc style requires messages with the names of the associated
operations (the @WebMethods) with parameters as sub-elements.

64

A Closer Look at WSDL Bindings

• The document style deserves to be the default.

• This style can support services with rich, explicitly defined data
types because the service’s WSDL can define the required types in an
XSD document.

• From an architectural perspective, the document style is the
simpler of the two in that the body of a SOAP message is a self-
contained, precisely defined document.

• The rpc style requires messages with the names of the associated
operations (the @WebMethods) with parameters as sub-elements.

65

Final Remarks

66

Limitations of the WSDL

• WSDL documents, as web service descriptions, should be publishable
and discoverable. A UDDI (Universal Description Discovery and
Integration) registry is one way to publish WSDLs so that potential
clients can discover them and ultimately consume the services that
the WSDLs describe.

• Once a WSDL has been located, critical questions remain about the
service described in the WSDL.
• The WSDL does not explain the service semantics, what the service is about.

Figuring this out is left to the programmer.

• The service providers usually give supplementary material such as
documentation, tutorials, and sample code libraries

67

Limitations of the WSDL

• The W3C is pursuing initiatives in web semantics under the rubric of
WSDL-S (Semantics).

• As of now, a WSDL typically is useful only if the client programmer
already understands what the service is about

68

A tool to test: SOAP UI

• SOAP UI is a graphical test tool for Web Services
• www.soapui.org
• Available as standalone or integrated in development environments (such as

Eclipse)
• Can be used on any development platform

• Main features
• Supports Extended Web Services (WSDL + SOAP + UDDI) or REST
• Inspect Web Services
• Invoking Web Services
• Develop Web Services
• Simulate Web Services
• Perform quality tests (response time, etc.)

69

Inspecting an existing

• We can create a new SoapUI project to test it.

• This is done by entering the URL of the wsdl file
http://localhost:8888/teams?wsdl

• Once the project is created, the main window gives us several
possibilities
• The endpoints

• The wsdl file

• WS-I compliance tests

70

http://localhost:8888/teams?wsdl

71

71

71

72

72

72

A word to finish

• The big difficulty of SOAP is not to implement the code, but to
choose one of the multiple ways to do it.

• There are several SOAP implementations in Java since Java 6

• Oracle has its own with JAX-WS, which we have just explored

• Axis (http://ws.apache.org/axis2/) in the Apache world; and its new
version 2 which does not strictly impose the data model

• CXF (http://cxf.apache.org), an alternative to Axis2 on Apache

73

http://ws.apache.org/axis2/
http://cxf.apache.org/

