DEPARTEMENT

ARCHITECTURE
DES SYSTEMES
. . . D’INFORMATION
IN s A‘ Practice session Model Selection A1 year
éiluwiisnmmme GaSSO _ Gauzere

Goals
m Implement a full SVM model tuning using scikit-learn utilities
m Application on real data

Preliminaries Some cross validation steps may may be time consuming. To avoid the issue
may use only a subset of the data.

1 Splice classification

Splice junctions are points on a DNA sequence at which ‘superfluous’ DNA is removed
during the process of protein creation in higher organisms. The problem we aim to solve is
to recognize, given a sequence of DNA, the boundaries between exons (the parts of the DNA
sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced
out). For more details see UCI' and DELVE site 2.

1. Load the dataset splice.

from sklearn.datasets import load_svmlight_file
import numpy as np

X, Y = load_svmlight_file("./splice")

How many samples and features does the dataset include ? Is the classification problem
balanced ?

Hereafter you may use X and Y to learn your best classification function. Once completed,
ask for the release of the test set.

2. We aim to estimate a non-linear SVM model using a RBF (gaussian) kernel k(x,z) =
expYI*=2ll This implies to tune the hyper-parameters C' of the SVM and ~. For this, we
will rely on the utility functions provided by Scikit-Learn, especially the GridSearchCV
function.

3. Build two large logarithmic grids of size 25 for the kernel parameter + in the range 10~ to
1 and for C in the interval 10~/2 to 102

gamma_grid = ....
C_grid = ...

4. To select the best model we will perform a grid search over the previously defined grids
using GridSearchCV function of Scikit-Learn. First let set up the classifier and the grid
search module. The best model will be selected based on the accuracy performance and
K -fold validation (feel free to adapt the value of K).

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

# the grid
parameters = [{"gamma": gamma_grid, "C": C_grid}]

1. https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+
(Splice-junction+Gene+Sequences)
2. http://www.cs.toronto.edu/~delve/data/splice/spliceDetail.html

p-1/2


http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
http://www.cs.toronto.edu/~delve/data/splice/spliceDetail.html

ASI INSA Rouen IML

# the classifier
clf_rbf = SVC(kernel="rbf", tol=0.01)
# Perf a K-fold validation using the accuracy as the performance measure

K =3

# we will dot it on a grid search using n_jobs processors

clf_rbf = GridSearchCV (clf_rbf, param grid=parameters, cv=K, scoring="
accuracy", verbose=1l, n_jobs = 2)

After that the best model is learned

clf_rbf.fit (X, Y)

5. Let check the best selected hyper-parameters, the corresponding accuracy and the validation
performance graphic along the grid. Is the figure in accordance with the chosen hyper-
parameters ?

# Get the best parameters
print ("\n Rbf kernel - optimal hyper-parameters = {}".format (clf_rbf.

best_params_))
print ("\n Rbf kernel - best cross-val accuracy = {}".format (clf_rbf.

best_score_))

## Plot the validation performance w.r.t. C and gamma
import matplotlib.pyplot as plt

plt.imshow (clf_rbf.cv_results_["mean_test_score"].reshape (gamma_grid.
shape[0],C_grid.shape[0]), extent=[min (gamma_grid),max (gamma_grid),
min (C_grid),max (C_grid) ], interpolation="bicubic", aspect="auto")

plt.colorbar ()

plt.show ()

6. At this stage, ask for the test set. Load it as in question 1. Compute the prediction accuracy
on the test set. Compute and plot the confusion matrix. Comment on the obtained results
Hint : refer to the documentation of confusion matrix for more details.

from sklearn.metrics import confusion_matrix, accuracy_score

Ytest_pred =
confmat = confusion_matrix(..., ...)
fig, ax = plt.subplots(figsize=(9, 9))
ax.matshow (confmat, cmap=plt.cm.Blues, alpha=0.5)
for i in range (confmat.shape[0]) :
for j in range (confmat.shape[l]) :
ax.text (x=3j, y=i, s=confmat[i, j], va="center", ha="center")

plt.xlabel ("Prediction"); plt.ylabel ("Truth");

7. Inspiring from the previous questions, learn a linear SVM. It’s hyper-parameter must be
selected using the grid search tool. Compare the obtained results to the non-linear SVM

case.

p-2/2


https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

	Splice classification

