Opérateurs

• 5 opérateurs de base

- Union
- Différence
- Sélection (ou restriction)
- Projection
- Produit cartésien
- 3 opérateurs dérivés (présentés)
 - Intersection
 - Jointure
 - Division

Principes de base

- Le résultat de toute opération est une relation.
- Les opérateurs sont ensemblistes (pas d'ordre, ni de double)

Critères de classification des opérateurs :

- Unaire : sélection, projection
- Binaire :
 - A schéma identique (opérations ensemblistes) : union, différence, intersection
 - A schéma différent : produit cartésien, jointure, division

Union (notée ∪)

Insertion de n-uplets : Opération d'union ensembliste (symétrique).

• R1 et R2 deux relations de même schéma

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
>	5	Morgon	1980	Beaujolais	Rouge
R2	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	6	Graves	1983	Bordeaux	Rouge
	7	Cahors	1980	Lot	Rouge
>	5	Morgon	1980	Beaujolais	Rouge

• $R3 = \cup (R1, R2)$

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
	6	Graves	1983	Bordeaux	Rouge
>	5	Morgon	1980	Beaujolais	Rouge
	7	Cahors	1980	Lot	Rouge

Différence (notée -)

Suppression de n-uplets : Différence ensembliste (non symétrique)

• R1 et R2 deux relations de même schéma

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
R2	2 NUMERO_VIN CRU	MILLESIME	REGION	TEINTE	
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc

• R3 = -(R1, R2)

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge

Sélection - restriction - (notée σ)

Réduire le nombre de n-uplet en fonction d'une conjonction / disjonction / négation de triplets : (attribut / comparateur / valeur-attribut)

• Opérateur unaire : Relation R1

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge

• R2 = σ (R1, MILLESIME > 1976 et REGION = "Beaujolais")

R2	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
	5	Morgon	1980	Beaujolais	Rouge

Réduire le nombre d'attribut pour une relation sans diminution du nombre de n-uplet (clé)

• Opérateur unaire : Relation R1

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge

• R2 = π (R1, NUMERO_VIN)

R2	NUMERO_VIN
	1
	2
	3
	4
	5

Exemple de projection sur 1 attribut

Réduire le nombre d'attribut pour une relation (avec diminution potentielle de n-uplet : sans clé)

• Opérateur unaire : Relation R1

- 1	1			1		
R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE	
	1	Cahors	1976	Lot	Rouge	
	2	Morgon	1976	Beaujolais	Rouge	
	3	Morgon	1979	Beaujolais	Rouge	
	4	Tokay	1976	Alsace	Blanc	
	5	Morgon	1980	Beaujolais	Rouge	

• $R2 = \pi$ (R1, CRU)

R2	CRU
	Cahors
	Morgon
	Tokay

Exemple de projection sur 2 attributs

[→ Exemple sur 2 attributs]

Réduire le nombre d'attribut pour une relation (avec diminution potentielle de n-uplet : sans clé)

• Opérateur unaire : Relation R1

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE	
	1	Cahors	1976	Lot	Rouge	
	2	Morgon	1976	Beaujolais	Rouge	
	3	Morgon	1979	Beaujolais	Rouge	
	4	Tokay	1976	Alsace	Blanc	
	5	Morgon	1980	Beaujolais	Rouge	

• R2 = π (R1, CRU, MILLESIME)

R2	CRU	MILLESIME
	Cahors	1976
	Morgon	1976
	Morgon	1979
	Tokay	1976
	Morgon	1980

Produit cartésien (noté X)

R1 (A1, ..., An) X R2 (B1, ... Bp) \rightarrow R3 (A1, ..., An, B1, ..., Bp)

	R1	CRU
• R1		Cahors
• 1/1		Morgon
		Tokay

• R2 MILLESIME
1976
1979

• R3 = X (R1, R2)

R3	CRU	MILLESIME
	Cahors	1976
	Cahors	1979
	Morgon	1976
	Morgon	1979
	Tokay	1976
	Tokay	1979

Intersection (notée \cap)

Donner les n-uplets communs entre deux relations de même schéma

• R1 et R2 deux relations de même schéma

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
R2	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
	3	Morgon Tokay	1979 1976	Beaujolais Alsace	Rouge Blanc

• $R3 = \cap (R1, R2)$

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge

Intersection (notée ∩)

Donner les n-uplets communs entre deux relations de même schéma

• R1 et R2 deux relations de même schéma

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
R2	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
	3	Morgon Tokay	1979 1976	Beaujolais Alsace	Rouge Blanc

• $R3 = \cap (R1, R2)$

R	3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
		3	Morgon	1979	Beaujolais	Rouge

Intersection (notée ∩)

Donner les n-uplets communs entre deux relations de même schéma

• R1 et R2 deux relations de même schéma

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
R2	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge

• $R3 = \cap (R1, R2)$

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	3	Morgon	1979	Beaujolais	Rouge

- θ -Jointure
 - θ est un comparateur (naturelle : = et même attribut)
 - semi-jointure : couplée avec la projection (à gauche ou à droite)

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge
R2	NUMERO_VIN	NOM	QUANTITE		
	1	Dupont	100		
	1	Durand	250		
	2	Durand	220		

- θ -Jointure
 - θ est un comparateur (naturelle : = et même attribut)
 - semi-jointure : couplée avec la projection (à gauche ou à droite)

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge
R2	NUMERO_VIN	NOM	QUANTITE		
	1	Dupont	100		
	1	Durand	250		
	2	Durand	220		

- θ -Jointure
 - θ est un comparateur (naturelle : = et même attribut)
 - semi-jointure : couplée avec la projection (à gauche ou à droite)

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge
R2	NUMERO_VIN	NOM	QUANTITE		
	1	Dupont	100		
	1	Durand	250		
	2	Durand	220		

- θ -Jointure
 - θ est un comparateur (naturelle : = et même attribut)
 - semi-jointure : couplée avec la projection (à gauche ou à droite)

R1	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge
	3	Morgon	1979	Beaujolais	Rouge
	4	Tokay	1976	Alsace	Blanc
	5	Morgon	1980	Beaujolais	Rouge
R2	NUMERO_VIN	NOM	QUANTITE		
	1	Dupont	100		
	1	Durand	250		
	2	Durant	220		

- R3 = ⋈ (R1, R2, NUMERO_VIN = NUMERO_VIN)
- Couple avec la projection pour liminer l'attribut redondant

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE	NOM	QUANTITE
	1	Cahors	1976	Lot	Rouge	Dupond	100
	1	Cahors	1976	Lot	Rouge	Durand	250
	2	Morgon	1976	Beaujolais	Rouge	Durand	220

● Semi-jointure à gauche (×)

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge

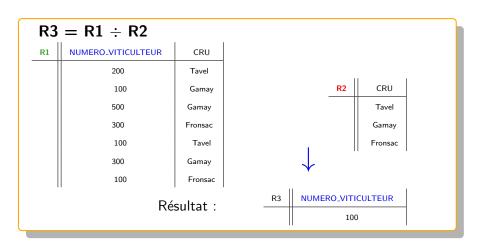
- R3 = ⋈ (R1, R2, NUMERO_VIN = NUMERO_VIN)
- Couple avec la projection pour liminer l'attribut redondant

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE	NOM	QUANTITE
	1	Cahors	1976	Lot	Rouge	Dupond	100
	1	Cahors	1976	Lot	Rouge	Durand	250
	2	Morgon	1976	Beaujolais	Rouge	Durand	220

Semi-jointure à gauche (⋉)

R3	NUMERO_VIN	CRU	MILLESIME	REGION	TEINTE
	1	Cahors	1976	Lot	Rouge
	2	Morgon	1976	Beaujolais	Rouge

$R3 = R1 \div R2$


R1	NUMERO_VITICULTEUR	CRU
	200	Tavel
	100	Gamay
	500	Gamay
	300	Fronsac
	100	Tavel
	300	Gamay
	100	Fronsac

R2	CRU
	Tavel
	Gamay
	Fronsac

Résultat :

R3 NUMERO_VITICULTEUR

R3	= R1 ÷ R2			
R1	NUMERO_VITICULTEUR	CRU		
	200	Tavel		
	100	Gamay	R2	CRU
	500	Gamay	\rightarrow	Tavel
	300	Fronsac		Gamay
	100	Tavel		Fronsac
	300	Gamay		
	100	Fronsac		
Résultat :		R3 NUMERO_VIT	TICULTEUR	
			100)

$R3 = R1 \div R2$

R1	NUMERO_VITICULTEUR	CRU
11.1	NOWEKO:VITICOETEOK	CINO
	200	Tavel
	100	Gamay
	500	Gamay
	300	Fronsac
	100	Tavel
	300	Gamay
	100	Fronsac

Résultat :

K2	CRU
	Tavel
	Gamay
	Fronsac

R3	NUMERO_VITICULTEUR
	100

- Rechercher dans une même relation, l'ensemble de tous les "sous-tuples" qui satisfont une "sous-relation".
- $R3 = R1 \div R2$
 - Schéma de R2 (SR2) est un "sous-schéma" de R1 (SR1), SR2 \subset SR1
 - Les n-uplets de R2 sont : π (R1, SR2)
 - Le schéma de R3 (SR3) est le complémentaire de SR2 dans SR1, R3 (SR1-SR2)
- R3 représente tous les n-uplets qui concaténés à chacun des n-uplets de R2 donne un n-uplet de R1
- Opérateur non symétrique
- $R3 = \div(R1, R2) = -(T1, T2)$
 - Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
 - Toutes les combinaisons possibles : X (T1, R2)
 - Toutes les combinaisons inexistantes : (X (T1, R2), R1)
 - Les viticulteurs associés : T2 = π ((X (T1, R2), R1), SR3)

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)
- Toutes les combinaisons inexistantes : (X (T1, R2), R1)
- Les viticulteurs associés : $T2 = \pi$ ((X (T1, R2), R1), SR3)
- $R3 = \div (R1, R2) = (T1, T2)$

R1	NUMERO_VITICULTEUR	CRU
	200	Tavel
	100	Gamay
	500	Gamay
	300	Fronsac
	100	Tavel
	300	Gamay
	100	Fronsac

R2	CRU
	Tavel
	Gamay
	Eronese

\neg	-			п				
≺		\leq	u				Ť.	
10	$\overline{}$	\cup	u		L	u	$\overline{}$	

R3	NUMERO_VITICULTEUR

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)
- Toutes les combinaisons inexistantes : (X (T1, R2), R1)
- Les viticulteurs associés : $T2 = \pi$ ((X (T1, R2), R1), SR3)
- $R3 = \div (R1, R2) = (T1, T2)$

R1	NUMERO_VITICULTEUR	CRU
	200	Tavel
	100	Gamay
	500	Gamay
	300	Fronsac
	100	Tavel
	300	Gamay
	100	Fronsac

R2	CRU
	Tavel
	Gamay
	F

Résultat

R3	NUMERO_VITICULTEUR

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)
- Toutes les combinaisons inexistantes : (X (T1, R2), R1)

	•	Les viticulteurs ass	ociés :	NUMERO_VITICULTEUR	, RCRU), F	R1),	SR3)
		$\mathbf{R3} = \div(R1, R2) =$	= - (T1	200	Tavel		
				200	Gamay		
_	R1	NUMERO_VITICULTEUR	CRU	200	Fronsac		
		200	Tavel	100	Gamay	ļ ,	
		100	Gamay	100	Tavel	R2	CRU
		500	Gamay	100	Fronsac		Tavel
		300	Fronsac	500	Tavel		Gamay
		100	Tavel	500	Gamay		Fronsac
		300	Gamay	500	Fronsac		
		100	Fronsac	300	Tavel		
						FELID	

300

300

Fronsac

Gamav

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)
- Toutes les combinaisons inexistantes : (X (T1, R2), R1)

		Les viticulteurs ass	ociés :	NUMERO_VITICULTEUR	, CRU, F	(1),	SR3)
		$\mathbf{R3} = \div(R1, R2) =$	= - (T1	200	Tavel		
	1	l	· ` '	200	Gamay		
_	R1	NUMERO_VITICULTEUR	CRU	200	Fronsac		
		200	Tavel	100	Gamay		
		100	Gamay	100	Tavel	R2	CRU
		500	Gamay	100	Fronsac		Tavel
		300	Fronsac	500	Tavel		Gamay
		100	Tavel	500	Gamay		Fronsac
		300	Gamay	500	Fronsac		
		100	Fronsac	300	Tavel		
		Ré	sultat :	300	Fronsac	ΓEUR	
				300	Gamay		

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)
- Toutes les combinaisons inexistantes : (X (T1, R2), R1)
- Les viticulteurs associés : $T2 = \pi$ ((X (T1, R2), R1), SR3)

•
$$R3 = \div (R1, R2) = - (T1, T2)$$

R1	NUMERO_VITICULTEUR	CRU			
	200	Tavel			
	100	Gamay	T2 NUMERO_VITICULTEUR	R2	CRU
	500	Gamay	200		Tavel
	300	Fronsac	500		Gamay
	100	Tavel	300		Fronsac
	300	Gamay			"
	100	Fronsac			

Résultat :

R3	NUMERO_VITICULTEUR

EXEMPLE

- Tous les viticulteurs : $T1 = \pi$ (R1, SR3)
- Toutes les combinaisons possibles : X (T1, R2)

Résultat :

- Toutes les combinaisons inexistantes : (X (T1, R2), R1)
- Les viticulteurs associés : $T2 = \pi$ ((X (T1, R2), R1), SR3)
- $R3 = \div(R1, R2) = -(T1, T2)$

R1	NUMERO_VITICULTEUR	CRU			
	200	Tavel			
	100	Gamay	T2 NUMERO_VITICULTEUR	R2	CRU
	500	Gamay	200		Tavel
	300	Fronsac	500		Gamay
	100	Tavel	300		Fronsac
	300	Gamay			
	100	Fronsac			

R3

NUMERO_VITICULTEUR

100

Langage algébrique

- Définition Langage algébrique

- Algèbre des opérateurs du modèle relationnel
 - Opérateurs de bas niveau
 - Approche procédurale et ensembliste
- L'algèbre est le langage interne d'un SGBD relationnel

EXEMPLES

- Square
- Sequel

Base exemple : coopérative

VINS (V) (NUM_VIN, CRU, MILLESIME)

VITICULTEURS (VT) (NUM_VITICULTEUR, NOM, PRENOM, VILLE)

PRODUCTIONS (P) (VIN, VITICULTEUR)

BUVEURS (B) (NUM_BUVEUR, NOM, PRENOM, VILLE)

COMMANDES (C) (NUM_COMMANDE, DATE, VIN, QUANTITE, BUVEUR)

EXPEDITION (E) (COMMANDE, DATE, QUANTITE)

Sélection - Projection

EXEMPLE

- → Donner les numéros des vins de millésime antérieur à 1975
 - Attributs impliqués :
 - MILLESIME (de VINS)
 - NUM_VIN (de VINS)
 - ullet \rightarrow relation VINS
 - Opérateur de Sélection
 - Texte: "millésime antérieur à 1975"
 - Attribut (MILLESIME) Comparateur (< ou \le ?) Valeur (1975)
 - σ (VINS, MILLESIME \leq 1975)
 - Opérateur de Projection
 - Retenir : NUM_VIN
 - $R \leftarrow \pi$ (σ (VINS, MILLESIME \leq 1975), NUM_VIN)

Différence

EXEMPLE

- → Donner les numéros de vin ne faisant l'objet d'aucune commande
 - Attributs impliqués
 - NUM_VIN (de VINS)
 - VIN (de Commandes)
 - Construction sur le même schéma (Projection)
 - T1 $\leftarrow \pi$ (VINS, NUM_VIN)
 - T2 $\leftarrow \pi$ (COMMANDES, VIN)
 - Evaluation
 - R ← (T1, T2)

EXEMPLE

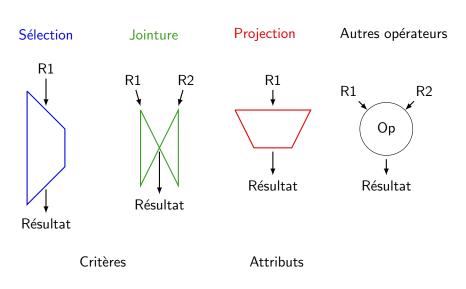
- → Donner les numéros et nom des viticulteurs produisant des vins de cru "Muscadet"
 - Attributs impliqués
 - CRU (de VINS)
 - NUM_VITICULTEUR, NOM (de VITICULTEURS)
 - → relations VITICULTEURS, VINS
 - Opérateur de Sélection
 - Texte: "de cru "Muscadet" "
 - Attribut (CRU) Comparateur (=) Valeur ("Muscadet")
 - σ (VINS, CRU = "Muscadet")
 - Opérateur de Projection
 - Retenir : NUM_VITICULTEUR, NOM (de VITICULTEURS)
 - Problème : Lien entre VINS et VITICULTEURS
 - Déterminer un chemin logique entre VINS et VITICULTEURS
 - → relation PRODUCTIONS

Exemple (suite)

(SUITE EXEMPLE)

- T1 : Tous les vins de cru "Muscadet"
 - T1 $\leftarrow \sigma$ (VINS, CRU = "Muscadet")
- Récupérer les numéros de viticulteurs qui produisent les vins de T1
 - T2 $\leftarrow \bowtie$ (T1, PRODUCTIONS, NUM_VIN = VIN)
- Récupérer les informations associées aux viticulteurs qui produisent les vins de T1
 - T3 ← ⋈ (T2, VITICULTEURS, VITICULTEUR = NUM_VITICULTEUR)
- Ne retenir que les numéro et nom des viticulteurs concernés
 - $R = \pi$ (T3, NUM_VITICULTEUR, NOM)

```
R \leftarrow \pi ( \bowtie (\sigma (VINS, CRU = "Muscadet"), PRODUCTIONS, NUM_VIN = VIN), VITICULTEUR, VITICULTEUR = NUM_VITICULTEUR), NUM_VITICULTEUR, NOM)
```


Arbre algébrique

- → Requête : composition d'opérateurs de l'algèbre relationnelle
- Description textuelle peu claire → graphique

Arbre (graphe ou duplication des relations présentes plusieurs fois)

- Racine : résultat
 - Feuilles : relations de base
 - Arc : flux de données
 - Noeuds intermédiaires : opérateurs

Notations

Présentation

→ Donner les numéro et nom des buveurs habitant Paris qui ont commandé un vin de cru "Mâcon" et de millésime 1977 avant le 15/5/1988

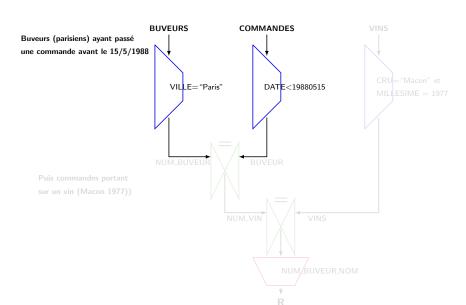
- Attributs impliqués
 - NUM_BUVEUR, NOM, VILLE (de BUVEURS)
 - CRU, MILLESIME (de VINS)
 - DATE (de COMMANDES)
- Opérateur de sélection
 - "Mâcon 1977" $\rightarrow \sigma$ (VINS, CRU="Mâcon" et MILLESIME=1977)
 - "avant le 15/5/1988" $ightarrow \sigma$ (COMMANDES, DATE < 19880515)
- Opérateur de projection
 - Retenir NUM_BUVEUR, NOM (de BUVEURS)

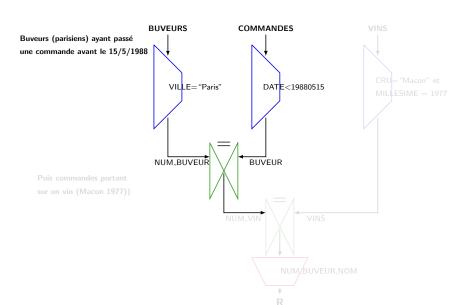
Plusieurs méthodes de résolution

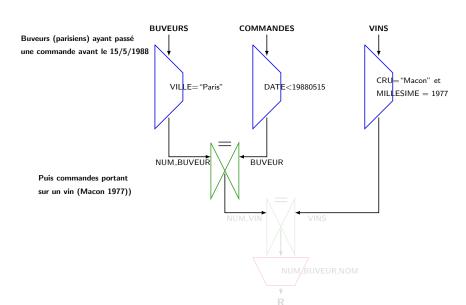
→ Donner les numéro et nom des buveurs habitant Paris qui ont commandé un vin de cru "Mâcon" et de millésime 1977 avant le 15/5/1988

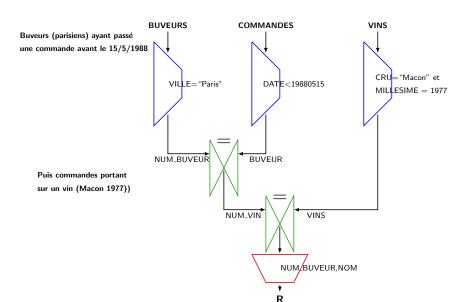
ме́тноре 1

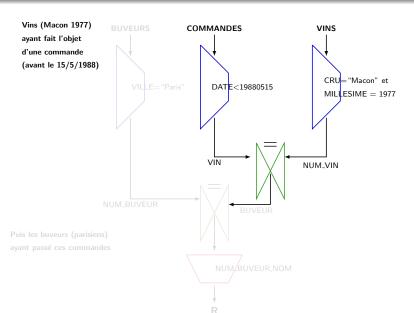
Buveurs (parisiens) ayant passé une commande (avant le 15/5/1988) puis commandes portant sur un vin (Mâcon 1977)

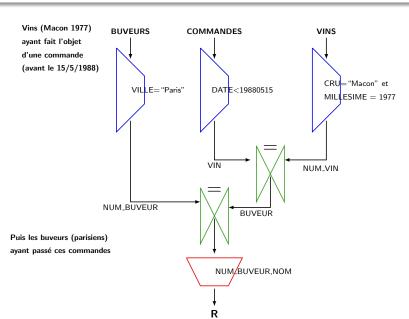

MÉTHODE 2

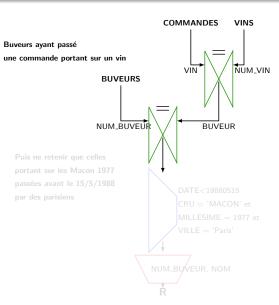

Vins (Mâcon 1977) ayant fait l'objet d'une commande (avant le 15/5/1988) puis les buveurs (parisiens) ayant passé ces commandes

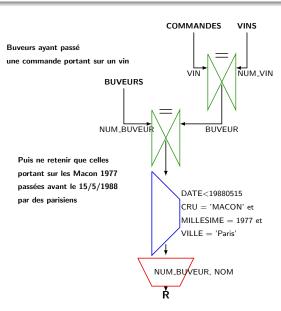

ме́тноре 3

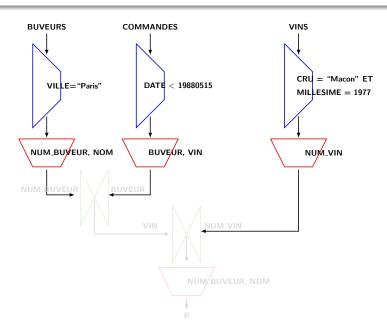

Buveurs ayant passé une commande portant sur un vin puis ne retenir que celles portant sur des Mâcon 1977 passées avant le 15/5/1988 par des parisiens

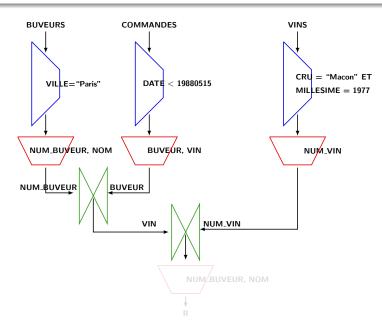

Différentes méthodes de résolution

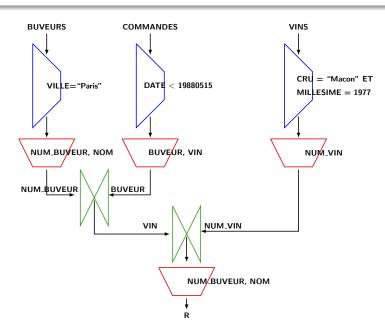












- Le SGBD doit exécuter un arbre algébrique optimisé :
 - En terme de nombre d'entrées/sorties
 - En terme de temps CPU, ...
- Les facteurs déterminants sont :
 - L'ordre d'exécution des opérations algébriques
 - Les algorithmes implantant les opérations algébriques
 - Le placement des données sur le disque (clustering, méthodes de stockage, ...)
 - La taille des relations intermédiaires (utilisation de l'opérateur de sélection-projection, semi-jointure, ...)

Bases de Données

Restructuration de l'arbre algébrique 💸

- Heuristique
 - Remonter les sélections et les projections
 - Descendre les jointures
- Propriétés
 - Associativité des jointures
 - Commutativité des sélections et projection (au schéma près)
 - Commutativité des sélections et des jointures (sélection sur produit cartésien)
 - Commutativité des projections et des jointures (au schéma près)

→ Travail de l'optimiseur de requête

- Manipulation des graphes (orientés)
 - Acyclique : exemple composant-composé
 - Cyclique : réseaux de communications routières
- Opérations
 - calcul de chemin (fermeture transitive : origine destination)
 - calcul de point fixe

Bases de Données

Problème général

Trouver un langage pour exprimer une requête de manière déclarative \rightarrow sans indiquer l'enchaînement des opérations algébriques : langage non procédural (langage assertionnel ou déclaratif)

Rôle du SGBD

- Permettre l'expression de la requête
- Valider la requête ("sémantique des opérateurs", syntaxique)
- Traduire la requête en arbre algébrique
- Optimiser l'arbre algébrique
- Exécuter l'arbre algébrique