OBJECTIF DU CHAPITRE

Un système thermodynamique échange de l'énergie avec le reste de l'univers. Ce mot d'énergie est aujourd'hui très courant, mais le langage quotidien montre une mauvaise compréhension de cette notion : « L'objet a frappé le sol avec beaucoup de force avec beaucoup d'énergie ». De même qu'est-ce que la chaleur ? Est-ce une énergie, un transfert d'énergie ? On parle de la « chaleur du corps ». Il s'agit plutôt de son énergie thermique.

Ce chapitre a donc pour but de bien définir ce qu'est l'énergie d'un système, comment celui-ci échange de l'énergie avec le milieu extérieur.

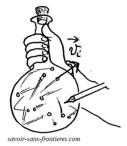
Le premier principe explicite la manière dont s'effectuent ces transferts d'énergie. Ce n'est autre que le principe de conservation de l'énergie.

LL'ÉNERGIE D'UN SYSTÈME

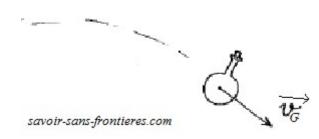
L'énergie d'un système est la somme de tous les termes d'énergie du système. (E1)

Faisons l'inventaire de tous les termes d'énergie.

I.1) Les énergies cinétiques



Energie cinétique d'agitation thermique E_{cth}



Energie cinétique d'ensemble E_{cG}



C'est un terme d'énergie microscopique.

C'est un terme d'énergie macroscopique.

I.2) Les énergies potentielles

Enumérons de même les différents types d'énergie potentielle que le système est susceptible de posséder :

- Chaque particule du système est en interaction avec ses voisines. Il en résulte une énergie potentielle d'interaction E_{pint} . Celle-ci est nulle entre les molécules d'un gaz parfait.
- Le système est sous l'action d'un champ de forces extérieures (forces de pesanteur, électrostatiques, etc.). Il en résulte une énergie potentielle extérieure E_{pext} .

Les énergies potentielles sont connues à une constante près.

I.3) Energie et énergie interne

D'après l'énoncé (E1) : Energie d'un système : $E = (E_{cth} + E_{cG}) + (E_{pint} + E_{pext})$

L'énergie interne U d'un système est l'énergie du système en repos macroscopique.

E energie interne e	a un systeme est i energie un syste	me en repes maeroscopique.
E_{n-n-i} integral $U = E_{n-1} + E_{n-1}$	_4	E = II + E + E

Energie interne: $U = E_{cth} + E_{pint}$ et

E et U sont extensives. On peut donc définir une énergie molaire (en J.mol⁻¹) et une énergie massique (en J.kg⁻¹), et écrire la relation d'extensivité : $E = nE_m = me$ à savoir démontrer De même : $U = nU_m = mu$ à savoir démontrer

II ÉCHANGES D'ÉNERGIE D'UN SYSTÈME AVEC LE MILIEU EXTÉRIEUR

Un système ne peut échanger de l'énergie avec le milieu extérieur que sous deux formes :

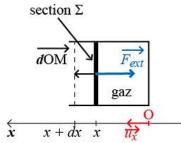
- transfert d'énergie macroscopique : le travail. C'est en général dans ce cours un transfert mécanique.
- transfert d'énergie microscopique : C'est un transfert thermique, autrefois appelé chaleur.

Etudions successivement ces deux formes de transfert d'énergie.

II.1) Le travail des forces extérieures

La force extérieure communément rencontrée dans les cours de thermodynamique élémentaire est la force de pression. Déterminons sur un exemple l'expression de

Un gaz est enfermé dans un cylindre rigide fermé par un piston mobile.



Le système étudié est le gaz. Tout le reste de l'univers constitue le milieu extérieur (atmosphère, parois rigides du cylindre, piston). On note \vec{F}_{ext} la résultante de toutes les forces exercées sur le système par le milieu extérieur. Trois parois étant rigides, \vec{F}_{ext} n'a d'effet qu'au niveau du piston mobile d'aire Σ .

On appelle **pression extérieure** la pression résultant de l'action de \vec{F}_{ext} sur la surface d'aire Σ : $F_{ext} = P_{ext}$. Σ . \vec{F}_{ext} est donc une force de pression.

D'où le travail élémentaire des forces de pression :

$$J = -P_{ext}dV$$

$$J = -P_{ext}dV$$

$$m^3$$

 \triangle P_{ext} est la pression due au milieu extérieur (tout ce qui n'est pas le système ; ne pas confondre avec la pression ambiante). dV est la variation infinitésimale de volume du système.

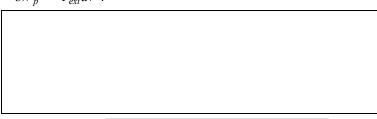
- Conventions de signe : dV > 0; le volume du système augmente ; $\delta W_p < 0$; le système fournit du travail au milieu extérieur. dV < 0; le volume diminue ; $\delta W_p > 0$; le système reçoit du travail de la part du milieu extérieur.
- Analyse dimensionnelle : [W] = [PV]Il est pratique de retenir que le produit PV est homogène à une énergie.

• Cas des transformations lentes

Si la transformation est lente, le système est constamment en équilibre mécanique : La pression P du système est constamment égale à la pression exercée par le milieu extérieur P_{ext} .

Pour une transformation lente: $\delta W_n = -PdV$ avec P: pression du système. à savoir démontrer

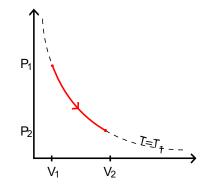
Visualisation du travail dans le diagramme de Clapeyron $\delta W_p = -P_{ext}dV$.



Graphiquement: $W_{1\rightarrow 2} = -aire \ sous \ la \ courbe$

Si $V_2 > V_1$; aire > 0; $W_{1\rightarrow 2} < 0$; le système fournit du travail au milieu extérieur.

Si $V_2 < V_1$; aire < 0; $W_{1\rightarrow 2} > 0$; le système reçoit du travail de la part du milieu extérieur.



II.2) Les transferts thermiques (ou chaleur) Q

Considérons deux systèmes de températures différentes, séparés par une paroi immobile. Les particules des deux systèmes sont en agitation thermique et viennent frapper la paroi. Au cours des chocs, elles échangent de l'énergie avec la paroi. Celles du système « chaud » cèdent de l'énergie à la paroi ; celles du système « froid » reçoivent de l'énergie de la paroi.

Cet échange d'énergie se fait cette fois à l'échelle de la particule, sans déplacement d'ensemble des systèmes : Les transferts thermiques sont des échanges d'énergie à l'échelle microscopique.

Pour être complet, signalons qu'il existe trois types de transfert thermique :

- Par conduction, c'est-à-dire par contact entre deux systèmes à des températures différentes. Le transfert thermique décrit cidessus est de ce type, conductif.
- Par convection, c'est-à-dire par déplacement de matière. Une fenêtre ouverte permet les échanges thermiques par convection entre une salle et l'atmosphère.
- Par rayonnement, c'est-à-dire par émission / réception de photons : Le soleil réchauffe une salle par rayonnement à travers une fenêtre fermée.

III PREMIER PRINCIPE DE LA THERMODYNAMIQUE DES SYSTÈMES FERMÉS

III.1)Enoncé

La variation d'énergie d'un système fermé au cours d'une transformation ne dépend que des transferts d'énergie entre le système et le milieu extérieur.

Or, il n'existe que deux types de transfert d'énergie : thermique et mécanique. Le premier principe s'écrit donc :

$$E_2 - E_1 = W_{1 \to 2} + Q_{1 \to 2}$$

Interprétations:

Le premier principe de la thermodynamique est le principe de conservation de l'énergie

L'énergie d'un système isolé se conserve.

Un système peut *échanger* de l'énergie. Il ne peut pas en *produire*.

III.2)Cas des systèmes fermés au repos

Rappelons que dans ce cas, l'énergie E du système est égale à son énergie interne U (voir **I.3** page 1). Le premier principe

devient donc : $U_2 - U_1 = W_{1\rightarrow 2} + Q_{1\rightarrow 2}$

C'est sous cette forme que nous l'utiliserons en général en ce début de semestre.

III.3) Grandeurs énergétiques et fonction d'état

Les différents énoncés du premier principe font intervenir quatre termes énergétiques différents : énergie, énergie interne, transfert thermique, travail. Dans ce paragraphe, nous allons montrer que ces grandeurs sont de natures différentes. Certaines dépendent de la nature de la transformation entre deux états donnés, d'autres prennent des valeurs qui ne dépendent que de l'état du système, peu importe la nature de la transformation qui a amené le système dans cet état.

Définition :

Une fonction d'état prend une valeur qui ne dépend que de l'état du système. Sa variation entre deux états ne dépend que l'état initial et de l'état final.

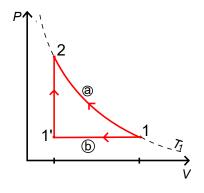
Envisageons deux états 1 et 2 d'un gaz parfait.

Envisageons également deux suites de transformations qui permettent de faire passer le système de l'état 1 à l'état 2 :

- chemin (a):
- chemin **(b)**:
- \mathcal{F} En 1, l'énergie vaut E_I et l'énergie interne vaut U_I .
- \mathcal{F} En 2, l'énergie vaut E_2 et l'énergie interne vaut U_2 .

Etudions à présent les termes d'énergie sur les chemins (a) et (b):

© Comparaison des travaux des forces de pression (transferts mécaniques) : Ce sont les opposés des aires sous les courbes. On constate dans cet exemple que l'aire sous la courbe (a) est (en valeur absolue) plus grande que l'aire sous la courbe (b).



3/13

De plus, les aires étant négatives, les travaux sont positifs :
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
© Comparaison des transferts thermiques :
D'après le premier principe :
En conclusion :
E et U sont des fonctions d'état.
W et Q ne sont pas des fonctions d'état.
Conséquences sur les notations : • La variation de E entre 1 et 2 vaut $E_2 - E_I$, qu'on notera ΔE . De même $U_2 - U_I = \Delta U$
• Le travail de 1 à 2 sera noté $W_{1\rightarrow 2}$, et jamais W , puisqu'il ne s'agit pas d'une <i>variation</i> , mais d'un <i>travail accumulé petit à pe</i>
sur le chemin de 1 à 2. De même pour le transfert thermique, noté $Q_{1\rightarrow 2}$, et jamais \nearrow .
Conséquences d'ordre mathématique :
 Une variation infinitésimale de E s'apparente à sa différentielle dE. De même pour U et dU. Au contraire, un travail élémentaire n'est pas une différentielle, puisque W n'est pas une fonction. On le notera δW. De même pour Q et δQ.
• Premier principe pour une transformation infinitésimale : $dU = \delta W + \delta Q$
Intégration des quantités élémentaires (ou infinitésimales) :

IV CAPACITÉS THERMIQUES ET FONCTION ENTHALPIE H

On considère ici un système fermé (n = cste), en repos macroscopique (E = U), soumis uniquement à des forces de pression (variables d'état P, V, T).

IV.1 Capacité thermique à volume constant C_V

IV.1.a Définition de Cv

Par définition : $C_V = \left(\frac{\partial U}{\partial T}\right)_V$ Unité S.I. de capacité thermique : J.K⁻¹

U étant extensive, et *T* intensive, C_V est extensive : $C_V = nC_{Vm} = mc_V$ C_{Vm} en J.K⁻¹.mol⁻¹ et c_V en J.K⁻¹.kg⁻¹

Cette grandeur caractéristique du système permet de décrire le comportement d'un système lors d'une transformation isochore.

Ainsi, pour un système quelconque à volume constant : $dU = C_V dT$

Si de plus C_V est constante, par intégration : $U = C_V T + K_U$ K_U étant une constante homogène à une énergie. (1)

IV.1.b Signification physique de C_V

Evaluons le transfert thermique Q_V reçu par le système lors d'une *transformation isochore*.:

Si $T_2 - T_1 = 1$ °C, Q_V est numériquement égal à C_V . D'où l'énoncé :

 C_V est égale au transfert thermique nécessaire pour élever de 1°C, à volume constant, la température d'un système.

Exemple: Pour l'eau liquide : $c_v = 4.2 \text{ kJ.kg}^{-1}.\text{K}^{-1}$. Ce qui signifie que pour élever de 1°C, à volume constant, la température de 1 kg d'eau liquide, il faut lui fournir un transfert thermique de 4,2 kJ. La définition de la calorie était basée sur cette observation (1 cal = 4,1868 J).

La fonction énergie interne est parfaitement adaptée à l'étude des transformations isochores.

IV.2 Fonction enthalpie H et capacité thermique à pression constante C_P

Nous verrons dans ce paragraphe que, pour les transformations monobares, le premier principe peut s'écrire de façon plus concise en introduisant une nouvelle fonction d'état, la **fonction enthalpie** *H*.

IV.2.a Fonction enthalpie H

Par définition : Fonction enthalpie : H = U + PV U, PV et H en joules

H étant homogène à U, H est **extensive** : H = n. $H_m = m$. H_m en J.mol⁻¹ et H en J.kg⁻¹

IV	7.2	.b	Définition	ı de	C_{P}
----	-----	----	------------	------	---------

Par définition : $C_P = \left(\frac{\partial H}{\partial T}\right)_P$ Unité S.I. de capacité thermique : J.K⁻¹

 C_P est extensive: $C_P = nC_{Pm} = mc_p$ C_{Pm} en J.K⁻¹.mol⁻¹ et c_p en J.K⁻¹.kg⁻¹

Cette autre grandeur caractéristique du système permet de décrire le comportement de celui-ci lors *d'une transformation isobare* voire monobare.

Ainsi, pour un système quelconque à pression constante : $dH = C_P dT$

Si C_P est constante, par intégration : $H = C_P T + K_H$ K_H étant une constante homogène à une énergie. (3)

IV.2.c Premier principe pour une transformation monobare

Soit un système subissant une transformation monobare d'un état d'équilibre 1 à un état d'équilibre 2.

On rappelle qu'un système subit une transformation monobare s'il évolue sous l'action d'une pression constante imposée par le milieu extérieur. Les états 1 et 2 étant des états d'équilibre, la pression dans ces états est égale à la pression exercée par le milieu extérieur : $P_1 = P_{ext}$ et $P_2 = P_{ext}$.

Calcul du travail

Expression du premier principe

D'où
$$oldsymbol{Q_p} = oldsymbol{H_2} - oldsymbol{H_1}$$

(4)

La relation (4) exprime le premier principe pour les transformations monobares.

La fonction enthalpie est parfaitement adaptée à l'étude des transformations isobares

IV.2.d Signification physique de C_P

Evaluons le transfert thermique Q_P reçu par le système lors d'une transformation isobare. Combinons les relations (3) et (4):

Si $T_2 - T_1 = 1$ °C, Q_P est numériquement égal à C_P . D'où l'énoncé :

 C_P est égale au transfert thermique nécessaire pour élever de 1°C, à pression constante, la température d'un système.

IV.3. Capacité thermique d'un thermostat

• Un thermostat est un corps dont la température reste constante et uniforme et égale à T_0 même s'il peut échanger des transferts thermiques avec le système étudié.

En d'autres termes, il s'agit d'un corps ayant une capacité thermique importante (infinie) C.

Exemples: L'atmosphère, la mer peuvent en général être modélisés comme étant des thermostats.

V PROPRIÉTÉS ÉNERGÉTIQUES DES GAZ PARFAITS

V.1) Energie interne d'un gaz parfait

Par définition, l'énergie interne d'un système est la somme de son énergie cinétique d'agitation thermique et de l'énergie potentielle associée aux interactions entre les parties du système (voir I.3) page 1):

Pour un gaz parfait **monoatomique** : $U = \frac{3}{2}nRT$ L'énergie interne d'un gaz parfait monoatomique ne dépend que de T. La physique statistique montre que ce dernier résultat est généralisable à tous les gaz parfaits.

L'énergie interne d'un gaz parfait ne dépend que de la température.

(E2)

V.2) Les deux lois de Joule

1ère loi de Joule (J1): Un gaz suit la première loi de Joule si son énergie interne ne dépend que de la température.

Pour un gaz quelconque : U = U(T, V) et $C_V = \left(\frac{\partial U}{\partial T}\right)_V$

Si le gaz suit la première loi de Joule : U = U(T) et $dU = C_V dT$

2^e loi de Joule (J2): Un gaz suit la deuxième loi de Joule si son enthalpie ne dépend que de la température.

Pour un gaz quelconque : $H = H(T, \mathbf{P})$ et $C_P = \left(\frac{\partial H}{\partial T}\right)_P$

Si le gaz suit la deux	ième loi de Ioule :	H = H(T) et	$dH = C_{-}dT$
of ite gaz suit ia dean	icilic for de Joule.	11 11(1) 60	u11 — Gpu1

Application aux gaz parfaits

D'après (E2) un gaz parfait suit la première loi de Joule. Suit-il la deuxième ?

Un gaz parfait suit les deux lois de Joule.

V.3) Capacités thermiques des gaz parfaits

• Relation de Mayer des gaz parfaits

D'où la relation de Mayer : $C_P - C_V = nR$ en J.K⁻¹

• Capacités thermiques et rapport isentropique Un gaz parfait est souvent caractérisé par la donnée de son **rapport isentropique** $\gamma = \frac{C_P}{C_V}$. $\gamma > 1$.

On peut calculer C_P et C_V à partir de n et γ :

$$\begin{cases} C_V = \frac{nR}{\gamma - 1} \\ C_P = \frac{nR\gamma}{\gamma - 1} \end{cases}$$

à savoir démontrer

 $D\'{e}monstration:$

 ${\it Exemple}: D\'{e}terminons \ les \ capacit\'es \ thermiques \ et \ le \ rapport \ is entropique \ d'un \ gaz \ parfait \ monoatomique :$

V.4) Application 1 : Transformation adiabatique réversible d'un gaz parfait

On aura besoin dans ce paragraphe uniquement du caractère *lent* de la transformation. On démontrera au chapitre suivant qu'une transformation *adiabatique lente* d'un gaz parfait est *réversible*.

V.4.a Relations de Laplace

Lorsqu'un gaz parfait subit une transformation adiabatique réversible, ses variables d'état évoluent conformément aux relations de Laplace :

$$P.V^{\gamma} = constante$$
 (6)

$$\Leftrightarrow T. V^{\gamma-1} = constante$$

et
$$P^{1-\gamma} \cdot T^{\gamma} = constante$$

(8)

(7) et (8) à savoir démontrer

La démonstration nécessite l'usage du calcul différentiel :

Soit un gaz parfait subissant une transformation infinitésimale adiabatique réversible. Les transferts d'énergie infinitésimaux sont notés δW et δQ ; les variations infinitésimales d'énergie interne et de température sont égales respectivement aux différentielles dU et dT.

Lorsqu'un gaz parfait subit une transformation adiabatique réversible, la quantité $T.V^{\gamma-1}$ reste constante.

C'est la deuxième relation de Laplace (7).

Pour établir la première, on élimine T dans (7) à l'aide de la loi des gaz parfaits :

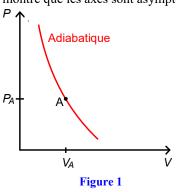
Même démarche pour la troisième (8).

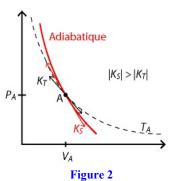
V.4.b Allure de l'adiabatique réversible dans le diagramme de Clapeyron

Envisageons une transformation adiabatique réversible à partir d'un état A.

En tout point de la transformation : $P.V^{\gamma} = P_A V_A^{\gamma} \Leftrightarrow P = \frac{P_A V_A^{\gamma}}{V^{\gamma}}$

L'étude des limites montre que les axes sont asymptotes à la courbe. Elle a donc même allure que l'isotherme (voir Figure 1).





V.4.c Positions relatives de l'adiabatique réversible et de l'isotherme

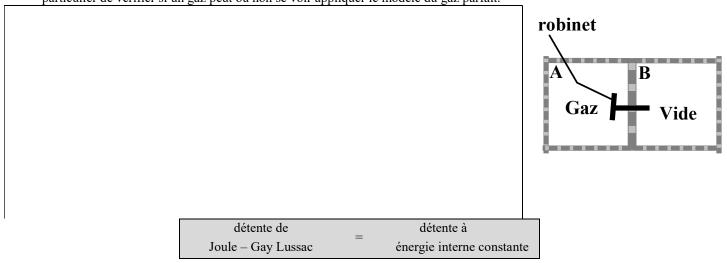
Comparons en A les coefficients directeurs des tangentes à l'iso-température et à l'adiabatique réversible.

Par comparaison de (9) et (10), sachant que $\gamma > 1$, on déduit qu'au point A, l'adiabatique est plus inclinée que l'isotherme. Voir Figure 2.

V.5) Application 2 : Détente de Joule – Gay-Lussac

V.5.a Cas d'un gaz quelconque

La détente de Joule – Gay-Lussac est une transformation irréversible destinée à caractériser les gaz réels : elle permet en particulier de vérifier si un gaz peut ou non se voir appliquer le modèle du gaz parfait.



V	.5.	h	Cas	ď,	้นท	gaz	nai	·fa	it
•	•••		\sim u $_{\rm 0}$	u	un	Suz	Pu		.,

Un gaz parfait suit la première loi de Joule : $dU = C_V dT$ Pour une détente de Joule Gay-Lussac, $dU = 0 \Rightarrow dT = 0$

L'énergie interne étant extensive, pour le système dont les frontières sont les parois de l'enceinte {A,B}, on a $U=U_{gaz}+U_{vide}=U_{gaz}$. L'énergie interne du gaz ne varie pas, donc sa température non-plus d'après ce qui précède.

La détente de Joule – Gay-Lussac d'un gaz parfait est isotherme.

Conclusion: Ainsi, en mesurant la variation de température d'un gaz réel avant et après la détente, on peut observer s'il se comporte ou non comme un gaz parfait.

VI PROPRIÉTÉS ÉNERGÉTIOUES DES PHASES CONDENSÉES

VI.1) Energie interne d'une phase condensée

Un solide ou un liquide, étudié dans le cadre du modèle indilatable incompressible, conserve le même volume, quelle que soit la transformation qu'il subit (voir chapitre 1, paragraphe IV.4). Son énergie interne ne dépend donc que de la température.

En conclusion : Pour une phase condensée : U = U(T)et $dU = C_V dT$

 $U = C_V T + K_U$ Si C_V est constante, par intégration :

VI.2) Capacités thermiques d'une phase condensée

Soit une phase condensée indilatable incompressible, subissant une transformation isobare d'un état 1 à un état 2.

Les	capacités	thermiques	sont égale	es. On le	es note simi	olement C .

Pour une phase condensée : $C_V = C_P = C$

VI.3) Enthalpie d'une phase condensée

Soit une phase condensée indilatable incompressible, subissant une transformation quelconque d'un état 1 à un état 2.

Sa variation d'enthalpie vaut :

Donc l'enthalpie d'un système indilatable incompressible dépend en toute rigueur de T et P: H = H(T,P).

Or, le volume molaire d'une phase condensée est beaucoup plus petit que celui d'un gaz ; alors que sa capacité thermique est beaucoup plus grande. Par conséquent l'enthalpie d'une phase condensée dépend très peu de la pression. On pourra donc considérer qu'elle ne dépend que de la température.

Pour une phase condensée : H = H(T)dH = C dT

> $H = CT + K_H$ Si C est constante, par intégration :

VI.4) Synthèse : modèle de la phase condensée purement thermique

L'état d'une phase condensée purement thermique ne dépend que de la température : dU = CdT et dH = C dTSes capacités thermiques sont égales : $|C_V = C_P = C$

Pour l'étude d'une phase condensée, on définit trois modèles. Selon le degré de précision nécessaire, on utilisera le modèle adapté. Rappelons ces trois modèles, par ordre de précision :

E.C. P1-1

↑ précision	
1	

VI.5) Application à la calorimétrie

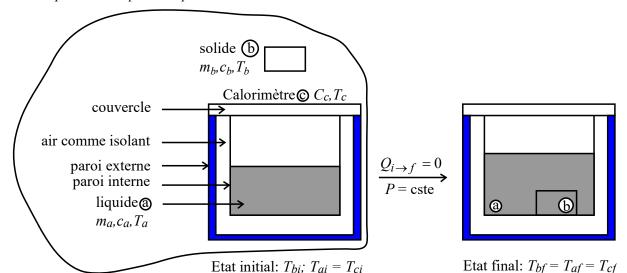
Les expériences de calorimétrie permettent de mesurer les échanges thermiques. Elles se réalisent dans un *calorimètre*.

Il est constitué de deux « vases » séparés par un isolant thermique (air, vide, etc.) ; le tout est recouvert par un couvercle. Le vase intérieur est ainsi bien isolé, et l'on peut négliger sur la durée de l'expérience, les échanges thermiques entre les substances qui s'y trouvent et le milieu extérieur.

Le vase intérieur du calorimètre participe aux échanges thermiques et sa capacité thermique C_c (en J.K⁻¹) est à prendre en compte.

Une application classique de la calorimétrie est la détermination de la capacité thermique d'un corps.

Dans l'expérience décrite ci-dessous, une masse m_a d'eau de capacité thermique massique c_a est en équilibre thermique à la température T_a dans le calorimètre (C_c) . On y plonge alors un solide métallique de masse m_b à la température T_b . On veut déterminer la capacité thermique massique c_b du métal.



Le système étudié est le système total {@, b, c}. Pour celui-ci :

- la transformation est isobare, à la pression du laboratoire.
 - ✓ 1^{er} principe pour les transformations isobares : $H_f H_i = Q_{i \to f}$ (5)
 - \checkmark Pour chaque sous-partie @, D, O du système (par exemple @) : $dH_a = C_a dT_a = m_a c_a dT_a$

Si c_a est constante : $H_a = m_a c_a T_a + K_a$.

- elle est aussi adiabatique, les échanges thermiques se faisant entre les sous-parties du système : 3,5,5 ; pas entre le système et le milieu extérieur : $Q_{i \to f} = 0$.
- H est extensive, donc : $H = H_a + H_b + H_c$

Le 1^{er} principe (5) devient : $(H_{af} - H_{ai}) + (H_{bf} - H_{bi}) + (H_{cf} - H_{ci}) = 0$ D'où l'équation calorimétrique : $m_a c_a (T_{af} - T_{ai}) + m_b c_b (T_{bf} - T_{bi}) + C_c (T_{cf} - T_{ci}) = 0$.

Exploitation : m_a et m_b sont mesurées sur une balance ; les températures avec un thermomètre ; c_a est lue dans une table, et C_c a été préalablement déterminée. L'équation calorimétrique permet le calcul de c_b ainsi que de son incertitude.